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COSMOLOGICAL MODELS BASED ON SCALAR-TORSION GRAVITY *

Fomin I.V.𝑎,1

𝑎 Bauman Moscow State Technical University, Moscow, 105005, Russia.

Cosmological models based on teleparallel gravity with a non-minimal coupling between the scalar field and

torsion (scalar-torsion gravity) are considered in the context of their comparison with the case of Einstein gravity

(GR) and the teleparallel equivalent of general relativity (TEGR). A classification of cosmological inflationary

models is proposed based on the type of dependence of the tensor-scalar ratio on the spectral index of scalar

perturbations. The difference between inflationary models based on scalar-torsion gravity and models based on

GR and TEGR is shown in the context of their verification using observational data based on this dependence.
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КОСМОЛОГИЧЕСКИЕ МОДЕЛИ НА ОСНОВЕ СКАЛЯРНО-ТОРСИОННОЙ
ГРАВИТАЦИИ

Фомин И.В.𝑎,1

𝑎 МГТУ им. Н.Э. Баумана„ г. Москва, 105005, Россия.

Рассматриваются космологические модели на основе телепараллельной гравитации с неминимальной

связью скалярного поля и кручения (скалярно-торсионная гравитация) в контексте их сравнения

со случаем гравитации Эйнштейна (ОТО) и телепараллельным эквивалентом общей теориии

относительности (TEGR). Предложена классификация моделей космологической инфляции по типу

зависимости тензорно-скалярного отношения от спектрального индекса скалярных возмущений. Показано

отличие инфляционных моделей на основе скалярно-торсионной гравитации от моделей на основе ОТО и

TEGR в контексте их верификации по наблюдательным данным на основе этой зависисмости.
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Introduction

Within the framework of constructing current cosmological models, the stage of cosmological

inflation is important, since during this stage various physical processes occur that determine the further

evolution of the universe [1, 2].

A different gravity theories are used to construct models of cosmological inflation [3], including

Einstein gravity (GR) [1, 2] and the teleparallel equivalent of general relativity (TERG) [4] and

teleparallel gravity with a non-minimal coupling between the scalar field and torsion (scalar-torsion

gravity or STG) [5–7] as well.

In addition to the presence of the inflationary stage of accelerated expansion of the early universe,

the exit from inflation and the stage of the second accelerated expansion of the universe at the present
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era, verifiable cosmological models must comply with observational constraints on the values of the

parameters of cosmological perturbations [1, 2].

The main characteristics for verifying inflation models using observational constraints on the values

of the parameters of cosmological perturbations based on measurements of anisotropy and polarization

of СMB are the tensor-scalar ratio 𝑟 < 0.032 and the spectral index of scalar perturbations 𝑛𝑆 =

0.9663± 0.0041 [8, 9].

Analysis of the evolution of cosmological perturbations for various inflationary models based on

various theories of gravity leads to different dependencies 𝑟 = 𝑟(1− 𝑛𝑆), the type of which may or may

not correspond to observational constraints.

This paper examines the classification of cosmological models according to type 𝑟 = 𝑟(1 − 𝑛𝑆)

dependence for arbitrary models. Cosmological models based on GR and TEGR are also compared with

models based on the scalar-torsion gravity.

1. Classification of cosmological models based on dependence 𝑟 = 𝑟(1 − 𝑛𝑆)

Since the value of the spectral index of scalar perturbations is 𝑛𝑆 ≃ 0.97 and 1−𝑛𝑆 ≃ 0.03 ≪ 1 [8,9],

we can write the dependence 𝑟 = 𝑟(1− 𝑛𝑆) as follows

𝑟 =

∞∑︁
𝑘=0

𝛽𝑘(1− 𝑛𝑆)
𝑘 = 𝛽0 + 𝛽1(1− 𝑛𝑆) + 𝛽2(1− 𝑛𝑆)

2 + ..., (1)

where (1 − 𝑛𝑆) is the parameter of expansion and 𝛽𝑘 are the constant coefficients, which depends on

the type of inflationary model.

