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The work considers oscillating scalar fields acting as cold dark matter in the expanding Universe. This behavior

is inherent for both real and complex fields, and besides, the complex field reproduces the properties of cold dark

matter even if the energy density per particle exceeds its mass.
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В работе рассматриваются осциллирующие скалярные поля, действующие как холодная темная материя в

расширяющейся Вселенной. Такое поведение имеет место как для действительного так и для комплексного

поля, причем комплексное поле воспроизводит свойства холодной темной материи даже когда плотность

энергии на одну частицу превышает ее массу.
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Introduction

Today, there is very little doubt that a considerable fraction of the matter in the Universe is hidden

dark matter (DM). Its presence in galaxies is evidenced by observational data on the rotation curves [1]

and gravitational lensing [2]. The CMB anisotropy data indicate a significant DM contribution to the

evolution of the Universe [3]. The preferred DMmodel is a cold DM (CDM) formed by collisionless weakly

interacting massive particles (WIMP) being nonrelativistic already from the moment of decoupling from

a thermal bath [4]. CDM is in the best agreement with the most reliable observations, and despite some

problems, it is a reference model in modern cosmology and astrophysics. Alternative versions of DM

have to reproduce the main characteristics and properties of CDM.

The most significant CDM property for the Universe evolution is based on the fact that CDM

consists of nonrelativistic particles and therefore is pressureless, i.e. its equation of state 𝑝 = 0.

Another important result is that CDM provides a rapid growth of spatial inhomogeneities at the matter

dominated (MD) stage, which form modern large-scale structures. The density contrast 𝛿 for subhorizon

perturbations satisfies the equation

𝛿 + 2𝐻�̇� − 4𝜋𝐺𝜌𝛿 = 0 , (1)

where 𝐻 is the Hubble expansion rate, and 𝜌 is the background energy density. Eq. (1) gives the solution

growing as scale factor, 𝛿 ∝ 𝑎.
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Another DM model that is in good agreement with the observations is a massive real scalar field

[5–7]. When its mass 𝑚 satisfies the condition

𝐻 ≪ 𝑚, (2)

the scalar field behaves as CDM at all relevant cosmological scales. This model is primarily motivated

by axions and axion-like particles (ALPs) as DM candidates. For cosmologically suitable axions with

masses 𝑚 ∼ 10−6 − 10−4 eV, relation (2) is satisfied from the moment of axion field creation whereas at

the MD stage it is satisfied even for ultralight bosons with masses 𝑚 ∼ 10−22 eV.

It is shown in this work that a complex scalar field produces similar results and also well simulates

CDM under condition (2).

The paper is organized as follows. The evolution of the real scalar field in the expanding Universe

is outlined in Sec. 1. This model is well-known [6] and it is presented here to compare it with results for

the complex scalar field described in Sec. 2. Finally, the results obtained are discussed.

1. Real scalar field

Consider the scalar field with the Lagrange density

ℒ =
1

2
𝜕𝑖𝜓𝜕

𝑖𝜓 − 1

2
𝑚2𝜓2 , (3)

in the spatially flat Friedmann universe described by the metric

d𝑠2 = d𝑡2 − 𝑎2(𝑡)
(︀
d𝑥2 + d𝑦2 + d𝑧2

)︀
. (4)

The field equation reads as

𝜓 + 3
�̇�

𝑎
�̇� +𝑚2𝜓 = 0 . (5)

To conveniently apply condition (2), one uses the substitution

𝜓 = 𝑎−3/2𝜑 . (6)

obtaining

𝜑+

(︂
𝑚2 − 3

2

�̈�

𝑎
− 3

4

�̇�2

𝑎2

)︂
𝜑 = 0 (7)

instead (5). The last two terms in the parenthesis are of order 𝐻2 and can be ignored due to condition

(2), so that the solution to Eq. (5) has the form

𝜓 = 𝑢(𝑡) cos𝑚𝑡 , (8)

where 𝑢 ∝ 𝑎−3/2. Corrections to this solution are of the order 𝐻2/𝑚2.

On the timescale of amplitude variations, the field makes a large number of oscillations, so that it

is zero on the average. The same result is obtained when averaging over the period of oscillations.

The energy density and the pressure are determined by corresponding components of the stress-

energy tensor. Neglecting the terms of order 𝐻2/𝑚2 one obtains

𝑇 0
0 =

1

2

(︁
�̇�2 +𝑚2𝜓2

)︁
=

1

2
𝑚2𝑢2 , (9)

𝑇 𝛽𝛼 = −1

2

(︁
�̇�2 −𝑚2𝜓2

)︁
𝛿𝛽𝛼 =

1

2
𝑚2𝑢2 cos 2𝑚𝑡 · 𝛿𝛽𝛼 . (10)

Averaging these quantities over the period one finds

𝑇 0
0 = 𝜌 =

1

2
𝑚2𝑢2 ∝ 𝑎−3 , (11)

𝑇 𝛽𝛼 = −𝑝 𝛿𝛽𝛼 = 0 . (12)
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The oscillating scalar field acts as nonrelativistic matter. When the scalar field dominates in the

Universe, it provides the same evolution as CDM. Note, that the field 𝜓 can be interpreted as a collection

of particles with a particle density

𝑛 =
𝜌

𝑚
∝ 𝑎−3 . (13)

2. Complex scalar field

The approach developed in the previous section can be applied to the complex scalar field with a

global U(1) symmetry. The theory is defined by the Lagrange density

ℒ = 𝜕𝑖𝜙
*𝜕𝑖𝜙−𝑚2|𝜙|2 , (14)

so that the conserved current associated with the U(1) symmetry is

𝑛𝑖 = −𝑖 (𝜙*𝜕𝑖𝜙− 𝜙𝜕𝑖𝜙
*) , (15)

and the corresponding conserved charge is a total particle number.

