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We present an extended version of the kinetic theory of the relativistic axionically active multi-component

plasma, which is based on the inclusion of a unit time-like vector field, associated with the velocity of dynamic

aether, into the scheme of interactions. The proposed extension of the plasma theory can be indicated as semi-

phenomenological. This term means that master equations for the gravitational, electromagnetic, pseudoscalar

(axionic) and vector (aetheric) fields are derived using the Lagrange formalism, the kinetic equations for the

distribution functions are obtained by the methods of the covariant statistics, however, the relativistic forces

acting from the listed fields on the plasma particles are reconstructed phenomenologically based on classical

analogies. We consider this work as a first part of a trilogy; here we presented, first, the complete formalism

of this extended theory, second, the classification of forces, third, the new concept of equilibrium states in the

relativistic axionically - aetherically active plasma.
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КИНЕТИКА РЕЛЯТИВИСТСКОЙ АКСИОННО АКТИВНОЙ ПЛАЗМЫ В ПОЛЕ
ДИНАМИЧЕСКОГО ЭФИРА. ЧАСТЬ I: ОБЩИЙ ФОРМАЛИЗМ И НОВАЯ
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Мы представляем расширенную версию кинетической теории релятивистской аксионно активной

многокомпонентной плазмы, которая основана на включении в схему взаимодействий времениподобного

нормированного на единицу векторного поля, ассоциированного со скоростью динамического эфира.

Предлагаемое расширение теории плазмы можно назвать полуфеноменологическим. Этот термин

означает, что основные уравнения для гравитационного, электромагнитного, псевдоскалярного

(аксионного) и векторного (эфирного) полей получены с использованием Лагранжевого формализма,

кинетические уравнения для функций распределения получены с помощью методов ковариантной

статистики, однако релятивистские силы, действующие на частицы плазмы, конструируются

феноменологически на основе классических аналогий. Мы рассматриваем эту работу как первую часть

трилогии; здесь мы представили, во-первых, полный формализм данной расширенной теории, во-вторых,

классификацию сил, в-третьих, новую концепцию состояний равновесия в релятивистской аксионно-

эфирно активной плазме.
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Introduction

The covariant relativistic version of the kinetic theory was created at the turn of the 50-60s of the

last century. The history of this event is described in detail in the book [1]. The theory of relativistic

plasma built on the base of this kinetic theory had enormous success in many fields of science, especially

in astrophysics and cosmology (see, e.g., [2–4]). Two major tasks can be identified in this context. The

first one is the investigations of equilibrium plasma configurations in the vicinity of static astrophysical

objects; plasma was considered in the regime of frequent collisions. The second problem was associated

with the electromagnetic waves propagation in the relativistic plasma; the Vlasov theory of cooperative

electromagnetic field in the collisionless plasma was the appropriate model for such studies. The canonic

plasma theory is based on the Faraday - Maxwell version of classical electrodynamics [5, 6]. New

trend in the plasma theory appears, when the axion electrodynamics was established. The term axion

electrodynamics was first mentioned in 1983 [7] and has been widely used since then (see, e.g., [8]). This

was preceded by the formulation of a recipe for CP invariance conservation [9], and the prediction of the

existence of a new massive pseudo-Goldstone boson [10,11], subsequently called an axion. We proposed

to use the term axionically active plasma in [12] by analogy with the term magneto-active plasma in

the canonic theory; some problems of such a theory are formulated and solved in the works [13–15].

A new page in the theory of relativistic plasma was opened in connection with the emergence of the

theory of dynamic aether [16–18]. We plan to study the following scheme of interaction of the axionically

active plasma with the vector field, associated with the velocity of aether. First, we assume that there

exists a direct channel of influence of the aether on the plasma particles. The basic element in this

context is a set of forces, which contain the aether velocity itself and its covariant derivatives; these

forces are incorporated into the kinetic equations. Also, there are two indirect channels of coupling via

the aetherically induced changes in the structure of the electromagnetic and axion fields, respectively.

Mathematical description of the formalism of coupling between photons and aether is prepared in [19].

In the work [20] the theory of interaction between aether and axion field is elaborated.

What do we mean speaking about a new concept of equilibrium states in the plasma interacting

with pseudoscalar (axion) and unit vector (aether) fields? In the canonic plasma theory the macroscopic

velocity of plasma motion appears as the result of normalization of the time-like Killing vector, if

the space-time admits such Killing vector. The norm of the corresponding Killing vector describes the

distribution of the plasma temperature. In other words, the basic characteristics of the plasma in the

canonic equilibrium state are predetermined by the space-time symmetry, or more precisely, by the

properties of the gravitational field. When we deal with the dynamic aether, the time-like unit vector

already exists, and we assume that namely the aether predetermines the properties of the equilibrium

characteristics of the plasma. Clearly, in order to provide such new equilibrium state the aether has to

act on the plasma particles by some specific forces. One of such forces is shown to be an analog of the

classical Stokes friction force, which act on the macroscopic particle in the flow of viscous fluid. Another

one is the analog of the tidal force. Modeling of cosmic (anti)friction forces without axion and aether

fields has been fulfilled in the works [21–24]. Now we extended the list of the corresponding forces by

including the aether velocity vector into the list of players.

The development of the theory of the aetherically-axionically active plasma is the aim of our

investigations. The presented work is the first part of a trilogy: here we elaborated the formalism of

this theory, we obtained the total set of master equations and formulated the concept of equilibrium in

the aetherically-axionically active plasma. In the second part of work we plan to solve equations of the

plasma particles dynamics under the influence of various forces for the cosmological space-time platform.

