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Basics of cosmology

Subject of cosmology:

general properties of the present Universe at large scales, its
past and future

3 "whales” on which "old" classic cosmology is based:
1. The Einstein gravity (General Theory of Relativity)

Gravitational field is described by a space-time metric
satisfying the Einstein equations.

Verified with ~ 10~* accuracy in Solar system experiments.
Gravitational radiation from double radio-pulsars.



2. Approximate homogeneity and isotropy of the Universe

a) space-time metric:

km

vV = Hor, Ho = (70 + 3)5 Mpc

the Hubble law with Hj - isotropic

b) matter:

isotropic spatial distribution of galaxies and clusters, isotropy
of galaxy counts;

isotropy of the X-ray background

c) radiation (CMB):
black-body with the almost isotropic
T, = (2.72548 + 0.00057)K

3. Hot past (Big Bang)



Change from the "old” to "new” standard
cosmology

1. Understanding that all 3 basic foundations are approximate.
a) There exist natural generalizations of the Einstein
equations, and we need them.

b) The Universe may be and generically is indeed very
anisotropic and homogeneous at very large scales not
observable now.

c) The very early Universe may still be "cold”.

2. Discovery of two new kinds of dark "entities”: dark matter
and dark energy.

3. Discovery of two new periods in the evolution of the
Universe in the very remote past and at the present time when
its expansion is accelerated.



Present matter content of the Universe

In terms of the critical density
Perit = o 2 0.9 x 1072 g/em®, Q=L Y0 =1
(neglecting spatial curvature - less than 0.7%):

» Baryons (p,n) and leptons (™) 5%
No primordial antimatter.

» Photons () 4x10°°
T, = (2.72548 % 0.00057)K

» 3 types of neutrinos (.. v,. 1) < 0.5%

> m,i<023eV, > my,=04Q,h eV.

Non-relativistic non-baryonic dark matter ~ 25%

v

v

Dark energy ~ 70%



Four epochs of the history of the Universe

H = 2 where a(t) is a scale factor of an isotropic
homogeneous spatially flat universe (a
Friedmann-Robertson-Walker background):

ds? = dt? — a°(t)(dx* + dy® + dz%).

The history of the Universe in one line according to the
present paradigm:

? — DS=—FRWRD==FRWMD=—=DS — ?

. 1 2
|H|<<H2:>H:Z:>H 3t:>|H|<<H2
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Dark matter

Dark matter and dark energy are seen through gravitational
interaction only — we know the structure of their effective
energy-momentum tensor.

- non-relativistic, gravitationally clustered.

- relativistic, unclustered.
Definition of their effective EMT — through equations
(conventional).

- through the generalized Poisson equation:

A
- A G(p — po(t)).

®(r, t) is measured using the motion of 'test particles’ in it.
a) Stars in galaxies — rotation curves.

b) Galaxies — peculiar velocities.

c) Hot gas in rich galaxy clusters — X-ray profiles.

d) Photons — gravitational lensing (strong.and-weak).



Observations: is non-relativistic, has a dust-like EMT —
p < €= pc?, p>0, collisionless in the first approximation —
o/m < 1 ¢m?/g, and has the same spatial distribution as
visible matter for scales exceeding a few Mpc.

Ground experiments: very weakly interacting with baryonic
matter, o < 10 ** cm? for m ~ (50 — 100) GeV.



Dark energy
Two cases where DE shows itself:
1) inflation in the early Universe — ,
2) present accelerated expansion of the Universe —

Quantitative and internally self-consistent definition of its
effective EMT - through gravitational field equations
conventionally written in the Einstein form:

1 v 1 v v v v
816G (R - zénR> = — (Thwin T Tiloomy + Tliog))

- the Newton gravitational constant
measured in laboratory.
In the absence of direct interaction between DM and DE:

TI/(DE) O .



Possible forms of DE

» Physical DE.
New non-gravitational field of matter. DE proper place -
in the rhs of gravity equations.

» Geometrical DE.
Modified gravity. DE proper place — in the lhs of gravity
equations.

» A - intermediate case.

Generically, DE can be both physical and geometrical, e.g. in
the case of a non-minimally coupled scalar field or, more
generically, in scalar-tensor gravity. So, there is no alternative
" (either) dark energy or modified gravity”.