Also, the zeroth order term in this expansion 𝑟(0) = 𝛽0 = 0 from condition 𝑟(𝑛𝑆 = 1) = 0

corresponding to the flat Harrison-Zel’dovich spectrum [1,2], thus, we can rewrite expression (1) in the

following form

𝑟 =

∞∑︁
𝑘=1

𝛽𝑘(1− 𝑛𝑆)
𝑘 = 𝛽1(1− 𝑛𝑆) + 𝛽2(1− 𝑛𝑆)

2 + ... (2)

Thus, we can consider the classification of cosmological models according to non-zero orders of

expansion of dependence 𝑟 = 𝑟(1 − 𝑛𝑆) as follows: first-order models for 𝛽1 ̸= 0, second-order models

for 𝛽1 = 0 and 𝛽2 ̸= 0 etc.

It should be noted that if the cosmological model satisfies observational constraints in a certain

order of expansion (2), then the remaining orders of expansion can be neglected, since they make a

smaller contribution to the value of the tensor-scalar ratio.

2. Cosmological models based on GR and TEGR

Cosmological models based on GR in the system of units 8𝜋𝐺 = 𝑚2
𝑝 = 𝑐 = 1 correspond to the

following action [1, 2]

𝑆 =

∫︁
𝑑4𝑥

√
−𝑔
[︂
1

2
𝑅− 1

2
𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑− 𝑉 (𝜑)

]︂
, (3)

where 𝑅 is the scalar curvature, 𝜑 is a scalar field, 𝑉 (𝜑) is the potential of a scalar field and 𝑔𝜇𝜈 is a

metric tensor of a space-time.

The action for cosmological models based on the scalar-torsion gravity can be written as follows [5–7]

𝑆 =

∫︁
𝑑4𝑥 𝑒

[︂
−1

2
𝑇 − 1

2
𝜔(𝜑)𝜕𝜇𝜑𝜕

𝜇𝜑− 𝑉 (𝜑)

]︂
, (4)

where 𝑇 is the torsion scalar and 𝑒 = det (𝑒𝐴𝜇) =
√
−𝑔, 𝑒𝐴𝜇 is the tetrad field.

For the case of the flat Friedmann-Robertson-Walker (FRW) metric for GR

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 𝛿𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 , (5)
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where 𝑎 = 𝑎(𝑡) is the scale factor, and 𝑡 is the cosmic time, and for corresponding diagonal tetrad field

𝑒𝐴𝜇 = diag(1, 𝑎, 𝑎, 𝑎) for TEGR we have the same cosmological dynamic equations [6, 7]

3𝐻2 =
1

2
𝜑̇2 + 𝑉 (𝜑), (6)

−3𝐻2 − 2𝐻̇ =
1

2
𝜑̇2 − 𝑉 (𝜑), (7)

𝜑+ 3𝐻𝜑̇+ 𝑉 ′
𝜑 = 0, (8)

where 𝑉 ′
𝜑 = 𝑑𝑉/𝑑𝜑, 𝐻 = 𝐻(𝑡) is the Hubble parameter.

Also, we have the same parameters of cosmological perturbations for the case of GR and TEGR

𝑛𝑆 − 1 = −4𝜖+ 2𝛿, 𝑟 = 16𝜖, (9)

where the slow-roll parameters are defined as

𝜖 = − 𝐻̇

𝐻2
≪ 1, 𝛿 = − 𝐻̈

2𝐻𝐻̇
≪ 1. (10)

for any inflationary model [6, 7].

We also note that the definition of the Hubble parameter 𝐻 = 𝐻(𝑡) corresponds to the definition

of a specific dependence 𝜖 = 𝜖(𝛿) in explicit or parametric form.

2.1. First-order cosmological models

Now, we consider the first-order models, which can be define by the linear dependence

𝜖 = 𝑚𝛿 +𝒪
(︁
𝛿2, 𝛿3, ...𝜖2, 𝜖3, ..., 𝜖̇, 𝜖, ..., 𝛿̇, 𝛿, ...

)︁
≃ 𝑚𝛿, (11)

where 𝑚 is a some constant.