In the third part of the work we plan to focus on the problem of dispersion relations for electromagnetic

waves propagating in the aetherically-axionically active plasma.
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1. The formalism

1.1. Semi-phenomenological approach to the description of the system evolution

We use the semi-phenomenological approach, which is based on the synthesis of the relativistic

statistics for description of the plasma kinetics, and of the Lagrange approach for the description of

fields, which act on the plasma particles directly or in an indirect way. We reconstruct the forces, which

act on the plasma particles, using three fields: first, the unit vector field 𝑈 𝑗 , associated with the aether

velocity four-vector, second, the pseudoscalar field 𝜑 describing the axionic dark matter, third, the

electromagnetic field with the potential 𝐴𝑗 . Gravitational field is considered to be responsible for the

space-time platform, on which the plasma processes take place. The total action functional is of the

form

−𝑆(total)=

∫︁
𝑑4𝑥

√
−𝑔
{︀
𝐿(EA)+𝐿(A)+𝐿(EM)+𝐿(P)

}︀
. (1)

The first element in this integral relates to the Einstein-aether Lagrangian

𝐿(EA) =
1

2𝜅

[︀
𝑅+2Λ+𝜆 (𝑔𝑚𝑛𝑈

𝑚𝑈𝑛−1)+𝐾𝑎𝑏
𝑚𝑛∇𝑎𝑈

𝑚∇𝑏𝑈
𝑛
]︀
, (2)

in which 𝜅 is the Einstein constant, Λ is the cosmological constant, 𝑅 is the Ricci scalar, 𝜆 is the

Lagrange multiplier. The Jacobson constitutive tensor

𝐾𝑎𝑏
𝑚𝑛 = 𝐶1𝑔

𝑎𝑏𝑔𝑚𝑛+𝐶2𝛿
𝑎
𝑚𝛿

𝑏
𝑛+𝐶3𝛿

𝑎
𝑛𝛿
𝑏
𝑚+𝐶4𝑈

𝑎𝑈 𝑏𝑔𝑚𝑛 (3)

contains four dimensionless coupling constants 𝐶1, 𝐶2, 𝐶3, 𝐶4. Variation of the total action functional

with respect to 𝜆 gives the normalization condition 𝑈𝑗𝑈
𝑗 = 1. Also, we introduce the aetheric effective

metric

𝐺𝑚𝑛 = 𝑔𝑚𝑛 +𝒜𝑈𝑚𝑈𝑛 , (4)

and consider 𝒜 as an auxiliary guiding parameter. We have to mention that in this work 𝒜 is considered

to be constant, but in principle, it can be a guiding function, depending on four differential scalars based

on irreducible representation of the covariant derivative ∇𝑚𝑈𝑛 (see, e.g., [25–27] for details).

The Lagrangian of the dimensionless pseudoscalar (axion) field is presented as follows:

𝐿(A) =
1

2
Ψ2

0 [𝑉 (𝜑)− (𝑔𝑚𝑛 +𝒜𝑈𝑚𝑈𝑛)∇𝑚𝜑∇𝑛𝜑] , (5)

where the potential of the axion field is chosen in the periodic form

𝑉 (𝜑) = 2𝑚2
𝐴 [1− cos𝜑] . (6)

Here 𝑚𝐴 is the axion mass, and the constant Ψ0 is reciprocal to the constant of the axion - photon

coupling.

The Lagrangian of the electromagnetic field has the standard form for linear electrodynamics

ℒ(EM) =
1

4
𝐶𝑚𝑛𝑝𝑞𝐹𝑚𝑛𝐹𝑝𝑞 , (7)

where 𝐹𝑚𝑛 is the Maxwell tensor, 𝐹𝑚𝑛 = ∇𝑚𝐴𝑛−∇𝑛𝐴𝑚. The Tamm constitutive tensor

𝐶𝑚𝑛𝑝𝑞 =
1

2
[(𝑔𝑚𝑝𝑔𝑛𝑞−𝑔𝑚𝑞𝑔𝑛𝑝)+ sin𝜑𝜖𝑚𝑛𝑝𝑞+𝒜 (𝑔𝑚𝑝𝑈𝑛𝑈𝑞−𝑔𝑚𝑞𝑈𝑛𝑈𝑝+𝑔𝑛𝑞𝑈𝑚𝑈𝑝−𝑔𝑛𝑝𝑈𝑚𝑈𝑞)] (8)

contains two important details. First, the term with the Levi-Civita (pseudo)tensor 𝜖𝑚𝑛𝑝𝑞 describes the

axion - photon coupling; the product sin𝜑𝜖𝑚𝑛𝑝𝑞 forms the true tensor; for small 𝜑 the corresponding

term in the Lagrangian takes the classical form 1
4𝜑𝐹

*𝑚𝑛𝐹𝑚𝑛 [28] with the dual Maxwell tensor 𝐹 *𝑚𝑛 ≡
1
2𝜖
𝑚𝑛𝑝𝑞𝐹𝑝𝑞. Second, the guiding parameter 𝒜 in the aetherically extended electrodynamics plays the

same role as the square of the effective refraction index 𝑛𝑒𝑓𝑓 in the standard Faraday-Maxwell theory;
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𝒜 = 𝑛2𝑒𝑓𝑓−1. In this sense the Tamm constitutive tensor (8) describes a spatially isotropic homogeneous

transparent medium, which moves with the velocity four-vector 𝑈 𝑗 . This analogy emphasizes that the

dynamic aether interacting with the electromagnetic field behaves as an effective medium with the

magnetic impermeability 1
𝜇 = 1 and dielectric permittivity 𝜀 = 1 +𝒜.

The Lagrangian of the plasma 𝐿(P) is not presented in explicit form, and we use an alternative way

for description of this subsystem. In fact, we postulate the structure of relativistic kinetic equations and

use the macroscopic moments of the distribution functions in order to link the results of the Lagrange

approach with the results of a statistical approach.

1.2. Field equations

1.2.1 Master equations of electrodynamics

In order to explain the idea of semi-phenomenological approach, which we use, let us start with

derivation of the electrodynamic equations. Variation of the action functional with respect to the

potential of the electromagnetic field yields

∇𝑛

(︀
𝐶𝑗𝑛𝑝𝑞𝐹𝑝𝑞

)︀
= − 𝛿

𝛿𝐴𝑗
𝐿(P) . (9)

From the physical point of view the variational derivative in the right-hand side of (9) is proportional

to the total electric current generated by plasma particles. This means that we can make the following

replacement:

− 𝛿

𝛿𝐴𝑗
𝐿(P) ⇒ −4𝜋

∑︁
(𝑎)

𝑒(𝑎)𝑁
𝑗
(𝑎) , (10)

where𝑁 𝑗
(𝑎) is the time-like four-vector describing the flow of particles of the sort (𝑎) possessing the electric

charge 𝑒(𝑎). The corresponding scalar of the particles number density is defined as 𝒩(𝑎) ≡
√︁
𝑔𝑗𝑘𝑁

𝑗
(𝑎)𝑁

𝑘
(𝑎).

