УДК 530.12; 530.51

© Баранов А. М., Савельев Е. В., 2024

ЭВОЛЮЦИЯ ОТКРЫТОЙ ВСЕЛЕННОЙ В ПЯТИМЕРИИ КАК ЗАДАЧА О ДВИЖЕНИИ ЧАСТИЦЫ В СИЛОВОМ ПОЛЕ

Баранов А. М. a,b,1, Савельев Е. В. c,2

- a ФГБОУ ВПО Красноярский государственный педагогический университет им. В.П. Астафьева (КГПУ), г. Красноярск, 660049, Россия
- b $\Phi \Gamma E O Y B O$ Сибирский государственный университет им. акад. М.Ф. Решетнева (Сиб ΓY),
- г. Красноярск, 660037, Россия
- ^с ООО "ПРОФИЛЬ 2C", Москва, 123007, Россия

Продемонстрировано сведение проблемы моделирования эволюции открытой Вселенной для конформноплоской метрики пятимерного пространства-времени в форме Фока к эквивалентной ей задаче о механическом движении частицы единичной массы в некотором «силовом поле». При введении «механических» силовых потенциалов в пятимерном пространстве-времени получены точные космологические аналоги открытых 4D моделей Вселенной, начиная с решения Фридмана, а также моделей, заполненных материей и излучением в приближении идеальной жидкости.

Ключевые слова: открытые космологические модели, «механический» подход к конструированию космологических моделей, космологическая постоянная.

EVOLUTION OF THE OPEN UNIVERSE IN THE FIFTH DIMENSION AS A TASK ON A PARTICLE MOVEMENT IN A FORCE FIELD

Baranov A. M. a,b,1, Saveljev E. V. c,2

- ^a Krasnoyarsk State Pedagogical University named after V.P. Astafyev, Krasnoyarsk, 60049, Russia
- ^b Siberian State University named after M.F. Reshetnev, 660037, Krasnoyarsk, Russian
- ^c LLC "PROFILL 2S", Moscow, 123007, Russia

The reduction of modeling the evolution problem of the open Universe is demonstrated. The cosmological model is discribed by a conformally flat metric of a five-dimensional space-time in Fock's form. The discription of such model is reduced to an equivalent task of the mechanical motion of a unit mass particle in a some "force field". Exact cosmological five-dimensional analogs 4D of the Universe's open models are obtained by introducing mechanical force potentials in five-dimensional space-time. There are the Friedman model and as well as cosmological models filled with matter and radiation in the approximation of the perfect fluid.

Keywords: the open universe models, a "mechanical" approach to the construction of cosmological models, the cosmological constant.

PACS: 04.20.-q; 98.80.Jk

DOI: 10.17238/issn2226-8812.2024.1.17-21

Введение

Проблема получения точных открытых космологических моделей без учета λ -члена с использованием 4D метрики, конформной метрике Минковского (подход Фока [1]),

¹E-mail: alex m bar@mail.ru

²E-mail: profill07@mail.ru

$$g_{ik} = \exp(2\sigma(S)) \,\,\eta_{ik} \tag{1}$$

и «механической» аналогии рассмотрена в [2, 3]. Здесь использовано i,k=0,1,2,3; $\eta_{ik}=diag(1,-1,-1,-1);$ $\sigma=\sigma(S),$ $S^2=\eta_{ik}x^ix^k.$

В качестве источника взят тензор энергии-импульса (ТЭИ) в приближении идеальной жид-кости

$$T_{ik} = \varepsilon \, u_i u_k + p \, b_{ik},\tag{2}$$

где ε - плотность энергии; p - давление; $u_i = \exp(\sigma) \, S_{,i} = \exp(\sigma) \, b_i$; $b_{ik} = u_i u_k - g_{ik}$ – проектор на 3-пространство (3D метрика); скорость света и ньютоновская гравитационная постоянные выбраны равными единице.

Основное, что было предложено в [2,3] — это сведение одного из уравнений Эйнштейна,

$$R_{ik} - \frac{1}{2}g_{ik}R = -\varkappa T_{ik},\tag{3}$$

к уравнению, аналогичному по записи 2-му закону Ньютона

$$\frac{d^2y}{d\chi^2} = F(p, y, \chi) = -\frac{\varkappa p}{4\chi^4} y^5,\tag{4}$$

где $F = F(p, y, \chi)$ – аналог механической силы, $2\ln(y) = \sigma$, $\chi = 1/S$.

1. Если положить давление, равным нулю (некогерентная пыль), p=0, то с «механической» точки зрения получаем инерциальное движение, а с точки зрения космологической модели приходим к открытой Вселенной Фридмана (в записи Фока) с

$$y = 1 - A\chi = 1 - \frac{A}{S} \tag{5}$$

или с конформным множителем

$$\exp(2\sigma) = y^4 = \left(1 - \frac{A}{S}\right)^4. \tag{6}$$

«Уравнение движения» (4) в терминах переменной S для случая p=0 фактически есть радиальная часть уравнения Лапласа для 3-мерного евклидового пространства, то есть функция y=(1-A/S) – гармоническая функция.

