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Introduction

Modified theories of gravity began to develop especially actively after experimental confirmation of
the accelerated expansion of the Universe, when it became obvious that there was a shortage of tools of
general relativity to describe the experimental data obtained. One of the well-known theories is the f(R)
theory of gravity, which is able to describe a number of phenomena (not only the accelerated expansion
of the universe, but also inflation at an early and late stage) without introducing additional fields (dark
energy, dark matter) [1,2]. The modification of the theory consists in the introduction into the integral
of the action of the function of scalar curvature R. Replacing f(R) = R allows us to obtain the theory
of GR. Subsequently, attempts were made to consider various versions of the function f(R). The most
successful and consistent with the observational data is the model of A. Starobinsky f(R) = R+ %,
where the value M has the dimension of mass. In particular, the Starobinsky model allows us to explain
the modern acceleration of the Universe, inflation.

Higher-order curvature corrections to the Einstein-Hilbert effect occur when quantum effects are
considered in the low-energy limit of string theory, superstrings, and supergravity, necessary for the
construction of a quantum theory of gravity. An example of the application of quantum corrections was
demonstrated by A. Starobinsky in cosmology. It has been shown that such corrections can control the
accelerated expansion of the universe at an early stage of its evolution (inflation). Similar models were
developed taking into account 6th-order corrections in gravity theories of the form R+aR?+~yROR [23],
where «, v are some constants. R?, ROR are additional terms modifying Einstein’s theory, which can be
replaced by two scalar fields using conformal transformations of the metric, leading to general relativity
with two scalar fields.

In [5], a model of gravity is considered, where the function f contains derivatives of high orders on
scalar curvature (till the second one). In the same work, a method of transition to GR with scalar fields
is indicated. The developed method has been successfully applied on several models of f(R) gravity
with higher derivatives. For example, in the work [3]| the derivation of equations for f(R,(VR)?) =
fi(R)+X(R)R R model represented in detail. Further investigation with consideration of cosmological
aspects and connection the model with scalar tensor representation are developed in [4]. Cosmological
solutions consistent with observational data are studied in the work [16].

The truncated model f(R,dR), reduced to the chiral cosmological model with three scalar fields, is
presented in [19], [20]. The set of cosmological exact solutions contains radiation dominated expansion,
hyperbolic and trigonometric evolution of the scale factor. Slow roll solution leads to de Sitter expansion
with one dynamical field. Also inclusion of additional material field into consideration leads to new classes
of exact solution with scalar fields and perfect fluid. To make possible comparison with observation data
the way of construction one-field cosmological model for this purpose proposed in [20].

In this paper, we consider a modified theory of gravity of the form f(R,(VR)?,00R) and some
cosmological solutions. Let us stress now that our main target is to study cosmological multi-field models
in E-frame originated from gravity theory with higher derivatives, i.e. chiral cosmological models where
the potential and chiral metric dictated by f(R, (VR)?,0R) model.

Material of the article is presented as follow. In Sec. 2, the method of translating the model to
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Einstein gravity with a few scalar fields and then represented it in the form of chiral self-gravitating
model of the special type is described in detail. It is also indicated that the model written in the Einstein
frame can be written as a three-component effective chiral cosmological model. The dynamic equations
of the model are presented in Sec. 3. Cosmological solutions based on the choice of zero potential are
described in Sec. 4. Sec. 5 contains solutions based on the choice of constant potential. The final section

provides some conclusions of the work.
1. The action for f(R,(VR)?,0R) gravity in Einstein frame

In the present work we study the general case with the action

s = [ d'ay=3 [f(R. (VR OR)]. o

where R is a scalar curvature, (VR)? = V,RV*R, OR = V,V*R.

Following the method represented in the paper [5] we can transform the model (1) to Einstein
gravity with scalar fields. To get this target we introduce the lagrangian multipliers A, A1, Ay with the
corresponding additional fields ¢, X, B. Thus, the action (1) is transformed to

5= / da/=4 [ 1(6.X. B) = Mo~ B) — & (X ~ (VR)’) ~ Ro(B ~OR)| . (2)

Let us note that fields ¢, X, B are independent. Our target is to connect them by the following way
¢p=R, X =g"V,6V,¢, B =0¢. The variation of the action (2) with respect to the fields leads to

the equations

_Of O\ < OA o OMy B
F1:%*%(¢*R)*A*T¢(X*(VR))*%(B*DR)*Q (3)
T ) oA, - Ay B
F2=87—87(05—3)—W(X—(VR)Q)—M—TX(B—DR)—07 (4)
of O\ dA dA -
=2 P m - Phx — (vrp) - D23 0R) - Ry =0 ©