Using the amplitude-phase representation 𝜙 = 𝜓𝑒𝑖𝜃 one obtains from (14) the following equations

of motion in the expanding Universe described by metric (4):

𝜕𝑡

(︁
𝑎3𝜓2𝜃

)︁
= 0 , (16)

𝜓 + 3
�̇�

𝑎
�̇� − 𝜃2𝜓 +𝑚2𝜓 = 0 . (17)

Eq. (16) represents the particle number density conservation arising from the global U(1) symmetry,

so that the density evolves according to

2𝜓2𝜃 = 𝑛(𝑡) ∝ 𝑎−3 . (18)

Taking into account (18) and neglecting terms of order 𝐻2 when compared with 𝑚2 the solution to

Eq. (17) reads as

𝜓 =
1

2
𝑢(𝑡)

(︁
1 +

(︀
1−∆2

)︀1/2
cos 2𝑚𝑡

)︁1/2
, (19)

where 𝑢 ∝ 𝑎−3/2, ∆ = 2𝑛/𝑚𝑢2 =const, and it is implied ∆ < 1 in this solution.

This solution describes the complex scalar field with oscillating amplitude so that its central value

is nonzero. The phase 𝜃 of the complex field grows unevenly according to Eq. (18). Details of the field

behavior are determined by parameter ∆.

The amplitude representation in Eq. (19) gives the same expression for nonzero components of the

stress-energy tensor as for the real field:

𝑇 0
0 = �̇�2 +𝑚2𝜓2 + 𝜃2𝜓2 =

1

2
𝑚2𝑢2 , (20)

𝑇 𝛽𝛼 = �̇�2 −𝑚2𝜓2 + 𝜃2𝜓2 = −1

2
𝑚2𝑢2

(︀
1−∆2

)︀1/2
cos 2𝑚𝑡 · 𝛿𝛽𝛼 . (21)

The average values over the period yield the energy density and the pressure

𝜌 =
1

2
𝑚2𝑢2 ∝ 𝑎−3 , 𝑝 = 0 . (22)

Taking into account (22) parameter ∆ can be represented as ∆ = 𝑚𝑛/𝜌. In this form, it has a clear

physical interpretation, an inverse value of the energy per particle, which remains constant while the

field oscillates.

It is usually thought that nonrelativistic matter implies 𝜌 ≈ 𝑚𝑛 as it takes place for the real scalar

field. In solution (19) that corresponds ∆ ≈ 1, and 𝜓 ≈ 𝑢/2. It follows from (18) that the phase function

𝜃 ≈ 𝑚𝑡, and the field 𝜙 represents a coherent state of zero momentum scalar particles with density
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𝑛 = 2𝑚𝜓2. The field under this approximation was applied to study instabilities of the Affleck-Dine

condensate [8] and to the problem of why the densities of baryons and dark matter in the Universe are

similar [9].

The opposite case, ∆ ≪ 1, can be considered as an ultrarelativistic one because of 𝜌 ≫ 𝑚𝑛.

However expressions (22) remain valid and the complex scalar field continues to mimic CDM.

The small value of ∆ can emerge for light bosons decoupled after QCD phase transition, when

decoupling temperature satisfies 𝑇d ≫ 𝑚 ≫ 𝐻 [10]. In this case ∆ can be estimated as ∆ ∼ 𝑚/𝑇d.

Since the condition for oscillations is embodied, the quantity ∆ holds this value throughout the further

evolution.

Conclusions

We have demonstrated that the oscillating real and complex scalar fields in the expanding Universe

behave as CDM, producing the apparent equation of state 𝑝 = 0. For the real field, this means a usual

expression for the energy density 𝜌 = 𝑚𝑛 while the complex field provides the nonrelativistic behavior

even for 𝜌 > 𝑚𝑛. This property could provide additional opportunities to ALP models because of

avoiding some constraints with respect to the particle density.

In conclusion, we present the equation for subhorizon density perturbations of the complex scalar

field in the MD phase

𝛿 + 2𝐻�̇� −
(︂
4𝜋𝐺𝜌− 𝑘4

4𝑚2𝑎4

)︂
𝛿 = 0 . (23)

Despite a more complicated background solution, the density contrast obeys the same equation as for

the real field [7]. For long-wave perturbations (i. e. when 𝑘 → 0), which are the most important for large

scale structure formation, Eq.(23) transforms to (1). Hence there is no distinction between oscillating

scalar fields and CDM, on scales of observational interest.
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