Below we will link this four-vector with the first moment of the distribution function. Also, we have

to add the set of equations ∇𝑘𝐹
*𝑖𝑘 = 0, which converts into identity, when we replace 𝐹𝑚𝑛 with

∇𝑚𝐴𝑛−∇𝑛𝐴𝑚. Thus, the set of electrodynamic equations reads

∇𝑛

[︀
𝐹 𝑗𝑛 + sin𝜑𝐹 *𝑗𝑛 +𝒜𝑈𝑞

(︀
𝐹 𝑗𝑞𝑈𝑛 − 𝐹𝑛𝑞𝑈 𝑗

)︀]︀
= −4𝜋

∑︁
(𝑎)

𝑒(𝑎)𝑁
𝑗
(𝑎) , ∇𝑘𝐹

*𝑖𝑘 = 0 . (11)

1.2.2 Extended Jacobson’s equations

Variation of the total action functional with respect to the vector field 𝑈 𝑗 gives the balance equation

∇𝑎𝒥 𝑎
𝑗 = 𝜆𝑈𝑗+𝐶4𝑈

𝑠∇𝑠𝑈𝑚∇𝑗𝑈
𝑚+𝜅𝒜𝐹𝑚𝑗𝐹𝑚𝑞𝑈𝑞 − 𝜅𝒜Ψ2

0𝑈
𝑠(∇𝑠𝜑)(∇𝑗𝜑) + 𝜅

𝛿𝐿(P)

𝛿𝑈 𝑗
. (12)

The new tensor 𝒥 𝑎
𝑗 , which is defined using the constitutive law

𝒥 𝑎
𝑗 = 𝐾𝑎𝑏

𝑗𝑛∇𝑏𝑈
𝑛 , (13)

can be indicated as Jacobson’s tensor. Convolution of (12) with the aether velocity four-vector 𝑈 𝑗 gives

the Lagrange multiplier

𝜆 = 𝑈 𝑗∇𝑎𝒥 𝑎
𝑗−𝐶4𝐷𝑈𝑚𝐷𝑈

𝑚+𝒜
[︀
𝜅Ψ2

0(𝐷𝜑)
2−𝜅𝐹𝑚𝑗𝑈 𝑗𝐹𝑚𝑞𝑈𝑞

]︀
− 𝜅𝑈 𝑗

𝛿𝐿(P)

𝛿𝑈 𝑗
, (14)

where we introduced the operator of convective derivative 𝐷 ≡ 𝑈𝑠∇𝑠. The four-vector
𝛿𝐿(P)

𝛿𝑈𝑗 has to be

modeled phenomenologically using the macroscopic moments of the distribution functions.
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1.2.3 Master equations of the axion field

Variation of the action functional with respect to the pseudoscalar field gives the master equation

for the axion field

∇𝑚 [(𝑔𝑚𝑛+𝒜𝑈𝑚𝑈𝑛)∇𝑛𝜑] +𝑚
2
𝐴 sin𝜑 = − 1

4Ψ2
0

cos𝜑𝐹 *
𝑚𝑛𝐹

𝑚𝑛− 1

Ψ2
0

𝛿𝐿(P)

𝛿𝜑
. (15)

Again, the pseudoscalar
𝛿𝐿(P)

𝛿𝜑 has to be modeled phenomenologically using the macroscopic moments

of the distribution functions.

1.2.4 Master equations for the gravitational field

Variation of the action functional with respect to metric gives the equation of the gravity field

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 − Λ𝑔𝑖𝑘 = 𝑇

(U)
𝑖𝑘 + 𝜅𝑇

(A)
𝑖𝑘 + 𝜅𝑇

(EM)
𝑖𝑘 + 𝜅𝑇

(P)
𝑖𝑘 . (16)

The stress-energy tensors of the unit vector field, of the axion field, of the electromagnetic field are

known to have the following forms, respectively:

𝑇
(U)
𝑖𝑘 =

1

2
𝑔𝑖𝑘 𝐾

𝑎𝑏𝑚𝑛∇𝑎𝑈𝑚∇𝑏𝑈𝑛+ (17)

+∇𝑚
[︀
𝑈(𝑖𝒥𝑘)𝑚−𝒥𝑚(𝑖𝑈𝑘)−𝒥(𝑖𝑘)𝑈𝑚

]︀
+𝑈𝑖𝑈𝑘𝑈𝑗∇𝑎𝒥 𝑎𝑗+

+𝐶1 [(∇𝑚𝑈𝑖)(∇𝑚𝑈𝑘)−(∇𝑖𝑈𝑚)(∇𝑘𝑈
𝑚)] +𝐶4 (𝐷𝑈𝑖𝐷𝑈𝑘−𝑈𝑖𝑈𝑘𝐷𝑈𝑚𝐷𝑈𝑚) .

𝑇
(A)
𝑖𝑘 = Ψ2

0

[︂
∇𝑖𝜑∇𝑘𝜑+𝒜(𝐷𝜑)2

(︂
𝑈𝑖𝑈𝑘−

1

2
𝑔𝑖𝑘

)︂
+

1

2
𝑔𝑖𝑘 (𝑉−∇𝑠𝜑∇𝑠𝜑)

]︂
. (18)

𝑇
(EM)
𝑖𝑘 =

(︂
1

4
𝑔𝑖𝑘𝐹𝑚𝑛𝐹

𝑚𝑛 − 𝐹𝑖𝑛𝐹
𝑛
𝑘

)︂
+𝒜

[︂(︂
1

2
𝑔𝑖𝑘 − 𝑈𝑖𝑈𝑘

)︂
𝐸𝑚𝐸

𝑚 − 𝐸𝑖𝐸𝑘

]︂
. (19)

For simplicity, we introduced here the electric four-vectors 𝐸𝑗 = 𝐹 𝑗𝑘𝑈𝑘. As for the stress-energy tensor

associated with plasma particles, we follow the standard rule that it is proportional to the second order

macroscopic moment of the distribution functions.