Combination Fid¢ + F>dX + F3dB leads to the following equation
df = (¢ — R)dA + (X — (VR)?)dA; + (B — OR)dAs + Ad¢ + AdX + AsdB. (6)

Thus we could not set ;\,]\1,]&2 equal to constants. In opposite case we obtain the restriction on
the form of functional dependence of f : f = Ap + Ay X + Ay B. Substitution of this form back to the
action (1) leads to a special case of a model with the action

S— / d'ay/ 75 [AR+ &(VR)® + L,OR] (7)

Therefore we can state that the lagrangian multipliers are determined dynamically.
If we variate the action (1) by lagrangian multipliers X\, A1, A5 we get the relations

¢=R, X=g"V,RV,R, B=0R. (8)

Next step will be to find the way of transforming the multipliers (5\,]\1, Ag) to (A, A1, Ag), to get
the constraint equations instead of dynamical equations for them. The transformation [5] is

A=A-—VH [Alw(chrR)} “ORs, Ay=A; Ay =As. 9)

Now, using (9), we can insert (X, A;, Ay) expressed over (A, A1, As) in (2) and analyse the result.
The Aj-term in Lagrangian

v [Alvﬂw + R)} (6 — R)
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we can transform by the following way. Considering 4-divergence
Ve [[MVau6+ B (0 - R)| = V" [MiV,(6+ R)| (6 = B) + A1[(V9)* - (VR)?),

we can exchange in the Lagrangian the term V# {]&1VH(¢ + R)} (¢ — R) on —A,[(V¢)? — (VR)?] taking
into account vanishing of the 4-divergence by Gauss-Stokes theorem. After that we simplify Aj-part of
the Lagrangian

—A1(X = (VR)?) + Ai[(V¢)? = (VR)?] = —A1 (X — (V9)?).

Similarly the As-term
OAs(6 — R)
we can represent as
OAz(¢ — R) = VI M, — Ay (Lo — 0OR),
where
My, =V, [Ra(6 - B
After that we transform As-part of the Lagrangian to

Ay (O¢ —OR) — Ay (B —OR) = —Ay (B — 0¢) .

Finally we get the action
5= [ d'ay=g 16X, B) = N0~ B) - 0a(X ~ (V6") - Aa(B - 00)]. (10)

Since the action does not include any derivatives terms of X and B, variation of the action wrt
those variables yield constraint equations

of af
ox ~ M ap =M

rather then dynamical equations of motion, which can be plugged back into the action without changing
the nature of the theory.

For the action (10) variation with respect to (A1, Az) leads to the constraint equations

X = (Vo)
B = O¢. (11)

Obtained constraints can be plugged back into the action (10) without changing the nature of the
theory. Thus, the action takes the form

5= / d4a/=g [£(6,(V6)?),06) — (& — R)] . (12)

Note that here in conversed action in J-frame we have the function f which depends on the scalar
field ¢ and its first and second derivative.

The Lagrange multiplier can be introduced by replacing R with ¢, all derivatives of R are replaced
by derivatives of ¢ as well. So, it is possible to determine the dynamics of ¢ by terms reflecting the
derivative of ¢, and by varying the action by ¢, then X is a dynamic field.

Let us transform the model (12) in Jordan frame (J-frame) to Einstein frame (E-frame) using
conformal transformation g7, = Q*(z)g;],, ©?(z) = 2X\(z). As a result we get

1 13 1 ¢
5= [ty [QR— ! (wg" m,y) + g f(6.(V9)),00) — | (13)

It is clear that values in (13) are belonging to E-frame (we omit the index "E"over the metric g
and scalar curvature R).
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1.1. Model with reducing order

We reduce the order of derivatives introduced by the U¢ term by introducing the Lagrange
multiplier and the auxiliary field associated with it:

S = [ d'av=g [£(6.(V6)?. B) - Mo ) = A(B - 0] (14)
Variation of the action wrt B gives a constraint equation
df
A=—=fg. 15
L= (15)
The introduced restriction excludes A from the action. If we assume that
fBB #0,

then A will appear in action again.

In other words, if fg = const. we cannot vary A in (15).

Note in further discussion we could not set B = [¢. If we do this we must return back to the
action (12) and working in the framework of this model.

