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COJINTOHHI B KNPAJIbHOM MOJEJIU CKUPMA—®AJIJIEEBA U
KBAHTOBAA MEXAHUKA
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Ob6cyx)maercs CymecTBo n3BeCTHOM nuckyccnn bopa u Ditamreiina(1935) o nonnore kBanToBOi Mexanuku. Co-
riacHo Bopy, BosiHoBast OyHKIWSI ONUCHIBAET HHAWBHIYAJILHYIO YACTUILy BEPOATHOCTHBIM obpasom. OpmHako
OMHIITENH CYNTAJ, YTO BOJIHOBas (DYHKIWS OINCHIBAET CTATHCTUYECKHN aHcaMOJb TOXKIECTBEHHBIX UaCTHIL-
cosimtoHoB. C npyroit croponsl, Bunep Hames cenuaabHOe (- IPEICTABICHIE KBAHTOBOM MEXaHUKH, B KOTOPOM
BOJIHOBasI (DYHKIMS BBICTYIIAIA KAK 9JIEMEHT CJIydailHOro rmyib0epToOBa IIPOCTPAHCTBA C HOPMAJIBHOM JUCIIEPCHU-
eif. 9ToT (haKkT JOKA3BIBAET IKBUBAJIEHTHOCTH mo3uiuil Bopa n DitHINTelHA, €CIM YyYeCTh HEHTPAIBHYIO IIpe-
JenpHyIo TeopeMy. Kpome Toro, mokassiBaeTcs, YTO B paMKax KupasbHoit Mojenn Ckupma—Pa/ieeBa JacTHIIBI
SIBJISIIOTCSI CAMOTI'PABUTHPYIOUUMHI COJINTOHAMHU. [l03TOMY 1JIsi OCTPOBHBIX CHUCTEM C ACHUMITOTHYECKH IIJIOCKHM

[IPOCTPAHCTBOM-BPEMEHEM KBAHTOBasl MEXAHUKA BBITEKAET U3 YPABHEHWH TArOTEHUs] DUHIITEHHA.

Karouesvie caosa: COJINTOHBI, KUPpaJIbHasA MOJ€EJ/Ib, KBaHTOBasd MEXaHUKa..

SOLITONS IN THE SKYRME—FADDEEV CHIRAL MODEL AND QUANTUM
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We consider the essence of the well-known discussion between Bohr and Einstein (1935) which concerned the
completeness of quantum mechanics. If one followed Bohr, then the wave function would give the probability
description of an individual particle. However, Einstein considered the wave function as an instrument for
describing the statistical ensemble of identical particles-solitons. On the other hand, Wiener found the special
a-representation of quantum mechanics for which the wave function appeared to be an element of the random
Hilbert space with the normal dispersion. This fact proves the equivalence of Bohr and Einstein positions, the
central limiting theorem being taken into account. Moreover, we show that within the scope of the Skyrme—
Faddeev chiral model particles can be considered as self-gravitating solitons. Therefore, we infer that for island

systems with the plane asymptotic space-time quantum mechanics ensues from Einstein gravity equations.
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Introduction

Let us begin with an old discussion (1935) between Bohr and Einstein [1,2] concerning completeness
of quantum mechanics. As well known, Bohr assumed that the wave function gave the probability
description of an individual particle. According Finstein, the wave function described the quantum
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statistical ensemble of identical particles. Thus, the suggestion on probability description appeared
to be common both for Bohr and Einstein. Moreover, Einstein suggested a tremendous program for
geometrizing physics and considered quantum particles (electrons or photons) as pulsating solitons,
that is clots of some fundamental field satisfying nonlinear equations.

Later on Wiener showed [3] the equivalence of these points of view. He constructed the special
representation of quantum mechanics where the wave function appeared to be an element of a random
Hilbert space with the Gaussian dispersion. Nowadays this representation is known as the stochastic
integral by Wiener—Ito—Stratonowich. However, the approaches by Wiener and Einstein prove to be
also equivalent [4] since the Wiener’s wave function can be represented as the sum of large number of
solitons with random phases. As well known, in accordance with the central limiting theorem [5], the

latter sum behaves as a Gaussian random variable.
1. Brioschi spinors and topological solitons

Now it is worth while to stress the important contribution in realizing the Einstein’s program made
by the Italian geometrician Francesco Brioschi (1824-1897). He used complex projective coordinates
(16-spinors) to study the 8-dimensional space geometry[6]. It can be shown that Brioschi 16-spinor
solitons prove to be stable within the scope of the Skyrme—Faddeev chiral model (SFCM) [7,8]. This
fact permits one to construct the wave functions of quantum particles considered as self-gravitating
asymptotic solutions to field equations.