1.3. Covariant relativistic kinetic equations and macroscopic moments

The formalism of kinetic theory is based on a set of semi-phenomenologically derived relativistic

kinetic equations

𝑝𝑗

𝑚(𝑎)𝑐

(︂
𝜕

𝜕𝑥𝑗
− Γ𝑙𝑗𝑘𝑝

𝑘 𝜕

𝜕𝑝𝑙

)︂
𝑓(𝑎) +

𝜕

𝜕𝑝𝑖

[︁
ℱ 𝑖

(𝑎)𝑓(𝑎)

]︁
=
∑︁
(𝑏)

𝒥(𝑎)(𝑏) . (20)

The set of distribution functions 𝑓(𝑎)(𝑥
𝑗 , 𝑝𝑘) is marked by the index of particle sort (𝑎); they are functions

of coordinates 𝑥𝑗 and of the particle momenta 𝑝𝑘, which have the status of random variables. The terms

ℱ 𝑖
(𝑎) relate to the force four-vectors, which act on the particles of the sort (𝑎). The object 𝒥(𝑎)(𝑏) describes

the collision integral of the particles, which are associated with the sorts (𝑎) and (𝑏). Integration in the

Phase Space with the measure 𝑑𝑃 gives the set of macroscopic moments

ℳ𝑗1...𝑗𝑠
(𝑎) ≡

∫︁
𝑑𝑃𝑓(𝑎)𝑝

𝑗1 · · · 𝑝𝑗𝑠 , 𝑑𝑃 = 𝑑4𝑝
√
−𝑔 𝛿

[︁
𝑝𝑙𝑝𝑙 −𝑚2

(𝑎)𝑐
2
]︁
𝜂(𝑝𝑙𝑈𝑙) . (21)

Delta function in this measure guarantees that the momentum four-vector of the particle with the mass

𝑚(𝑎) is normalized. The Heaviside function 𝜂 rejects the contributions with negative energy 𝑝𝑙𝑈𝑙 < 0.
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Two moments enter into the classical formalism of the kinetic theory: the four-vector of particle number

of the chosen sort 𝑁 𝑗
(𝑎), and the corresponding part of the stress-energy tensor 𝑇 𝑙𝑠(𝑎)

𝑁 𝑗
(𝑎) =

1

𝑚(𝑎)𝑐

∫︁
𝑑𝑃 𝑝𝑗𝑓(𝑎) , 𝑇 𝑙𝑠(𝑎) =

1

𝑚(𝑎)

∫︁
𝑑𝑃 𝑝𝑙𝑝𝑠𝑓(𝑎) . (22)

The choice of coefficients in front of integrals relates to the assumptions that 𝑁 𝑗
(𝑎) has the dimensionality

of particle number density, and 𝑇 𝑙𝑠(𝑎) has the dimensionality of energy density.

We follow the classical idea that for the elastic collisions, for which
∑︀

(𝑏)

∫︀
𝑑𝑃𝒥(𝑎)(𝑏) = 0, the first

moment satisfies the balance equation

∇𝑗𝑁
𝑗
(𝑎) = −

∫︁
𝑑𝑃

𝜕

𝜕𝑝𝑗

[︁
ℱ 𝑗

(𝑎)𝑓(𝑎)

]︁
= 0 . (23)

As usual,∇𝑗 is the covariant derivative. In other words, we assume that the particle number conservation

law takes place for arbitrary set of forces ℱ 𝑖
(𝑎). Similarly, due to the relation

∑︀
(𝑎)(𝑏)

∫︀
𝑑𝑃𝑝𝑗𝒥(𝑎)(𝑏) = 0,

we obtain the known balance equations, which include the total stress-energy tensor

∇𝑗

∑︁
(𝑎)

𝑇 𝑙𝑗(𝑎) =
∑︁
(𝑎)

𝑐

∫︁
𝑑𝑃𝑓(𝑎)ℱ 𝑙

(𝑎) . (24)

1.4. Phenomenological modeling of the sources appeared in the field equations

As it was shown above, in the electrodynamic equations (9) the new source term appears, which

has the form 𝛿
𝛿𝐴𝑗

𝐿(P). Keeping in mind that it should be expressed via the electric current, one can

state that

− 𝛿

𝛿𝐴𝑗
𝐿(P) = −4𝜋

∑︁
(𝑎)

𝑒(𝑎)𝑁
𝑗
(𝑎) = −4𝜋

∑︁
(𝑎)

𝑒(𝑎)

𝑚(𝑎)𝑐

∫︁
𝑑𝑃 𝑝𝑗𝑓(𝑎) . (25)

In other words, this source term can be identified using the first integrals of the distribution functions.

Similarly, the vectorial term 𝜅 𝛿
𝛿𝑈𝑗𝐿(P) appears in the modified Jacobson’s equation (12). Our ansatz

is that it can be expressed as a linear combination of the first and second moments of the distribution

functions as follows:

𝜅
𝛿

𝛿𝑈 𝑗
𝐿(P) =

∑︁
(𝑎)

[︀
𝜔(𝑎)𝑁(𝑎)𝑗 +Ω(𝑎)𝑇(𝑎)𝑗𝑘𝑈

𝑘
]︀
. (26)

Two sets of parameters 𝜔(𝑎) and Ω(𝑎) are the subject of phenomenological modeling.