Background evolution

Neglecting the spatial curvature (less than 0.7% of the critical
density):

ds? = dt? — a*(t)(dx? + dy? + dz°)

The reconstruction programme: determination of the Universe
evolution in the past from observational data.
The basic quantity to be found: the Hubble parameter H = 2

as a function of redshift z = L;O) —1.

All components of the Riemann tensor can be expressed
through H(z) and %(ZZ).



EMT of present DE from the definition above:

3H2
poe = ~—= (h*(2) = Qmo(1 + 2)°)
81 G
3K [ L. LdR(2)
PDE = 816G ( M2 +37

where h(z) = Hf(,j), Ho = H(ty) is the Hubble constant and
Q0 1s the present density of non-relativistic matter in terms
of the critical one.

The DE effective equation of state wpr = %.

wpe > —1 — normal case,
wpe <~ —1 — phantom case,
wpe = —1 — the exact cosmological constant.



Luminosity distance from SNla

The largest clean set at present: the Union 2.1 set (H. Suzuki
et al., Astroph. J. 746, 85, (2012)): consists of 580 type la
supernovae sampling the redshift range 0.015 < z < 1.414. It
provides us with the Iuminosity distance

DL( ) 1+z fO H(z
- d (Di(2)
H 1
(2) = dz (1 + z>
The main problem of the reconstruction programme:

differentiation is not a proper operation in the presence of
observational errors.




Ways to avoids it:

» Comparison of concrete theoretical models with data.

» Best fit to some arbitrary chosen analytical expressions for
H(z) or wpge. The most widely known is the CPL
(Chevallier-Polarski-Linder) fit

z
1+z

Wpe = Wp + W

» Smoothing.
Many working proposals, e.g. A. Shafieloo et al., MNRAS
300, 1081 (2006) and A. Shafieloo, arXiv:1204.1109.

» The principal components method and many others.



Acoustic oscillations in matter and CMB
perturbation spectra
Origin of the effect: the Universe was isotropic at least from
the BBN time — half of large-scale scalar (density)

perturbations — the so called decaying mode — are absent.
Standing acoustic waves at the radiation-dominated stage.

l. Acoustic oscillations in CMB angular temperature
fluctuations (the effect is seen in CMB polarization, too).

Leads to a very accurate measured shift parameter

*Zrec d
R = Qo / 92 1725+0.018
Jo h(z)

(E. Komatsu et al., Astroph. J. Suppl. 192, 18 (2011)).
Precise but degenerate test.
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Il. Baryon acoustic oscillations (BAO).

Large galaxy catalogs are needed. What is obtained is the
following effective distance measure:

ovar =+ 535 ([ o) |

Measured for 6 points by now:

z =0.106,0.2,0.35, 0.44,0.6,0.73 — from SDSS DR7

(W. J. Persival et al, MNRAS 401, 2148 (2010)), WiggleZ
(C. Blake et al., MNRAS 415, 2892 (2011); MNRAS 418,
1707 (2011)) and 6dFGS (F. Beutler et al., MNRAS 416,
3017 (2011)) catalogs.
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Null diagnostics

Aim: falsifying the cosmological constant with minimal
assumptions.

The Om characteristic (V. Sahni, A. Shafieloo and

A. A. Starobinsky, Phys. Rev. D 78, 103502 (2008), see also
C. Zunckel and C. Clarkson, Phys. Rev. Lett. 101, 181301
(2008)):

W (z1) — h*(z)

Om(z,2) = Q+z)p—(1+2)?

If Om considered as a function of one of its arguments (with
the second one being fixed) is identically constant, then the
model is the ACDM one and Om = (. Its calculation does
not require the knowledge of the values of Hy and €.



Its variant customized for the usage of BAO data: the Om3
diagnostic (A. Shafieloo, V. Sahni and A. A. Starobinsky,
Phys. Rev. D 86, 103527 (2012)):

Om(zy, z,)

Om3(z1, 22, z3) = Om(z,, z3)

where z, lies between z; and z3. If Om3 considered as a
function of z, for fixed z; and z; is identically equal to unity,
then the model is the ACDM one once more.



Outcome of all observations

T,/ (pg) is very close to Ad); for the concrete solution describing

our Universe;
| < Wpg > +1| g 0.1

at 1o confidence level. E.g., wpg = —1.008 £ 0.085 assuming
wpe = const and Q, = 0 (D. Parkinson et al.,
arXiv:1210.2130). Thus, at the present level of knowledge only
one constant is needed for quantitative description of present
DE.