This dependence can be determined up to higher order terms, which can be neglected due to the

quasi-de Sitter character of the early universe’s accelerated expansion [1, 2].

From definition of the slow-roll parameters (10) and dependence (11) we obtain

𝐻(𝑡) ≃
[︂(︂

1− 2

𝑚

)︂
(𝑐1𝑡+ 𝑐2)

]︂ 𝑚
𝑚−2

, (12)

where from the condition 𝐻̇ < 0 we get 0 < 𝑚 < 2.

From expressions (9) and (12) we obtain linear dependence

𝑟 =
8𝑚

2𝑚− 1
(1− 𝑛𝑆) > 0.16, (13)

for the case 0 < 𝑚 < 2, and, therefore, the first-order cosmological models based on GR and TEGR

don’t correspond to the observational constraint 𝑟 < 0.032 under condition 𝐻̇ < 0.

If condition 𝐻̇ < 0 is violated, for the case 𝑚 < −0.2, condition 𝑟 < 0.032 can be satisfied.

However, for 𝐻̇ > 0, the relative acceleration of the expansion of the universe

𝑄 =
𝑎̈

𝑎
= 𝐻2 + 𝐻̇, (14)

can only be positive 𝑄 > 0, that corresponds to absence of exit from inflation, which can be defined by

condition 𝑄 < 0 after inflationary stage.

Thus, first-order cosmological models based on GR and TEGR cannot be verified by observational

constraints, therefore, in expansion (2) for the case GR and TEGR we have 𝛽1 = 0 for actual cosmological

models.
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2.2. Second-order cosmological models

For the second-order models we have the quadratic dependence

𝜖 ≃ 𝑚𝛿2, (15)

with corresponding Hubble parameter

𝐻(𝑡) ≃ 𝜆+
𝑚

𝑡
, (16)

where condition 𝐻̇ < 0 is satisfied for 𝑚 > 0.

From expressions (9) and (16) we obtain quadratic dependence

𝑟 = 4𝑚(1− 𝑛𝑆)
2 > 0, (17)

and observational constraints 𝑟 < 0.032, 𝑛𝑆 = 0.9663± 0.0041 are satisfied for 0 < 𝑚 < 9.

We also note that such a model can satisfy any future observational constraints on the value of the

tensor-to-scalar ratio, which, in this case, are reduced to a refinement of the value of parameter 𝑚.

The cosmological model based on the Hubble parameter (16) or exponential power-law inflation

based on Einstein gravity and beyond was discussed in detail in [10].

In this work it was shown that exponential power-law model implies different stages: 𝑄1 > 0

(inflation), 𝑄2,3 < 0 (exit from inflation with transition to the radiation domination and matter

domination eras) and 𝑄4 > 0 (𝑄4 ≪ 𝑄1) (second inflation).

Also, in [10] it was shown, that for the special case 𝑚 = 3/4, exponential-power inflation is

conformally equivalent to the Starobinsky model 𝑓(𝑅) = 𝑅+ 𝛼𝑅2, which implies the following relation

𝑟 = 3(1− 𝑛𝑆)
2 [11, 12].

Thus, second-order models based on GR and TEGR, in contrast to first-order models, correspond

to observational constraints and can be considered as relevant ones to describe the evolution of the

universe.

3. Cosmological models based on the scalar-torsion gravity

The action for cosmological models based on the scalar-torsion gravity can be written as follows [13]

𝑆 =

∫︁
𝑑4𝑥 𝑒 [𝑓(𝑇, 𝜑) + 𝜔(𝜑)𝑋] , (18)

where 𝑓 = 𝑓(𝑇, 𝜑) is an arbitrary differentiable function of a scalar field 𝜑 and torsion scalar 𝑇 .