The pseudoscalar term − 1
Ψ2

0

𝛿𝐿(P)

𝛿𝜑 appeared in (15), can be also expressed as a linear combination

of the first and second macroscopic moments

− 1

Ψ2
0

𝛿𝐿(P)

𝛿𝜑
= sin𝜑

∑︁
(𝑎)

[︀
𝛼(𝑎)𝑁(𝑎)𝑗𝑈

𝑗 + 𝛽(𝑎)𝑇(𝑎)𝑗𝑘𝑔
𝑗𝑘 + 𝛾(𝑎)𝑇(𝑎)𝑗𝑘𝑈

𝑗𝑈𝑘
]︀
. (27)

In this decomposition three sets of phenomenological parameters appear. Finally, the term 𝑇
(P)
𝑖𝑘 appeared

in (16) is the sum of the stress-energy tensors

𝑇
(P)
𝑖𝑘 =

∑︁
(𝑎)

𝑇(𝑎)𝑖𝑘 . (28)

1.5. Classification of forces

Characteristic equations associated with the kinetic equation (20) can be standardly written in the

form
𝒟𝑝𝑗

𝑑𝑠
= ℱ 𝑗

(𝑎) ,
𝒟𝑝𝑗

𝑑𝑠
≡ 𝑑𝑝𝑗

𝑑𝑠
+ Γ𝑗𝑙𝑘𝑝

𝑙 𝑝𝑘

𝑚(𝑎)𝑐
. (29)



44 A.B. Balakin, K.R. Valiullin

We follow the general idea that the rest mass of particles 𝑚(𝑎) conserves, so that

𝑝𝑗
𝒟𝑝𝑗

𝑑𝑠
=

1

2

𝒟(𝑝𝑗𝑝
𝑗)

𝑑𝑠
=

1

2

𝑑[𝑚2
(𝑎)𝑐

2]

𝑑𝑠
= 0 . (30)

This means that the force is orthogonal to the particle momentum four-vector

𝑝𝑗ℱ 𝑗
(𝑎) = 0 . (31)

There are two specific constructions providing the requirement (31). The first one (basic) contains the

projector with respect to the particle momentum, and the force has the following general form with

arbitrary vectorial objects 𝒲𝑘
(𝑎):

ℱ 𝑗
(𝑎) =

[︁
𝛿𝑗𝑘(𝑝

𝑙𝑝𝑙)− 𝑝𝑘𝑝
𝑗
]︁
𝒲𝑘

(𝑎) . (32)

The second construction contains antisymmetric object 𝒱𝑗𝑙(𝑎)

ℱ 𝑗
(𝑎) = 𝒱𝑗𝑙(𝑎)𝑝𝑙 , 𝒱𝑗𝑙(𝑎) = −𝒱 𝑙𝑗(𝑎) , (33)

and can be in principle rewritten in the first form. In our context one can classify all forces orthogonal

to the particle momentum using the so-called Effective Field Theory [29], which considers zero, first,

etc. order terms in derivatives of vector, pseudoscalar, electromagnetic fields, as well as, in derivatives

of the space-time metric.

1.5.1 Zero-order force terms

We know only one construction, which does not contain derivatives, namely

ℱ 𝑖
(𝑆) =

𝜆(𝑆)

𝑚𝑎𝑐
[𝛿𝑖𝑘(𝑝

𝑙𝑝𝑙)− 𝑝𝑖𝑝𝑘] 𝑈
𝑘
[︀
1 + 𝜈(𝑆) cos𝜑

]︀
. (34)

It is based on the aether velocity four-vector 𝑈𝑘, contains even periodic function of the axion field, and

includes two phenomenologically introduced scalar functions 𝜆(𝑆) and 𝜈(𝑆). We assume that these scalars

can depend on the expansion scalar of the aether flow, Θ = ∇𝑘𝑈
𝑘, but can be the constant also. This

force belongs to the class of non-gyroscopic ones, since the divergency

𝜕

𝜕𝑝𝑖
ℱ 𝑖

(𝑆) = −3
𝜆(𝑆)

𝑚𝑎𝑐
(𝑝𝑘𝑈

𝑘)
[︀
1 + 𝜈(𝑆) cos𝜑

]︀
(35)

is non-vanishing. The index (𝑆) emphasizes that in classical hydrodynamics there exists the so-called

Stokes friction force, which is proportional to the difference between the velocities of particle and of the

hydrodynamic flow. Here the aether flow plays the hydrodynamic role, and the force vanishes, when

the particle four-velocity 𝑝𝑗

𝑚(𝑎)𝑐
coincides with the aether velocity 𝑈 𝑗 . When |𝜈(𝑆)| > 1, the multiplier[︀

1+𝜈(𝑆) cos𝜑
]︀
behaves as axionic switch, providing the force to be of the friction or antifriction type

depending on the state of the axion field.

1.5.2 First-order force terms

This subclass contains two forces of the rotational type based on derivatives of the vector field

ℱ 𝑖
(𝑅) =

𝜆(𝑅)

𝑚𝑎𝑐

[︀
∇𝑖𝑈𝑘 −∇𝑘𝑈 𝑖

]︀
𝑝𝑘
[︀
1 + 𝜈(𝑅) cos𝜑

]︀
, (36)

ℱ 𝑖
(*𝑅) =

𝜆(*𝑅)

𝑚𝑎𝑐
sin𝜑 𝜖𝑖𝑘𝑚𝑛∇𝑚𝑈𝑛 𝑝𝑘

[︀
1 + 𝜈(*𝑅) cos𝜑

]︀
. (37)
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Both forces are of the gyroscopic type, since

𝜕

𝜕𝑝𝑖
ℱ 𝑖

(𝑅) = 0 ,
𝜕

𝜕𝑝𝑖
ℱ 𝑖

(*𝑅) = 0 . (38)

There are two gradient-type forces, which contain the gradient of the axion field ∇𝑘𝜑. The first one

ℱ 𝑖
(𝐺) =

𝜆(𝐺)

𝑚𝑎𝑐
[𝑔𝑖𝑘(𝑝𝑙𝑝𝑙)− 𝑝𝑖𝑝𝑘] ∇𝑘𝜑 sin𝜑

[︀
1 + 𝜈(𝐺) cos𝜑

]︀
(39)

is non-gyroscopic with

𝜕

𝜕𝑝𝑖
ℱ 𝑖

(𝐺) = −3
𝜆(𝐺)

𝑚𝑎𝑐
sin𝜑 𝑝𝑘 ∇𝑘𝜑

[︀
1 + 𝜈(𝐺) cos𝜑

]︀
. (40)

The second gradient-type force

ℱ 𝑖
(*𝐺) =

𝜆(*𝐺)

𝑚𝑎𝑐
𝜖𝑖𝑘𝑙𝑠𝑈𝑙 𝑝𝑠 ∇𝑘𝜑

[︀
1 + 𝜈(*𝐺) cos𝜑

]︀
(41)

contains the Levi-Civita (pseudo)tensor, the aether velocity four-vector, and is of the gyroscopic type.