In the language of " coincidences” — present DE introduces
only one new coincidence as yet.



Four fundamental cosmological constants

One-to-one relation to the four epochs of the history of the
Universe.
A fundamental theory beyond each of these constants.

» Characteristic amplitude of primordial scalar (adiabatic)
perturbations.

A2=22x10"°, Py(k)= [ —*dk

Theory of initial conditions — inflation.
» Baryon to photon ratio.

3
nyp 10 Qbh2 2.725
—6.01 % 1
p, OO0 G 092 (Tﬁ,(K)

Theory of baryogenesis.



» Baryon to total non-relativistic matter density.

Q, 03
=0.167 — —
,om 0.05 Q,,
Theory of dark matter.

» Energy density of present dark energy.

2
€DE 30 Qpe Hy 3
— D _ 644 10730 20E (0 o
PPE= "2 . 0.70 <7o> g/cm

G*hepe _ g 19123 Qo (Fo 2
7 ' 0.70 \ 70

Theory of present dark energy (of a cosmological
constant).



The minimal present standard cosmological model

ACDM + (K = 0)+(scale-invariant adiabatic perturbations)
contains two more parameters:
» Hy — not a constant, but a present value of H(t);
» 7~ 0.09 — optical width after recombination — a
constant, but not fundamental.

4 fundamental cosmological constants => no more than 4
cosmological " coincidences”, all other " coincidences” exist
already at the level of usual laboratory physics.



New constant discovered

Observations tend to increase the number of fundamental
constants, but theory can counteract it by " unification”, by
expressing these new constants through already existing ones.
With the Planck and WMAP9 CMB data:

_ dInPy(k)

ne(k) = 1= == = —0.040 £ 0.007

There exist inflationary models of the early Universe including
the pioneer R + R?/(6/M?) one (Starobinsky, 1980) which
predict just this value theoretically, so no need in the increase
of the number of fundamental constants.



Scalar-tensor models of dark energy

Still no need to go beyond Einstein (General Theory of
Relativity 4+ a cosmological constant + hydrodynamic matter
(dust, radiation)) to describe dark matter and present dark
energy. However, primordial dark energy driving the de Sitter
(= inflationary) stage in the early Universe may not be
described by a cosmological constant since it should be
unstable (though sufficiently metastable). Thus, we have to go
beyond Einstein at least in this place.

A new scalar degree of freedom is needed, both for an exit
from the first de Sitter stage and for quantum generation of
scalar (adiabatic) perturbations. Natural and long well known
generic extension: scalar-tensor gravity.



In the Jordan (physical) frame

1
L= 5 (F(®)R + g"0,90,9) — U(P) + Lin(g.uw)
Equations for the spatially flat FLRW model with the scale
factor a(t):
B2

o .
3FH? = pm + = + U — 3HF

—2FH = pp+ &>+ F — HF

. . dU : dF
Ho + — —3(H +2H?*)—— =
®+3 +d¢ 3(H+ )dq) 0

where H = 2 (‘only two of them are independent).



Particular cases

1. F =% = const, k*=28nG.

Einstein gravity sourced by a minimally coupled scalar field
with some potential.

2. F=15 —&o%

Non-minimally coupled scalar field.

3. The limiting case of a very large F when the scalar field
kinetic term may be neglected: f(R) gravity.

f(R) = k*(FR — 2U)
where ¢(R) is determined from the equation

Fl(9)R =2U'(9)



Conformal duality of vacuum scalar-tensor gravity
to the Einstein gravity with a minimally coupled
scalar field

Conformal transformation to the Einstein frame:

A o 2 r o
g/LI/ =K Fg/LI/7 U - (/€2F)2

A\ 2
dp\  2F+ 3F"?
dp | 2k2F2
However, free particles in the Einstein frame do not follow
space-time geodesics, they are coupled to the scalar field, too.



FRW dynamics with a scalar field

In the absence of spatial curvature and other matter, it can be
reduced to the first order Hamilton-Jacobi-like equation for

H(¢): , )
2 (dH\"  , &
3k? (d_(/)> = ?U((b)

Time dependence is determined using the relation

K2 dH\ !
=5 (%) o

However, during oscillations of ¢, H(¢) acquires non-analytic
behaviour of the type const + O(|¢ — ¢1]*/?) at the points
where ¢ = 0, and then the correct matching with another
solution is needed.