For the diagonal tetrad field 𝑒𝐴𝜇 = diag(1, 𝑎, 𝑎, 𝑎) corresponding to the flat Friedmann-Robertson-

Walker (FRW) metric one has following dynamic equations

𝑓(𝑇, 𝜑)− 1

2
𝜔(𝜑)𝜑̇2 − 2𝑇𝑓,𝑇 = 0, (19)

𝑓(𝑇, 𝜑) +
1

2
𝜔(𝜑)𝜑̇2 − 2𝑇𝑓,𝑇 − 4

𝑑

𝑑𝑡
(𝐻𝑓,𝑇 ) = 0, (20)

𝜔(𝜑)𝜑+ 3𝜔(𝜑)𝐻𝜑̇+
1

2

𝑑𝜔(𝜑)

𝑑𝜑
𝜑̇2 − 𝑓,𝜑 = 0, (21)

with additional relation 𝑇 = 6𝐻2.

Exact solutions of the system of equations (19)–(21) for an arbitrary Hubble parameter were

considered in [14,15], and can be written as follows

𝑓(𝑇, 𝜑) = −𝐹 (𝜑)
√
𝑇 − 𝑉 (𝜑) = 𝑓(𝑇, 𝜑)𝑆𝑇𝐺 − 𝑉 (𝜑), (22)

𝜔(𝜑) = −1

3

𝐹 2
,𝜑

𝑉 (𝜑)
, 𝜑̇ =

√
6𝑉 (𝜑)

𝐹,𝜑
, (23)
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where 𝐹 = 𝐹 (𝜑) is the coupling function, and the scalar-torsion gravity is defined by the function

𝑓(𝑇, 𝜑)𝑆𝑇𝐺 = −𝐹 (𝜑)
√
𝑇 . (24)

Based on the general analysis of cosmological perturbations for the models based on the scalar-

torsion gravity [13] we can define the spectral index of scalar perturbations and tensor-to-scalar ratio

corresponding to solutions (22)–(23) as follows

𝑛𝑆 − 1 = 2
𝐻̇

𝐻2
+ 2

𝐹̇

𝐻𝐹
− 𝐹

𝐻𝐹̇
, (25)

𝑟 = −16
𝐹̇

𝐻𝐹
. (26)

Thus, for the following relation between the Hubble parameter and coupling function

𝐻(𝑡) ∼ 𝐹̇ 1/2𝐹𝑚−1, (27)

from expressions (25)–(26) we obtain the linear dependence

𝑟 =
8

𝑚
(1− 𝑛𝑆) > 0, (28)

for an arbitrary cosmological dynamics, where 𝛽1 = 8/𝑚 and 𝑚 > 0 is the positive constant.

Thus, for𝑚 > 7.5 these models satisfy observational constraints 𝑟 < 0.032 and 𝑛𝑆 = 0.9663±0.0041.

It should be noted, that these models can satisfy any future observational constraints on the value

of the tensor-to-scalar ratio due to a refinement of the value of parameter 𝑚 similar as for the case

second-order models based on GR and TEGR.

Also, due to the fact that this result is valid for an arbitrary type of cosmological dynamics, such

models can correctly describe inflation, exit from inflation, and the second accelerated expansion of the

universe.

Consequently, in the case of scalar-torsion gravity, in contrast to GR and TEGR, first-order

cosmological models comply with observational constraints.

Conclusion

In this paper, we considered a method for classifying cosmological models according to the order

of expansion of dependence 𝑟 = 𝑟(1 − 𝑛𝑆) for arbitrary models built on the basis of arbitrary theories

of gravity.

It was shown that for the case of Einstein gravity and its teleparallel equivalent, first-order models

𝑟 ∼ (1 − 𝑛𝑆) don’t satisfy observational constraints, however second-order models 𝑟 ∼ (1 − 𝑛𝑆)
2 are

verifiable ones.

This means that if, when analyzing arbitrary cosmological models based on GR or TEGR, the

expansion of dependence 𝑟 = 𝑟(1−𝑛𝑆) for this model contains a non-zero linear term 𝑟 ∼ (1−𝑛𝑆), this

cosmological model is unverifiable due to the observational constraints.

In contrast to cosmological models based on GR and TEGR, models based on scalar-torsion gravity

correspond to observational constraints already at the first order 𝑟 ∼ (1− 𝑛𝑆).

Thus, scalar-torsional gravity corresponds to a wider class of verifiable cosmological models than

Einstein gravity or its teleparallel equivalent.
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