There are two gyroscopic forces, which can be indicated as generalizations of the Lorentz force. The

first force of this type contains the Maxwell tensor linear in derivatives of the electromagnetic potential

ℱ 𝑖
(𝐿) =

𝑒𝑎
𝑚𝑎𝑐2

𝐹 𝑖·𝑘𝑝
𝑘
[︀
1 + 𝜈(𝐿) cos𝜑

]︀
. (42)

When 𝜈(𝐿) = 0 it is, clearly, the classical Lorentz force. The second generalization can be constructed

as follows:

ℱ 𝑖
(*𝐿) =

𝑒*𝑎
𝑚𝑎𝑐2

sin𝜑𝐹 *𝑖
·𝑘𝑝

𝑘
[︀
1 + 𝜈(*𝐿) cos𝜑

]︀
. (43)

It contains the dual Maxwell tensor and some hypothetical dual charge 𝑒*𝑎. We have to stress, that the

scalar functions 𝜆(𝑅) and 𝜈(𝑅), 𝜆(*𝑅) and 𝜈(*𝑅), 𝜆(𝐺) and 𝜈(𝐺), 𝜆(*𝐺) and 𝜈(*𝐺), 𝜈(𝐿) and 𝜈(*𝐿) can be

considered as functions of the expansion scalar Θ, or as constants.

1.5.3 On the second-order force terms

When we deal with the forces containing two derivatives, there are a lot of variants of the force

modeling. First, we can use twice the derivative of the vector field, (∇𝑘𝑈𝑚)(∇𝑙𝑈𝑛); second, the terms

quadratic in the gradient of the axion field (∇𝑘𝜑)(∇𝑛𝜑) can appear; third, the forces containing

the product of Maxwell fields 𝐹𝑚𝑛𝐹𝑝𝑞 are also admissible. Then we have to list all the cross-terms

containing (∇𝑘𝑈𝑚)∇𝑛𝜑, (∇𝑘𝑈𝑚)𝐹𝑙𝑠, ∇𝑘𝜑𝐹𝑚𝑛. Finally, the terms with second derivatives can appear,

say, ∇𝑘∇𝑚𝑈𝑛, ∇𝑘∇𝑛𝜑, ∇𝑘𝐹𝑚𝑛. We keep in mind these terms, but we do not consider them in the

context of linear electrodynamics and field theory of the second order in derivatives. Only one specific

class of forces attracts the interest in our theory; it is the class of the so-called tidal forces, linear in

curvature. In order to formulate these tidal forces in the so-called non-minimal way, we introduce the

three-parameter tensor of non-minimal susceptibility

ℛ𝑖𝑘𝑚𝑛 =
1

2
𝑞1𝑅 (𝑔𝑖𝑚𝑔𝑘𝑛 − 𝑔𝑖𝑛𝑔𝑘𝑚) + 𝑞2 [𝑅𝑖𝑚𝑔𝑘𝑛 −𝑅𝑖𝑛𝑔𝑘𝑚 +𝑅𝑘𝑛𝑔𝑖𝑚 −𝑅𝑘𝑚𝑔𝑖𝑛] + 𝑞3𝑅𝑖𝑘𝑚𝑛 , (44)

based on the Riemann tensor 𝑅𝑖𝑘𝑚𝑛, Ricci tensor 𝑅𝑘𝑚 and Ricci scalar 𝑅. Convolutions of this tensor

give two supplementary obgects

ℛ𝑖𝑚 =

(︂
3

2
𝑞1 + 𝑞2

)︂
𝑅𝑔𝑖𝑚 + (2𝑞2 + 𝑞3)𝑅𝑖𝑚 , ℛ = 𝑅(6𝑞1 + 6𝑞2 + 𝑞3) . (45)

Also, there exist left-dual and right-dual susceptibility tensors

*ℛ𝑖
·𝑘𝑚𝑛 =

1

2
𝜖𝑖·𝑘𝑝𝑞 ℛ𝑝𝑞

𝑚𝑛 , ℛ*𝑖
·𝑘𝑚𝑛 =

1

2
ℛ𝑖

·𝑘𝑝𝑞𝜖
𝑝𝑞
𝑚𝑛 . (46)
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With these tensors of non-minimal susceptibility we can construct three tidal forces of the second order

in derivative of the metric. The first one is based on the tensor ℛ𝑖𝑘𝑚𝑛

ℱ 𝑖
(𝑇 ) =

𝜆(𝑇 )

𝑚𝑎𝑐
ℛ𝑖

·𝑘𝑚𝑛𝑝
𝑘𝑈𝑚𝑝𝑛

[︀
1 + 𝜈(𝑇 ) cos𝜑

]︀
, (47)

and has non-vanishing divergency

𝜕

𝜕𝑝𝑖
ℱ 𝑖

(𝑇 ) = −
𝜆(𝑇 )

𝑚𝑎𝑐
ℛ𝑘𝑚𝑝

𝑘𝑈𝑚
[︀
1 + 𝜈(𝑇 ) cos𝜑

]︀
. (48)

The second and third tidal forces are of the gyroscopic type, since they are constructed using the dual

tensors

ℱ 𝑖
(𝑇*) =

𝜆(𝑇*)

𝑚𝑎𝑐
sin𝜑 ℛ*𝑖

·𝑘𝑚𝑛𝑝
𝑘𝑈𝑚𝑝𝑛

[︀
1 + 𝜈(𝑇*) cos𝜑

]︀
,

𝜕

𝜕𝑝𝑖
ℱ 𝑖

(𝑇*) = 0 , (49)

ℱ 𝑖
(*𝑇 ) =

𝜆(*𝑇 )

𝑚𝑎𝑐
sin𝜑 *ℛ𝑖

·𝑘𝑚𝑛𝑝
𝑘𝑈𝑚𝑝𝑛

[︀
1 + 𝜈(*𝑇 ) cos𝜑

]︀
,

𝜕

𝜕𝑝𝑖
ℱ 𝑖

(*𝑇 ) = 0 . (50)

Again, we have to repeat, that the scalar functions 𝜆(𝑇 ) and 𝜈(𝑇 ), 𝜆(*𝑇 ) and 𝜈(*𝑇 ), 𝜆(𝑇*) and 𝜈(𝑇*) can

be considered as functions of the expansion scalar Θ, or as constants.