The equivalence of Bohr and Einstein approaches becomes evident if one introduces a soliton
solution u(t,r) = u(x) to some nonlinear equation (with linear Klein—Gordon part) describing a massive
extended particle. Let us also consider the de Broglie plane wave

¥ = Aexp[—wwt + 1(kr)] = A exp(—1kx) (1)

for a free particle with the energy w, the momentum k and the mass m, where the relativistic relation
m? = k% = w? — k? determines the soliton’s size {5 = m~!, with the natural units being h = ¢ = 1. It
will be shown that the wave (0.1) can be represented as the sum of solitons located at the nodes d of a
cubic lattice with the spacing a >> {y:

6= ult,r+d). (2)
d
The result (0.2) follows from the asymptotic behavior of the soliton in its tail region:

u(z) = / % exp(—ka) (k) 6(k2 — m?). ()
Inserting (0.3) into (0.2) and using the well-known Poisson formula [9):

> expli(kd)] = (2m/a)® 5(k),
d

one derives from (0.1) that A = (27/a)3g(m)/(2m).
2. The Wiener approach to quantum mechanics

As aresult, the de Broglie wave (0.1) describes an ensemble of particles-solitons, though in idealized
approximation, with the solitons’ phases being matched and the lattice being cubic. However, in a
realistic situation the solitons’ phases appear to be random as well as the disposition of lattice nodes.
Under these conditions, as well known, the central limiting theorem is valid [4,5]. It means that any
large collection of solitons behaves as a Gaussian random quantity. Due to this fact, the wave function
proves to be an element of the random Hilbert space with the scalar product (11, 12) = M(¢51)2), where
the mathematical expectation M is taken over random parameters of solitons.
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Precisely this interpretation of the wave function was suggested by Wiener [3] who considered a
real Brownian process x(s, «) with the evolution parameter s € [0, 1] and the trajectory index a € [0, 1],
the latter one determining the correlation

1
/ dox(s, ) (s, a) = min(s, s). (4)
0
For quantum description of a particle in R?* Wiener introduced the complex Brownian process

2(sla, B) = 27V %[x(s,0) + wy(s, B)]; o, B € [0,1],

and used the mapping R?® = [0, 1] for constructing the stochastic representation of the wave function

(a, Bl) = / dz(slax, B) $(s)

s€[0,1]

in the form of stochastic integral by Wiener—Ito—Stratonowich [10]. Moreover, Wiener proved, on the
basis of the correlation (0.4), the unitarity of this representation transform:

/01 dslo(o)” = [ dads .l

The SFCM and correspondence with quantum mechanics

Let us now show that within the scope of the SFCM in 16-spinor Brioschi realization the
correspondence with quantum mechanics retains. To this end, let us consider the main part of the
spinor Lagrangian density for the SFCM [7,8]:

D 2D3

7 2\2
202 + 22 KQ%S 5%1 (JM‘]l - J"O) ) (5)

Lepin =
where J, = @%L\Il, D = WVVJVV“\II, V,=0,-TI,, I, is the spinor affine connection, ¥ is the
Brioschi 16-spinor, K = R, R"?7 /48 is the so-called Kretschmann invariant constructed with the
help of the Riemannian curvature tensor, and £p; = [¢3/(hG)]*/? is the Planckian length. Here it should
be also included the gravitational Lagrangian coinciding with the Einstein’s one.

Let us now suppose the existence of the soliton-like solution with the mass M and asymptotically
plane space-time. It means that this soliton configuration behaves as an island-like excitation of the
vacuum ¥g = const, the condition of spontaneous symmetry breaking being fulfilled:

\I/S_\po = .

Let us also consider a small perturbation & of the vacuum at large distances r from the soliton center.
Therefore, at » — oo one finds the development ¥ = ¥y 4 ¢, £ — 0, that permits one to estimate I',,
and invariants in (0.5) through the Schwarzschild metric:

*2 2 *2
I _Tg . .« GM
D=— Yt =% rg = —5- (6)
4r T c

Inserting (0.6) into (0.5) and using the substitution & = k ¥y, one gets the following linear equation for
the real scalar multiplier £ = k* :

@ -m?) k=0, (7)

where m = Mec/h.
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Conclusion

As follows from (0.7), the equation for the vacuum excitation £ coincides with that of Klein—
Gordon and also with the Schrodinger equation in the non-relativistic approximation. It means that
the vacuum excitation £ plays the role of the wave function in the special stochastic representation
[8]. It should be also underlined that the vacuum spinor ¥, takes in general some complex values, the
same being valid for the excitation £. In particular, for the substitution £ = 1k ¥( one finds the wave
equation [J¢ = 0, describing massless perturbations of the vacuum (photons) [7]. Finally, it should be
noticed that the proper gravitational field of particles plays an important role in our approach since
the wave-particle duality principle of quantum mechanics has the gravitational origin.
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