Let us note that A # const. (in the opposite case the relation B = ¢ may not be valid), thus
fBB # 0. In that case we can introduce new field

Y =1fB (16)

and considering (g,., A, ¢,1) as the basis system. It is justified since the transformation (g.., A, ¢, B)
t0 (guvs A, @, ) locally reversibly under the condition fgp # 0.
Let us consider this traunsformation2 in detail. First of all we have to change the arguments of the

function f : f(¢, (V¢)2, B) to f(, (V) , ). Jacobian of the transformation

b= 3(6,(VO)2, B), (Ve) = (Vo) (6, (V6)% B), &=1(s, (Vo) B), (17)

~ ~ 92 ~
under conditions ¢ = ¢, (Vo) = (V¢)?2, 1 =1, is equal to fgp. As fpp # 0 the transformation above
is reversible and we can express new arguments as

~ 2 -

6),0), B=B(, (Vo)1) (18)

6= 66, (V9) D). (Vo) = (V6)(.(V
Using conditions above, we can write
B =B(¢,(V)*, ).
Let us consider the action (14) again. To form the 4-divergence
VH(AV ,0) = (VFA)V 0 + AD¢ (19)
we subtract and add the term (V#A)V ¢ in the action (14). Then, avoiding the 4-divergence and using
(15), we get the action

5= / /"G [NR — (V" f5)V,00 + F(6, (V) 0) — [uB(. (V)2 1) — A] (20)

Equivalently, in J-frame, we have
S = [ a5 [\~ (V0)V,0 + £(6. (V). ) — 6B(6, (Vo)) - Ao]. (21)

Let us transform the action (21) from the Jordan frame with the metric g, = g;{u to the E-frame
using the conformal transformation g%, = Q*(x) = 2A(z)g;],. As a result, in the E-frame we have

1

5= [dovma g - 5 (330) + 36 (V02.0) = Bl (VoPw) - o] . (22
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where we also used transformation of a scalar field ¢7 = V2 ¢F.
We see that in the general case we cannot present the model with the action (22) as a a chiral
self-gravitating model. To achieve this goal, we choose the function B by the following way:

B(6,(V6)%, ) = Bi(6,0)9" 6,ud + Ba(6, ). (23)
and similarly the function f as
16, (VO 0) = Fi(6,9)0" 6 b + o). (24)
Substitution (23) and (24) in the action (22), with A = eV 3X, leads to
$ = Jdiey=g[1R - (V)2 = e VI (G uut) + VI (UB1(6,0) - LA1(6,0)) (V9)%) -
eV (g4 e VEX WB(6,0) - a(0,0) ] (25)

In such a way we get the action (25) which can be described by the three-component chiral self-
gravitating model with the target space metric with non-zero components

2

i =1, hay=e VX <¢Bl(¢,¢) - ;ﬁ(qﬁﬂb)) s hag = —%e_ 3, (26)
The potential of the interaction is
Wix,6,0) = 1 (VI + e ?VIX B (6,0) ~ f6,4)) (27)
2. Dynamic equations of the model

Let us use the general form of the chiral field equations in the FRW metric represented in [17]

~hep (67 +3HOP ) = heppdPdP + Shopcd e —We = 0. (28)

Using our designations for the fields, the metric and the potential we have the following equations
of the chiral fields

—X —3HX — \/26_2\/3( <¢Bl(¢7¢) - %fl(fii ¢)> ¢+ ;\/ge‘\/gx@b — W, =0, (29)
*\/jx 1 . . 1 /. . 1 /2 ..
—e VI (UB1(6,0) — 5116,0) ) (3+3H) + 5 (b +3HD) — 51/ Sxd-

_%67\/%( (¢B1,¢ - ;fl,a&) ¢? — e VEx (Bl +¢YBiy — ;fmp) P — egxw,qs =0, (30)

—% (q’é + 3Hq5) — ;\/gxa} + %e—\/?x <31 + By — ;f1,¢> & — e\/?XW,w =0. (31)

Einstein-Friedman equations are

3H? =~ BxQ + e Vi (w& - ifl) 7 - ;e\@w} W, (32)
H= |- - e VA (uBy - i) 2 e Vi), (3)

Here we include the parameter v to take into account phantom zone of chiral fields.
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3. Zero potential

Suggestion W = fo(¢,¥) — ) Ba(p, ) = 0, from W = 3H? + H gives the solution
1
H= g(t —t,)7Y, b, = const., a(t) = agt'/?, (34)

corresponding for perfect fluid to ultra-stiff matter.

Suggestion W = 0 evidently restricts class of possible models, what can be reflected with
parameter’s function fs, Bs.