Due to conformal duality, the same refers to FRW dynamics in

generic scalar-tensor gravity.




Inflationary slow-roll dynamics

Slow-roll occurs if: |¢| < H|¢|, ¢* < U, and then |H| < H2.
Necessary conditions: |U'| < kU, [U"] < x?U. Then

U % ¢
sz%, ¢%—3—, Nzlnﬂ%ﬁ/ —d¢
¢

First obtained in AA Starobinsky Sov. Astron. Lett. 4, 82
(1978) in the V = =% case and for a bouncing model.



General scheme of generation of perturbations

A genuine quantum-gravitational effect: a particular case of
the effect of particle-antiparticle creation by an external
gravitational field. Requires quantization of a space-time
metric. Similar to electron-positron creation by an electric
field. From the diagrammatic point of view: an imaginary part
of a one-loop correction to the propagator of a gravitational
field from all quantum matter fields including the gravitational
field itself, too.

ikr

One spatial Fourier mode o< e’ is considered.

For scales of astronomical and cosmological interest, the effect
occurs at the primordial de Sitter (inflationary) stage when
k ~ a(t)H(t) where k = |k| (the first Hubble radius crossing).



After that, for a very long period when k < aH until the
second Hubble radius crossing (which occurs rather recently at
the FRWRD or FRWMD stages), there exist one mode of
scalar (adiabatic, density) perturbations and two modes of
tensor perturbations (primordial gravitational waves) for which
metric perturbations are constant (in some gauge) and
independent of (unknown) local microphysics due to the
causality principle.

In this regime in the coordinate representation:

ds? = dt* — a®(t)(Oim + him)dx'dk™, I,m=1,2,3

him = 2C(r)6im + g(r)em, e,’ =0, g,,e,’n =0, gnem=1



Classical-to-quantum transition

Quantum-to-classical transition: in fact, metric perturbations
him are quantum (operators in the Heisenberg representation)
and remain quantum up to the present time. But, after
omitting of a very small part, decaying with time, they become
commuting and, thus, equivalent to classical (c-number)
stochastic quantities with the Gaussian statistics (up to small
terms quadratic in (, g).



Spectral predictions of the one-field inflationary
scenario in GR

Scalar (adiabatic) perturbations:
_HP GHY  1287GRVP
422 r|H|, 3V,

Pc(k)

where the index k means that the quantity is taken at the
moment t = t, of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(#,)H(t,). Through this
relation, the number of e-folds from the end of inflation back
in time N/(t) transforms to N(k) = In .

The spectral slope

dinPq(k) 1 V) 7%
k)—1= § = 9k _ k
ns(k) dink 876 ( Vi 3<vk>




Tensor perturbations - primordial gravitational waves (A.A.
Starobinsky, JETP Lett. 50, 844 (1979)):

16 GH? dIn P, (k) 1 (V\?
Pelk) = =5 (k) = =510~ = ~5r6 (7:>

The consistency relation:

Tensor perturbations are always suppressed by at least the
factor ~ 8/N compared to scalar ones where N = (50 — 60) is
the number of e-folds between the first Hubble radius crossing
during inflation of the present Hubble scale and the end of
inflation.



Combined results from Planck and other

experiments
P. A. R. Ade et al., arXiv:1303.5082

Model Paramcter | PlanckiWP___ Planck+WP+lensing_ Planck + WP+high-{ _ Planckt WP+BAO
P e s 09624200075 0.9653 = 0.0069 0.9600 £ 0.0071 0.9643 + 0.0059
roon <012 <013 <011 <0.12
“2A1n Lomx 0 0 0 031

Table 4. Constraints on the primordial perturbation parame!ers in the ACDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k. = 0.002 Mpc™".
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Fig. 1. Marginalized joint 68% and 95% CL regions for 1, and 10 from Planck in combination with other data sets compared to
the ictions of selected inflati models.




Remaining models

. Disfavoured at 95% and more CL.

1. Scale-free (or, the Harrison-Zeldovich) spectrum n; = 1.
2. Power-law inflation (exponential V/(¢)).
3. Power-law V/(¢) o< ¢" with n > 2.

Il. Lying between 68% and 95% CL.