2. Equilibrium states in axionically - aetherically active plasma

2.1. General concept and basic definitions

We follow the standard definition of the equilibrium state, which requires that the entropy

production scalar of the closed system vanishes. For elastic collisions this requirement is satisfied, when

the collision integrals vanish, 𝒥(𝑎)(𝑏) = 0, and the distribution functions are of the Jüttner - Chernikov

form

𝑓
(eq)
(𝑎) = 𝐴(𝑎)𝑒

−𝜉𝑘𝑝𝑘 . (51)

The scalar function 𝐴(𝑎) is connected with the normalization of the distribution function. The vector

field 𝜉𝑘 has no the sort index and has to be the time-like one, i.e., 𝜉𝑘𝜉
𝑘 > 0. The norm of this four-

vector is usually associated with the temperature of the system, 𝑇 (𝑥), 𝑐
𝑘𝐵𝑇 (𝑥) =

√︀
𝜉𝑘𝜉𝑘, where 𝑘𝐵 is the

Boltzmann constant. The unit time-like four-vector 𝑉 𝑗 = 𝜉𝑗(𝜉𝑘𝜉
𝑘)−

1
2 defines the macroscopic velocity

of the kinetic system. The quantities 𝐴(𝑎) and 𝜉𝑘 should be found from the equation

𝑝𝑗
𝜕

𝜕𝑥𝑗
[︀
log𝐴(𝑎)

]︀
− 1

2
𝑝𝑗𝑝𝑘 [∇𝑗𝜉𝑘 +∇𝑘𝜉𝑗 ] = 𝑚(𝑎)𝑐 𝜉𝑗ℱ 𝑗

(𝑎) −𝑚(𝑎)𝑐
𝜕

𝜕𝑝𝑗
ℱ 𝑗

(𝑎) . (52)

It is well known that for the simple massive gas, when ℱ 𝑗
(𝑎) = 0, the equilibrium state is admissible,

when ∇𝑗𝜉𝑘+∇𝑘𝜉𝑗=0 and thus 𝜉𝑘 has to be time-like Killing vector. When one deals with the massless

gas,𝑚(𝑎) = 0, the necessary condition for the equilibrium state takes the form ∇𝑗𝜉𝑘+∇𝑘𝜉𝑗 = 2Ψ𝑔𝑗𝑘, and

thus requires that 𝜉𝑘 to be the conformal Killing vector. In both cases the functions 𝐴(𝑎) convert into

constants. When ℱ 𝑗
(𝑎) ̸= 0, we have to decompose the forces into the series with respect to momentum

𝑝𝑘 and to solve the set of equations obtained in the first, second, etc. orders of this decomposition.

Let us discuss this problem for the forces listed above. Taking into account the terms quadratic in

the particle momenta, we obtain the equation for the vector 𝜉𝑗

∇(𝑚𝜉𝑛) = −𝑔𝑚𝑛
[︀
ℋ(𝑆)𝜉

𝑘𝑈𝑘 +ℋ(𝐺) sin𝜑 𝜉
𝑘∇𝑘𝜑

]︀
+ (53)

+
[︀
ℋ(𝑆)𝜉(𝑚𝑈𝑛) +ℋ(𝐺) sin𝜑 𝜉(𝑚∇𝑛)𝜑

]︀
+

+𝜉𝑗𝑈𝑠
[︁
ℋ(𝑇 )ℛ𝑗(𝑚𝑛)𝑠 +ℋ(*𝑇 ) sin𝜑

*ℛ𝑗(𝑚𝑛)𝑠 +ℋ(𝑇*) sin𝜑ℛ *
𝑗(𝑚𝑛)𝑠

]︁
.

Here the parentheses denote symmetrization, and definitions are made of the following type

ℋ(𝑆) = 𝜆(𝑆)
[︀
1 + 𝜈(𝑆) cos𝜑

]︀
, ... ,ℋ(𝑇*) = 𝜆(𝑇*)

[︀
1 + 𝜈(𝑇*) cos𝜑

]︀
. (54)
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The equation (53) can be rewritten in more compact form

∇(𝑚𝜉𝑛) = −𝑔𝑚𝑛𝜉𝑘𝒬𝑘 + 𝜉(𝑚𝒬𝑛) + 𝜉(𝑗𝑈𝑠)𝒲𝑗𝑚𝑛𝑠 , (55)

where the following auxiliary quantities are introduced:

𝒬𝑘 =
[︀
ℋ(𝑆)𝑈𝑘 +ℋ(𝐺) sin𝜑 ∇𝑘𝜑

]︀
, (56)

𝒲𝑗𝑚𝑛𝑠 =
[︁
ℋ(𝑇 )ℛ𝑗(𝑚𝑛)𝑠 +ℋ(*𝑇 ) sin𝜑

*ℛ𝑗(𝑚𝑛)𝑠 +ℋ(𝑇*) sin𝜑ℛ *
𝑗(𝑚𝑛)𝑠

]︁
. (57)

Convolutions of (55) with 𝑔𝑚𝑛 and 𝜉𝑚𝜉𝑛 give, respectively

∇𝑚𝜉
𝑚 = −3𝜉𝑘𝒬𝑘 −ℋ(𝑇 )ℛ𝑗𝑠𝜉

𝑗𝑈𝑠 , 𝜉𝑚∇𝑚 [𝜉𝑛𝜉
𝑛] = 0 . (58)

Collecting the terms linear in 𝑝𝑗 we obtain equations for the quantities 𝐴(𝑎)

∇𝑘

(︀
log𝐴(𝑎)

)︀
= ℋ(𝑅)𝜉

𝑗 (∇𝑗𝑈𝑘 −∇𝑘𝑈𝑗) +ℋ(*𝑅) sin𝜑𝜉
𝑗𝜖𝑗𝑘𝑚𝑛∇𝑚𝑈𝑛 +ℋ(*𝐺)𝜉

𝑗𝜖𝑗𝑙𝑘𝑠𝑈
𝑙∇𝑠𝜑+ (59)

+
𝑒(𝑎)

𝑐

[︀
1+𝜈(𝐿) cos𝜑

]︀
𝜉𝑗𝐹𝑗𝑘+

𝑒*(𝑎)

𝑐
sin𝜑

[︀
1+𝜈(*𝐿) cos𝜑

]︀
𝜉𝑗𝐹 *

𝑗𝑘+3𝑈𝑘ℋ(𝑆)+3ℋ(𝐺) sin𝜑∇𝑘𝜑+ℋ(𝑇 )ℛ𝑘𝑚𝑈
𝑚 .

