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COSMOLOGICAL MODELS BASED ON SCALAR-TORSION GRAVITY "
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¢ Bauman Moscow State Technical University, Moscow, 105005, Russia.

Cosmological models based on teleparallel gravity with a non-minimal coupling between the scalar field and
torsion (scalar-torsion gravity) are considered in the context of their comparison with the case of Einstein gravity
(GR) and the teleparallel equivalent of general relativity (TEGR). A classification of cosmological inflationary
models is proposed based on the type of dependence of the tensor-scalar ratio on the spectral index of scalar
perturbations. The difference between inflationary models based on scalar-torsion gravity and models based on
GR and TEGR is shown in the context of their verification using observational data based on this dependence.
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KOCMOJIOTUYECKUE MO/IEJIXI HA OCHOBE CKAJISIPHO-TOPCUOHHOM
TPABUTAIIN
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PaccMmaTpuBalOTCs KOCMOJIOTMYECKHE MOJEIN Ha OCHOBE TeJlelapajljie/IbHOM IPAaBATAMN C HEMUHHMAJIbHOM
CBA3BIO CKAJ/APHONO IO M KpydeHus (CKAJIAPHO-TOPCUOHHAA IDABUTALMSA) B KOHTEKCTE UX CPABHEHUS
co cayuaem rpasutanmn Ofamreiina (OTO) w Terenapa/ebHBIM 9KBUBAJEHTOM 00mell Teopuum
orrocurepaocTr (TEGR). Ilpemmoxkena kpaccmbukanma MOmeseil KOCMOJOTHYECKOW WHQIANIUA TIO THITY
3aBUCHMOCTH T€H30PHO-CKAJISPHOTO OTHOIIEHUs! OT CIHEKTPAJIbHOTO MHIEKCA CKAISPHBIX Bo3MyIneHuit. Ilokazano
oryinyrie HHQJIAIMOHHBIX MOZe/eil Ha OCHOBe CKaJIIPHO-TOPCHOHHOI rpaBuTanmu or Mozeseil zHa ocaoBe OTO u
TEGR B koHTEKCTE MX BepudrKanyuu 110 HAOIIOAATEIbHBIM JaHHBIM Ha OCHOBE TOH 3aBHCHCMOCTH.
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Introduction

Within the framework of constructing current cosmological models, the stage of cosmological
inflation is important, since during this stage various physical processes occur that determine the further
evolution of the universe [1,2].

A different gravity theories are used to construct models of cosmological inflation [3], including
Einstein gravity (GR) [1,2] and the teleparallel equivalent of general relativity (TERG) [4] and
teleparallel gravity with a non-minimal coupling between the scalar field and torsion (scalar-torsion
gravity or STG) [5-7] as well.

In addition to the presence of the inflationary stage of accelerated expansion of the early universe,
the exit from inflation and the stage of the second accelerated expansion of the universe at the present
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era, verifiable cosmological models must comply with observational constraints on the values of the
parameters of cosmological perturbations [1,2].

The main characteristics for verifying inflation models using observational constraints on the values
of the parameters of cosmological perturbations based on measurements of anisotropy and polarization
of CMB are the tensor-scalar ratio » < 0.032 and the spectral index of scalar perturbations ng =
0.9663 + 0.0041 [8,9].

Analysis of the evolution of cosmological perturbations for various inflationary models based on
various theories of gravity leads to different dependencies r = r(1 — ng), the type of which may or may
not correspond to observational constraints.

This paper examines the classification of cosmological models according to type r = r(1 — ng)
dependence for arbitrary models. Cosmological models based on GR and TEGR are also compared with
models based on the scalar-torsion gravity.