1. Other monomial potentials.

2. New inflation (or, the hill-top model with
V(g) = Vo — 25°).

3. Natural inflation.



l1Il. Most favoured: models with n, — 1 = £ ~ 0.04 and

r < 8|ns — 1.

1. R+ R? model (A.A. Starobinsky, Phys. Lett. B 91, 99
(1980)).

2. A scalar field model with V(¢) = 220 5t large ¢ and strong
non-minimal coupling to gravity §R¢2 Wlth £<0, €] >1,
including the Higgs inflationary model.

3. Minimally coupled (GR) models with a very flat V/(¢): if
ns—1=2 and r < 8|n, — 1| for all IV, then:

V(o) = Vo + Viexp(—akrg), kK = V8rG

with < not very small.

All these models have r ~ 1O/N2 namely r = 13 ~ 0.4% for
the models 1 and 2, and r = 2/v2 for the third model.



f(R) gravity

The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

B 1
- 167G

/ f(R)y/—g d*x + Sm
f(R)=R+F(R), R=R\.

One-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f(R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) m, ~ const.



Field equations

1 v v v 14 14
oc (R —55”/?> — (T iy + T omy + T ogy) >
where G = Gy = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

1 ) i .
87GT,, pgy = F'(R) R;;—§ F(R)o;;+(v,,,v" — o,’;va,V/) F'(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = Rys of the algebraic equation

Rf'(R) = 2£(R) .



Degrees of freedom

[. In quantum language: particle content.

1. Graviton — spin 2, massless, transverse traceless.

2. Scalaron — spin 0, massive, mass - R-dependent:

m2(R) = 3f+(R) in the WKB-regime.

[I. Equivalently, in classical language: number of free functions
of spatial coordinates at an initial Cauchy hypersurface.

Six, instead of four for GR — two additional functions describe
massive scalar waves.

Thus, 7(R) gravity is a non-perturbative generalization of GR.
It is equivalent to scalar-tensor gravity with wgp = 0 (if

F(R) % 0).



Background FRW equations in f(R) gravity

ds® = dt* — a°(t) (dx® + dy® + dz°)

H R = 6(H + 2H?)

U | W

The trace equation (4th order)

3 d 3df,(R) ! —
S (a T) — Rf'(R) + 2f(R) = 871G (pm — 3Pm)

The 0-0 equation (3d order)

df'(R)

. 3(H + HY)f'(R) + fR) _ 871G pm

3H

fF(R
2



Most favoured inflationary models in (R) gravity
1. The simplest one (Starobinsky, 1980):

with small one-loop quantum gravitational corrections
producing the scalaron decay via the effect of
particle-antiparticle creation by gravitational field (so all
present matter is created in this way). _

During inflation (H > M): H = (¢, —t), |H| < H?,

The only parameter M is fixed by observations — by the
primordial amplitude of adiabatic (density) perturbations in
the gravitationally clustered matter component:

M = 3.0 x 1076MP/ (50//\/) ,
where N ~ (50 — 55), Mp; = /G ~ 10 GeV.



2
ns:1—N%096

12

2. Generic f(R) inflationary model having n, =1 — % r ~ 15.
For large R,
R? 2-a/3/2
F(R) = REoV
Ry =gzt €

. Less natural, has one more free parameter, but still possible.



Post-inflationary evolution
First order equation:

1

“HYV2H, dt = dx
2 )

= H%¥2 y = —

dy M? 1
dx  12x1/3y

The y-axis corresponds to inflection points 2 — 2 = 0, a # 0.
A curve reaching the y-axis at the point (0, yp < 0) continues
from the point (0, —yp) to the right.

Late-time asymptotic:

2 8M
a(t) o t?/3 (1 + msin M(t — t1)> , R~ 3y sin M(t—ty)

32M? 3<R*> 4
<R?>= TR = ’

BT CPserr = —gpp— 32 X7



Scalaron decay and creation of matter

Transition to the FRWRD stage: occurs through the same
mechanism which has been used for generation of
perturbations: creation of particle-antiparticle pairs of all
quantum matter fields by fast oscillations of R. Technically:
one-loop quantum corrections from all matter quantum fields
have to be added to the action of the R + R? gravity. In the
particle interpretation: scalaron decays into particles and
particles with the energy £ = M /2.