Convolution of (59) with 𝜉𝑘 yields

𝜉𝑘∇𝑘

(︀
log𝐴(𝑎)

)︀
= 3𝜉𝑘𝑈𝑘ℋ(𝑆) + 3ℋ(𝐺) sin𝜑𝜉

𝑘∇𝑘𝜑+ℋ(𝑇 )ℛ𝑘𝑚𝜉
𝑘𝑈𝑚 . (60)

2.2. Special ansatz

Our ansatz is that the four-vector 𝜉𝑗 is proportional to the aether velocity 𝑈 𝑗 , i.e., 𝜉𝑗 = 𝑐𝑈𝑗

𝑘𝐵𝑇
. This

ansatz is compatible with equations (55), when

∇(𝑚𝑈𝑛) −
1

𝑇
𝑈(𝑚∇𝑛)𝑇 = −𝑔𝑚𝑛𝑈𝑘𝒬𝑘 + 𝑈(𝑚𝒬𝑛) + 𝑈 𝑗𝑈𝑠𝒲𝑗𝑚𝑛𝑠 . (61)

Also, we have to take into account that

𝑈𝑚∇𝑚𝑇 = 0 , ∇𝑚𝑈
𝑚 = −3𝑈𝑘𝒬𝑘 −ℋ(𝑇 )ℛ𝑗𝑠𝑈

𝑗𝑈𝑠 . (62)

Let us check that this ansatz works in the model of homogeneous isotropic cosmological model.

2.3. Example of application

Let us consider the isotropic homogeneous cosmological model of the FLRW type with metric

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)
[︀
(𝑑𝑥1)2 + (𝑑𝑥2)2 + (𝑑𝑥3)2

]︀
. (63)

It is well known that the space-time of this type does not admit the existence of a time-like Killing

vector, thus the standard equilibrium of massive particles is impossible. However, the dynamic aether

could provide the existence of equilibrium of a new type. For illustration we consider the simple situation,

when, first, all quantities depend on time only; second, the axion field is in the equilibrium state at the

minimum of the potential indicated by the number 𝑛, i.e., 𝜑 = 2𝜋𝑛; third, ℋ(𝑇 ) = 0.

Now the aether velocity is of the form 𝑈 𝑗 = 𝛿𝑗0, and the covariant derivative takes very simple form

∇𝑚𝑈𝑛 =
1

3
Θ∆𝑚𝑛 , ∆𝑚𝑛 = 𝑔𝑚𝑛 − 𝑈𝑚𝑈𝑛 . (64)

The equations (61) transforms into

1

3
Θ∆𝑚𝑛 − �̇�

𝑇
𝑈𝑚𝑈𝑛 = −ℋ(𝑆)∆𝑚𝑛 , (65)
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thus providing the relationships

�̇� = 0 , 𝐻 = −ℋ(𝑆) . (66)

Here we used the standard definition of the Hubble function 𝐻 = �̇�
𝑎 = 1

3Θ. In fact, this relationship

predetermines the structure of the multiplier 𝜆(𝑆)(𝐻):

𝜆(𝑆)(𝐻) = − 𝐻

[1 + 𝜈(𝑆)]
⇒ 𝜆(𝑆) = −�̃�(𝑆)𝐻 , �̃�(𝑆) ≡

1

1 + 𝜈(𝑆)
. (67)

In other words, the equilibrium state in plasma exists, the macroscopic velocity of plasma flow coincides

with the aether velocity and the equilibrium temperature does not depend on time. In this context the

multiplier 𝜆(𝑆)(𝐻) happens to be linear in the Hubble function, and 𝜈(𝑆) is constant. The coefficient

𝐴(𝑎) satisfies now the equations

∇𝑘

(︀
log𝐴(𝑎)

)︀
= 3𝑈𝑘ℋ(𝑆) , (68)

which reduce to one equation
�̇�(𝑎)

𝐴(𝑎)
= −3𝐻. The solution to this equation is 𝐴(𝑎)(𝑡) = 𝐴(𝑎)(𝑡0)

[︁
𝑎(𝑡0)
𝑎(𝑡)

]︁3
.

Since the normalization coefficient 𝐴(𝑎) is proportional to the particle number density 𝒩(𝑎), the

established law simply shows that, when the Universe expands, the particle number decreases as

𝒩(𝑎)(𝑡) = 𝒩(𝑎)(𝑡0)
[︁
𝑎(𝑡0)
𝑎(𝑡)

]︁3
.

Conclusion

1. The formalism of the kinetic theory of the relativistic multi-component axionically - aetherically

active plasma is presented. The self-consistent set of coupled master equations contains five subsets: first,

the kinetic equations for the distribution functions (20); second, the extended Jacobson’s equations

for the unit vector field, describing the velocity of the dynamic aether (12); third, the extended

electrodynamic equations (11); fourth, the extended equations for the axion field (15); fifth, the gravity

field equations (16) - (19).

2. The classification of the extended forces, which act on the plasma particles in the electromagnetic,

aetheric, axionic and gravitational fields, is suggested in the framework of the Effective Field Theory

up to the second order in derivatives (see Subsection IIE). This classification is supplemented by

phenomenological modeling of the additional source terms, which appear in the equations of the

electromagnetic, axion and vector fields due to the plasma back-reaction.

3. The concept of extended equilibrium in axionically - aetherically active plasma is suggested and

is tested using the example of isotropic homogeneous cosmological model.
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