1. Classification of cosmological models based on dependence r = r(1 — ng)

Since the value of the spectral index of scalar perturbations is ng ~ 0.97 and 1—ng ~ 0.03 < 1[8,9],
we can write the dependence r = r(1 — ng) as follows

oo
r=> Bl —ng)* =Bo+ fi(l —ns) + fa(1—ng)* + .., (1)
k=0
where (1 — ng) is the parameter of expansion and i are the constant coefficients, which depends on
the type of inflationary model.
Also, the zeroth order term in this expansion r(0) = Sy = 0 from condition r(ng = 1) = 0
corresponding to the flat Harrison-Zel’dovich spectrum [1,2], thus, we can rewrite expression (1) in the
following form

oo
r=> Br(l—ns)* =pi(1 —ng)+ fa(1 - ng)” + ... (2)
k=1
Thus, we can consider the classification of cosmological models according to non-zero orders of
expansion of dependence r = r(1 — ng) as follows: first-order models for 81 # 0, second-order models
for 51 = 0 and B3 # 0 etc.
It should be noted that if the cosmological model satisfies observational constraints in a certain
order of expansion (2), then the remaining orders of expansion can be neglected, since they make a
smaller contribution to the value of the tensor-scalar ratio.

2. Cosmological models based on GR and TEGR

Cosmological models based on GR in the system of units 87G = mi = ¢ = 1 correspond to the

following action [1,2]
S = /d4x\/jg BR - %gﬂ”auqsayaﬁ - V(¢>)] : (3)

where R is the scalar curvature, ¢ is a scalar field, V' (¢) is the potential of a scalar field and g"” is a
metric tensor of a space-time.
The action for cosmological models based on the scalar-torsion gravity can be written as follows [5-7]

5= [atee |57~ Je@0.00 - v(0)]. ()

where T is the torsion scalar and e = det (eA#) =+/—9, e“h is the tetrad field.
For the case of the flat Friedmann-Robertson-Walker (FRW) metric for GR

ds? = —dt® + a® §;;dx"dx? | (5)
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where a = a(t) is the scale factor, and ¢ is the cosmic time, and for corresponding diagonal tetrad field
eA# = diag(1, a,a,a) for TEGR we have the same cosmological dynamic equations [6,7]

3H? = %& LV (9), (6)
~3H? ~9H = L - V(9), (7)
¢+3Hp+V,=0, (8)

where V; = dV/d¢, H = H(t) is the Hubble parameter.

Also, we have the same parameters of cosmological perturbations for the case of GR and TEGR
ng —1=—4e+2§, r = 16¢, 9)

where the slow-roll parameters are defined as

H <1 6 H <1 (10)
€= ——= 3 = .
H? 2HH

for any inflationary model [6, 7].
We also note that the definition of the Hubble parameter H = H(t) corresponds to the definition
of a specific dependence € = ¢(d) in explicit or parametric form.

2.1. First-order cosmological models
Now, we consider the first-order models, which can be define by the linear dependence
c=mé+0 (52,53, T I ) ) ~ md, (11)

where m is a some constant.

This dependence can be determined up to higher order terms, which can be neglected due to the
quasi-de Sitter character of the early universe’s accelerated expansion [1,2].

From definition of the slow-roll parameters (10) and dependence (11) we obtain

2 m—2
H(t) ~ [(1 — ) (c1t + 02)] , (12)
m
where from the condition H < 0 we get 0 < m < 2.

From expressions (9) and (12) we obtain linear dependence

8m
T =
2m —1

(1—ns) > 0.16, (13)

for the case 0 < m < 2, and, therefore, the first-order cosmological models based on GR and TEGR
don’t correspond to the observational constraint r < 0.032 under condition H < 0.
If condition H < 0 is violated, for the case m < —0.2, condition 7 < 0.032 can be satisfied.

However, for H > 0, the relative acceleration of the expansion of the universe
a 9
Q=-=H"+H, (14)
a

can only be positive () > 0, that corresponds to absence of exit from inflation, which can be defined by
condition @ < 0 after inflationary stage.

Thus, first-order cosmological models based on GR and TEGR cannot be verified by observational
constraints, therefore, in expansion (2) for the case GR and TEGR we have 8; = 0 for actual cosmological
models.



Cosmological models based on scalar-torsion gravity 107

2.2. Second-order cosmological models
For the second-order models we have the quadratic dependence
€ ~ md?, (15)

with corresponding Hubble parameter

Ht)~ A+ 2, (16)

m
t
where condition H < 0 is satisfied for m > 0.

From expressions (9) and (16) we obtain quadratic dependence

r=4m(1—ng)? >0, (17)

and observational constraints r < 0.032, ng = 0.9663 £ 0.0041 are satisfied for 0 < m < 9.