The example of solution of chiral fields equations is

¢:07 f2(¢7¢)—¢32(¢’¢)=0a chxln(t_t*)+X*a ¢:Cwln(t—t*)+¢*, (35)

where ¢y, ¢y, X+, ¥« are some constants. The solution above is valid only under relation f2(¢,?) =
¥ Bs(¢, 1) for model’s functions. Note that this relations leads to constraint on the model’s form. Others
functions Bi(¢, 1) and fi(¢, ) have not any restrictions, they are free.

Let us set (additionally to W = 0) haa = 0. Le.

taa = VE (6B (000) - 300 ) = (36)

Thus the constrain on model’s function is By (¢, ) = f1(p,v) /2.
Dynamic equations (29) - (31) with ¢B1(¢,v) — 1 fi(¢, ) = 0 take the following view

— — 3HX + % %e*\/gxw —0, (37)
1. N1 )2
5 (0 +3H) - 2\/;@ =0, (38)
—% (¢'5+3Hq's) - ;\/zxojzo. (39)

Note, that Hubble parameter H(¢) is known from (34).
It is easy to see that subtracting (39) from (38) we get

(4+3HY) + (6+3H8) =0 (40)
By setting
(4 +3H0) = Q). (6+3H8) = —QM) (41)
we make (40) as identical equality.
The solutions for (41) are
V= % (/Q(t)tdt + c¢> , (42)
¢ = % (—/Q(t)tdt + 0¢> : (43)

We need no to integrate the equations above because in dynamic equations (37) - (39) we have
derivatives of the fields ¢ and % only.
Now we can define x from (39), substituting (43) and (41) into (39). After some algebra we get

=/ 2a0n (co- [ @(t)tdt)l . (44)
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Calculating the second derivative ¥

g + % - (C¢ ~ /Q(t)tdt)1] (45)

we can insert the result into (37). The equation (37) take the following view

o2 (oo [atu) R EENEE (- [atna+c) (fowa+c,). uo

Thus we have ordinary differential equation with separable variables of the form

V=X

e %de = 28 dt, (47)
where _ )
Rt = % + % _ (c¢ _ / Q(t)tdt) ] , (48)

Py(t) = ;\/?}2 <— / Q(t)tdt + c¢) ( / Q(t)tdt—k&p) . (49)

Finally we can define x using the relation

eVEx = \/z / ?jgg dt (50)

Thus we can state that various chiral fields evolution may support evolution of the Universe with
the scale factor (34).
Our next task is to show that the solutions space of (50) is not empty. To this end we may find

few examples of solution by setting the function @Q(t) in various form.
Let us set @ = %, where C' = const., Uy = 0, Cy = 0. Then the solution is

X\/gln

Here are some examples of solutions when choosing the function Q(¢).

CX — mt ; CX = const. (51)

1. The function Q(t) is a certain constant value: Q = Q..

o= f%t2+c¢ln|t\ +C, (52)
_ @i
S Tt +cyln|t| + C, (53)
2 2
X=- §1n|Q*t — 2¢g]. (54)
2. The function Q(t) depends on ¢ by power dependence: @ = Q.t", where n is any number.

Q*tn+2
¢:m+c¢ln|t|+0, (55)

Q*tn+2
w:*m+0¢ln|t|+c, (56)

B 21In|Qut" 2 — cy(n + 2)|

X= _\/; Q.(n+2) +e (57)

Both examples show that the fields ¥ and ¢ can be linearly linked, and the field y depends on ¢
logarithmically.
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4. Constant potential W = W, = const.

The solutions for gravitational field are well known, see for example, [19], [20]. The solution for

Hubble parameter we find from the equation
3H? + H=W.

which is the sum of eqs. (32) and (33).
The solutions are
1. Exponential rate of a scale factor

H = H, = const, a(t) = agef™!, W, = 3H?2,

where ag is the scale factor at the beginning of inflation.
2. Expansion defined by hyperbolic functions

H(t) = \/?tanh (\/ﬁ(t - t*)) . alt) = ag cosh!/3 (\/ﬁ(t - t*)> .

where v = —1, and

W,
3

H(t) = coth( 3W*(t—t*)>, a(t) = ag sinh/3 (W(t—m)).

where v = 1.
3. Expansion defined by trigonometric functions

H(t) = — vg tan( 3W*(t7t*)>, a(t):aocosl/3< 3W*(t—t*)).

where v = 1.
The solution (62) can be represented in another form:

H(t) = \/?cot (\/?T/V*(t - t*)) . a(t) = agsint/? ( 3W.(t — t*)) .

where v = 1.

Let us set the connection between model’s function, as analog of the case above W = 0,

f2(9,9) = ¥ Ba(¢, ).