The most effective decay channel: into minimally coupled
scalars with m << M. Then the formula obtained in Ya. B.
Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252 (1977)
can be used:

1 d, R?
\/—ga( —8ns) = 576
The corresponding (partial) decay rate is

M= G—’\f ~ 10%* 571, that leads to the maximal temperature

T ~ 3 x 10° GeV at the beginning of the FRWRD stage and
to NV ~ 53 for the reference scale in the CMB measurements
(k/a(ty) = 0.05 Mpc 1), see D. S. Gorbunov, A. G. Panin,
Phys. Lett. B 700, 157 (2011) and F. Bezrukov, D. Gorbunov,
Phys. Lett. B 713, 365 (2012) for more details.



One viable microphysical model leading to such
form of f(R)

A non-minimally coupled scalar field with a large negative
coupling & (for this choice of signs, £.onr = %):

R _€R¢2+1
- 167G 2 2

¢ — V(p), £<0, []>1.

Leads to ' > 1.
Recent development: the Higgs inflationary model

(F. Bezrukov and M. Shaposhnikov, 2008). In the limit

2 2)2
& > 1, the Higgs scalar tree level potential V(¢) = M
just produces f(R) = 1o (R + {5, ) with M? = \/24767G

and ¢* = |£|R/\ (for this model, |£|Gg3 < 1).



The Higgs inflationary model relates the Higgs boson mass My
to the cosmological spectral slope n; — 1. The final fate of this
model is still undecided due to the necessity to take SM 2- and
3-loop corrections to the Higgs boson potential into account.
SM loop corrections to the tree potential leads to A = A(¢),
then the same expression for f(R) follows with

2 M6(R)) dInA(¢(R)\’
M :247rf2G <1+O< dilng >>

. The approximate shift invariance ¢ — ¢ + ¢, ¢ = const
permitting slow-roll inflation for a minimally coupled inflaton
scalar field transforms here to the approximate scale
(dilatation) invariance

¢ — cp, R— c®R, x* — x*/c, n=0,..3

in the physical (Jordan) frame. Of course, this symmetry
needs not be fundamental, i.e. existing in some more
microscopic model at the level of its action.



Generality of inflation

Theorem. In these models, there exists an open set of classical
solutions with a non-zero measure in the space of initial
conditions at curvatures much exceeding those during inflation
which have a metastable inflationary stage with a given
number of e-folds.

For the GR inflationary model this follows from the generic
late-time asymptotic solution for GR with a cosmological
constant found in A. A. Starobinsky, JETP Lett. 37, 55
(1983). For the R + R? model, this was proved in

A. A. Starobinsky and H.-J. Schmidt, Class. Quantum Grav.
4, 695 (1987).



Generic initial conditions near a curvature singularity in these
models: anisotropic and inhomogeneous (though
quasi-homogeneous locally).

1. Modified gravity models (the R + R? and Higgs ones).
Structure of the singularity in terms of a local Bianchi | type
metric:

3
ds® = dt* — > a|t|Pdx?, 0 <5 <3/2, u=s(2-75)

i=1

where s =3 p;, u=>.p? Here R o [t|'* — oo (for

1 < s < 3/2, otherwise it approaches a constant) and

R? < R,3R*”. No infinite number of BKL oscillations.

2. GR model with a very flat potential.

A similar behaviour but with s =1, u < 1 and with negligible
potential.

In both cases, spatial gradients may become important for
some period before the beginning of inflation.



Conclusions

» At present, cosmology requires the introduction of four
fundamental constants to describe observational data,
additional to those known from laboratory physics.

» One new constant has been discovered recently
ns — 1 ~ —0.04 but this value has been predicted by some
inflationary models including the pioneer one (1980).

» Regarding the present dark energy:
a) still no statistically significant deviation from an exact
cosmological constant;
b) one constant is sufficient to describe its properties;
c) no more than one new " coincidence problem”.

» Regarding the primordial dark energy driving inflation in
the early Universe:
a number of inflationary models having only one free
parameter can explain all existing observational data.



Namely, there exists a class of inflationary models having
ns—1 =2 and r ~ 1% which is most favoured by the
Planck and other recent observational data. This class
includes the one-parametric pioneer R + R? and Higgs
inflationary models in modified (scalar-tensor) gravity,
and more general two-parametric models including a GR

model with a very flat inflaton potential.

Inflation is generic in this models.

Non-Gaussianity of primordial perturbations is small, as in
all one-field slow-roll inflationary models.

The most critical observational test for these models is
small, but not too small value of r.
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