We also note that such a model can satisfy any future observational constraints on the value of the
tensor-to-scalar ratio, which, in this case, are reduced to a refinement of the value of parameter m.

The cosmological model based on the Hubble parameter (16) or exponential power-law inflation
based on Einstein gravity and beyond was discussed in detail in [10].

In this work it was shown that exponential power-law model implies different stages: Q1 > 0
(inflation), Q23 < 0 (exit from inflation with transition to the radiation domination and matter
domination eras) and Q4 > 0 (Q4 < Q1) (second inflation).

Also, in [10] it was shown, that for the special case m = 3/4, exponential-power inflation is
conformally equivalent to the Starobinsky model f(R) = R+ aR?, which implies the following relation
r=3(1—ng)? [11,12].

Thus, second-order models based on GR and TEGR, in contrast to first-order models, correspond
to observational constraints and can be considered as relevant ones to describe the evolution of the

universe.
3. Cosmological models based on the scalar-torsion gravity

The action for cosmological models based on the scalar-torsion gravity can be written as follows [13]

5= / dize [f(T,6) +w($)X], (18)

where f = f(T, ¢) is an arbitrary differentiable function of a scalar field ¢ and torsion scalar T.
For the diagonal tetrad field eA# = diag(1, a, a,a) corresponding to the flat Friedmann-Robertson-
Walker (FRW) metric one has following dynamic equations

F(T,6) ~ Jw(@)d* 2T f 7 =0, (19)
F(T,6) + J(&)d 2T fr — 4% (H ) = 0 (20)
w(0)5 +30@)H+ 3 g g, —0, (1)

with additional relation 7' = 6H2.
Exact solutions of the system of equations (19)-(21) for an arbitrary Hubble parameter were
considered in [14,15], and can be written as follows

F(T.¢) = —F(o)VT -V (¢) = f(T,d)src — V(9), (22)

_LE, L ViV(9)
W(Qs)**gma ¢*T, (23)
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where F' = F(¢) is the coupling function, and the scalar-torsion gravity is defined by the function
F(T,¢)src = —F()VT. (24)

Based on the general analysis of cosmological perturbations for the models based on the scalar-
torsion gravity [13] we can define the spectral index of scalar perturbations and tensor-to-scalar ratio
corresponding to solutions (22)—(23) as follows

—-1=2—=42— - — 2
ns 2 + Or HE ) ( 5)
F
=—-16——. 26
Thus, for the following relation between the Hubble parameter and coupling function
H(t) ~ FY2Fm=1, (27)
from expressions (25)—(26) we obtain the linear dependence
r—é(l—n)>0 (28)
= m S ’

for an arbitrary cosmological dynamics, where 81 = 8/m and m > 0 is the positive constant.

Thus, for m > 7.5 these models satisfy observational constraints » < 0.032 and ng = 0.9663+0.0041.

It should be noted, that these models can satisfy any future observational constraints on the value
of the tensor-to-scalar ratio due to a refinement of the value of parameter m similar as for the case
second-order models based on GR and TEGR.

Also, due to the fact that this result is valid for an arbitrary type of cosmological dynamics, such
models can correctly describe inflation, exit from inflation, and the second accelerated expansion of the
universe.

Consequently, in the case of scalar-torsion gravity, in contrast to GR and TEGR, first-order
cosmological models comply with observational constraints.

Conclusion

In this paper, we considered a method for classifying cosmological models according to the order
of expansion of dependence r = r(1 — ng) for arbitrary models built on the basis of arbitrary theories
of gravity.

It was shown that for the case of Einstein gravity and its teleparallel equivalent, first-order models
r ~ (1 —ng) don’t satisfy observational constraints, however second-order models r ~ (1 — ng)? are
verifiable ones.

This means that if, when analyzing arbitrary cosmological models based on GR or TEGR, the
expansion of dependence r = (1 —ng) for this model contains a non-zero linear term r ~ (1 —ng), this
cosmological model is unverifiable due to the observational constraints.

In contrast to cosmological models based on GR and TEGR, models based on scalar-torsion gravity
correspond to observational constraints already at the first order r ~ (1 — ng).

Thus, scalar-torsional gravity corresponds to a wider class of verifiable cosmological models than
Einstein gravity or its teleparallel equivalent.
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