Then we immediately get the relation between ¢ and x in the form

b= AW, eV X,

(58)

(60)

(61)

(64)

(65)

If we additionally set hog = 0 or ¥ B1(¢,¥) — %f1(¢7 1) = 0, then the dynamic equations (37)-(39)
will be valid. The solutions of them can be represented in the general form leaving Hubble parameter

included

(4 +3H%) = Q).
(&5 + 3H¢) = -Q(t).

The solutions are
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As we have W = W, = const. (and, consequently, derivatives on the fields will be equal to zero)
then the dynamic equations (37)-(39) will not be changed. So we can apply the same approach as for
the case with W = 0.

Using (65) we can find connection between derivatives on ¢ with derivatives on x

¢:¢?m,é:v€¢<v+¢?mﬂ. (70)

Using (70) in (67) we can derive

2. 2,. .

—Q(t) = \/;b X+ \/;(x)2 + 3Hx] : (71)

Substitution (71) into field equation (39) gives

2 . 2, .9 .
- §¢ X+2 §(X) +3Hx| =0. (72)
Thus we can use the relation
2

Y+ 3Hy = 2\/;58 (73)

in (37) to reduce the order of differential equation.
Equation (37) takes the following view

2., 12 .
2\/;X +2\/ge Vg = 0. (74)

Using (65) and (70), and make some algebra we get

X2+ \/z)'(z/} =0. (75)

So, we have the relation for y and ¢ as follow

X=-/3¢ (76)
Thus, we have the solution for chiral fields
o= [a1-F ) + Colat, (77)
Y= [ a(t)?[F(t) + Oy dt, (78)
x= @ [aw 2 F®+ ey (79)
e F(t) = / a®(t)Q(t)dt. (80)

Thus we have the solutions for gravitational field over Hubble parameter in the form (60)-(63). To
obtain the solutions for chiral fields it needs to insert each scale factor into solutions (77)-(79).
Let us consider the following scale factor

a(t) = ag sinh ¥ ( 3W, (t — t*)) (81)

as the example of solution.
For simplicity we will discard constants of integration.
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1. Q(t) = ag®, (ag = const.).

2. Q(t) = cosh (v3W, (t — t.)).

adsinh® (V3W. (t — t.))
2/3W., ’

_ cosh (VBW, (t —t.))
T 61V, ’

F(t) =

__\/gcosh( 3W, (tft*))
X=7V3 GV, ’

3. Q(t) = % coth (V3W, (t — t.)).

3
a9

cosh (v3W, (t —t.))

X=o 3a3y/3W,

Here are examples of solutions with the value of the scale factor:

a(t) = agp cosh?® <\/3W* (t— t*)) .
1. Q(t) =ag®

sinh (v3W, (t —t.))

o) = 3.

¢ = —3% In (cosh ( 3W, (t — t*)>) )
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_ a3 sinh® (V3W. (t —t.))

Fit) = NG ’ (99)
p=— GI}V* [sinh ( 3W, (t— t*)> + arctan (sinh ( 3W, (t — t*)))] , (100)
b= 6;[/* {Sinh (\/ﬁ(t — t*)> + arctan (sinh ( 3W, (t — t*)))} , (101)

X = _\/261/1[/* [Sinh (\/ﬁ(t — t*)) + arctan (Sinh (\/%(t - t*)))] . (102)

F(t) = T : (103)
p——— " (104)
 ad/BWL
e (105)
N ag/3W,’

2 t
__.]= ) 106
X \/;ag SW, (106)

The examples given show that the scalar fields ¥, ¢, x can be linearly related to each other.
In this section once again we show that various evolution of scalar field may correspond to chosen
scale factor.

Conclusion

We considered in detail the way of transformation the model with higher derivations to GR with
scalar fields proposed in [5] with the aim to define the form of f(R,(VR)?,0R) corresponding to chiral
self-gravitating model. Special attention devoted to the model with reducing order, i.e. with the action
(14). This model under special choice of model’s functions represented as the chiral self-gravitating
model with the target space (26) and the potential (27). After that we study dynamic equations of
the model in the cases with zero and constant potential. Examples of exact solutions show the linear
connection between two fields and in few cases — between all three fields.

Let us note about our intention to consider inverse task which gives possibility to make
transformation form obtained solutions for the chiral cosmological model in E-frame to the J-frame
and to the solutions in modified f(R,(VR)?,0R) gravity.

The authors are grateful to K.A. Bronnikov for his interest in the work, useful discussions and his
suggestion for expansion of the model.
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