2. Если теперь в наших «механических» аналогах ограничиться силовыми потенциальными полями U(y), для которых F=-dU/dy, и рассмотреть аналог механического осциллятора с силой Гука, то есть взять $U=B^2y^2/2$, где B^2 – аналог коэффициента жесткости, то получаем открытую космологическую модель с излучением (как обобщение открытой модели Фридмана) и с конформным множителем

$$\exp(2\sigma) = \left(1 - \frac{A^2}{B^2}\right)^2 \cos^4(B\chi + \alpha_0) = \frac{\cos^4(B\chi + \alpha_0)}{\cos^4(\alpha_0)},\tag{7}$$

согласованным с решением Фридмана и асимптотическим поведением на бесконечности $(S \to \infty)$. При этом в асимптотике реализуется реликтовое космологическое излучение с уравнением состояния $p = \varepsilon/3$.

3. Если в исходных уравнениях Эйнштейна до введения функции y и переменной χ выбрать состояние физического вакуума $p=-\varepsilon$, то решение, получающее в этом случае, есть решение де Ситтера:

$$\exp(2\sigma) = \frac{1}{(1 - \hat{A}S^2)^2}.$$
 (8)

1. Введение пятимерия

При введении пятимерного пространства-времени (с одним временноподобным направлением) будем считать (как и в 4-мерии) его изотропным и однородным. Метрику возьмем в форме Фока:

$$g_{\alpha\beta} = \exp(2\sigma(S)) \,\eta_{\alpha\beta}; \quad S^2 = \eta_{\alpha\beta} x^{\alpha} x^{\beta},$$
 (9)

где α , $\beta = 0, 1, 2, 3, 5$.

Тензор энергии-импульса формально обобщается на пятимерие путем увеличения числа значений индексов (структура ТЭИ остается неизменной).

Уравнения Эйнштейна в этом случае перепишутся в виде (штрихом обозначена производная по S)

$$12\left(\frac{\sigma'}{S} + \frac{(\sigma')^2}{2}\right) = \varkappa \varepsilon \exp(2\sigma); \tag{10}$$

$$3(\sigma'' + \frac{3}{S}\sigma' + (\sigma')^2) = -\varkappa p \exp(2\sigma). \tag{11}$$

2. Аналог модели де Ситтера физического вакуума

Прежде всего рассмотрим состояние «физического вакуума», полагая $p=-\varepsilon$. Тогда приведенная выше система уравнений имеет своим решением конформный множитель

$$\exp(2\sigma) = \frac{1}{(1 - \hat{A}S^2)^2}.$$
 (12)

Другими словами, получаем функцию, структурно совпадающую с выше приведенным решением для модели де Ситтера в четырехмерии.

3. Пятимерный аналог открытой модели Фридмана

Идя далее по пути обобщения и использования аналогий, введем замену $\sigma = \ln(Y)$ и новую переменную $x = 1/S^2$. Тогда одно из «уравнений Эйнштейна» сведется к «уравнению движения» (по аналогии как это было сделано в 4-мерии)

$$\frac{d^2Y}{dx^2} = F(p, Y, x) = -\frac{\kappa p}{3x^3}Y^3 = -\frac{dU}{dY}.$$
 (13)

В случае отсутствия давления («инерциальное движение»), получаем аналог решения Фридмана для открытой космологической модели в пятимерии

$$Y = 1 - \widehat{A}x = 1 - \frac{\widehat{A}}{S^2} \tag{14}$$

или конформный множитель запишется как

$$\exp(2\sigma) = Y^2 = \left(1 - \frac{\widehat{A}}{S^2}\right)^2. \tag{15}$$

Необходимо отметить, что «уравнение движения» для свободной частицы единичной массы представляет собой уравнение Лапласа для 4-мерного евклидового «сферически симметричного» пространства с радиусом S. Другими словами, функция Y для «решения Фридмана» есть гармоническая функция в 4-мерном евклидовом пространстве.

4. Аналог открытой космологической модели с излучением

Продолжая аналогию, введем потенциал «гармонического осциллятора» $U=\frac{C^2Y^2}{2}$, где C^2 – к аналог коэффициента жесткости. В результате имеем открытую космологическую модель с конформным множителем

$$\exp(2\sigma) = \left(1 + \frac{\widehat{A}^2}{C^2}\right)\cos^2(Cx + \beta_0) = \frac{\cos^2(Cx + \beta_0)}{\cos^2(\beta_0)},\tag{16}$$

согласованным с «решением Фридмана» в 5-мерии и асимптотическим поведением на бесконечности ($S \to \infty$).

Заключение

В данной статье на основе более ранних работ продемонстрировано сведение проблемы моделирования эволюции открытой Вселенной в пятимерии (для конформно-плоской метрики пятимерного пространства-времени в форме Фока) к эквивалентной ей задаче о механическом движении частицы единичной массы в некотором «силовом поле». При введении «механических» силовых потенциалов в пятимерном пространстве-времени получены точные космологические аналоги открытых 4D моделей Вселенной, начиная с решения Фридмана, а также моделей, заполненных материей и излучением в приближении идеальной жидкости. Кроме того, показано следующее.

- 1. Произведено обобщение открытых 4D космологических моделей с метрикой в форме Фока на пятимерие с сохранением однородности и изотропности пространства-времени с использованием «механического подхода» и с тензором энергии-импульса в приближении «идеальной жидкости».
- 2. Конформные множители многомерных аналогов «де Ситтера» (в пространстве-времени произвольной размерности $m \geq 4$ с одним временноподобным направлением) не зависят от размерности этого пространства-времени:

$$\exp(2\sigma_m) = \frac{1}{(1 - \hat{A}_{(m-3)} S^2)^2}.$$

3. В предложенном подходе обобщения открытой космологической модели Фридмана на пространства-времена размерности $m \geq 4$ (с одним временноподобным направлением) имеют конформный множитель вида

$$\exp(2\sigma_{(m)}) = Y^{\frac{4}{(m-3)}}_{(m-3)} = \left(1 - \frac{A_{(m-3)}}{S^{m-3}}\right)^{\frac{4}{(m-3)}},$$

где функция $Y_{(m-3)} = 1 - \frac{A_{(m-3)}}{S^{m-3}}$ — гармоническая функция, являющая решением уравнения Лапласа в евклидовом сферически симметричном пространстве размерности m-1.

Список литературы

- 1. Фок В.А. Теория пространства, времени и тяготения. М.: ГИЗФМЛ, 1961.
- 2. Баранов А.М., Савельев Е.В. Точные решения для конформно-плоской вселенной. І. Эволюция модели как задача о движении частицы в силовом поле. *Пространство, время и фундаментальные взаимодействия.* 2014. № 1. С. 37–46.
- 3. Baranov A.M., Saveljev E.V. Exact solutions of the conformally flat Universe. I. The evolution of model as the problem about a particle movement in a force field. *Space, Time and Fundamental Interactions*, 2020, no. 3, pp. 27–36.

References

- 1. Fock V.A. The Theory of Space, Time and Gravitation. New York: Pergamon Press, 1964, 460 p.
- 2. Baranov A.M., Saveljev E.V. Exact solutions of the conformally flat Universe. I. The evolution of model as the problem about a particle movement in a force field. *Space, Time and Fundamental Interactions*, 2014, no. 1, pp. 37–46. (in Russian)
- 3. Baranov A.M., Saveljev E.V. Exact solutions of the conformally flat Universe. I. The evolution of model as the problem about a particle movement in a force field. *Space, Time and Fundamental Interactions*. 2020, no. 3, pp. 27–36.

Авторы

Баранов Александр Михайлович, д.ф.-м.н., профессор, кафедра физики и методики обучения физике, ФГБОУ ВПО Красноярский государственный педагогический университет им. В.П. Астафьева (КГПУ), ул. Ады Лебедевой, 89, г. Красноярск, 660049, Россия.

E-mail: alex m bar@mail.ru

Савельев Евгений Викторович, к.ф.-м.н., доцент, ООО "ПРОФИЛЬ - 2C", Хорошевское шоссе, 78, Москва, 123007, Россия.

E-mail: profill07@mail.ru

Просьба ссылаться на эту статью следующим образом:

Баранов А. М., Савельев Е. В. Эволюция открытой Вселенной в пятимерии как задача о движении частицы в силовом поле. *Пространство*, *время и фундаментальные взаимодействия*. 2024. № 1. С. 17–21.

Authors

Baranov Alexandre Mikhailovich, Doctor of Physics and Mathematics, Professor, Department "Physics and Methods of Physics Training", Krasnoyarsk State Pedagogical University named after V.P. Astafyev, 89 Ada Lebedeva St., Krasnoyarsk, 660049, Russia.

E-mail: alex m bar@mail.ru

Saveljev Evgeniy Viktorovich, Candidate of Phys.-Mat. Sci, Assistent Professor, LLC "PROFILL - 2S", Khoroshevskoe sh., 78, Moscow, 123007, Russia.

E-mail: profill07@mail.ru

Please cite this article in English as:

Baranov A. M., Saveljev E. V. Evolution of the open Universe in the fifth dimension as a task on a particle movement in a force field. *Space, Time and Fundamental Interactions*, 2024, no. 1, pp. 17–21.