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PACCEAHUNE 9JIEKTPOHOB HA YEPBOTOYMHE B BOPHOBCKOM
ITPUBJIN2KEHNN

Tumodees B. H.%1

¢ Cankr-IlerepOyprekuii ToCyJIapCTBEHHBI YHUBEPCUTET TI'PaXKIAHCKON aBHAIUd WMeHH |JIaBHOrO

maprajia apuanuu A.A. Hosukosa, 1. Cankt-Ilerep6ypr, 196210, Poccusi.

OJHUM U3 UHTPUTYIOMIUX THIIOTETUYECKUX OOBEKTOB B (DM3MKE I'PDABUTAIMOHHOIO B3aUMOJIEHCTBUS SIBJISIOTCS
YEepPBOTOYNHBI, KOTOPbIE COEJUHSIIOT JINOO JBE yJaJleHHble 00J1acT OHOM U Toit ke BceesrenHoit, sinbo 1Be pasHble
BcesieHHbIE. /11 TOTO, YTOOBI Y€PBOTOYMHBI OBLIN MPOXOAUMBIMHU, T.€. TTO3BOJISIA IIyTEIIECTBEHHUKY 0OEe30TacHO
WX TE€peceKaTh, YEPBOTOUYMHBI B OOIIEHl TEOPUH OTHOCUTEJHHOCTH JOJIPKHBI OBITH 3aIlOJTHEHBI IK30THIECKOI
Marepueii. B maHHO# pabore IOKa3aHO, YTO HPHU OIPEIEJICHHBIX YCJIOBUIX KOJUYIECTBO YIPYTO PACCETHHBIX
Ha YEepBOTOYMHE DJUINCA- BPOHHUKOBA 3JIEKTPOHOB IIPEBOCXOIUT KOJIUYECTBO IJIEKTPOHOB IAJAIOIIEr0 ITOTOKA.
JlorotHUTEIbHBIE SJIEKTPOHBI MOSIBJIAIOTCS B PE3yJIbTaTe UX IIepexo/ia 9epe3 YePBOTOUNHY C IPOTHBOIIOJIOXKHOMN
CTOPOHBI KaTeHoua. VHbIMEH CJIOBaMu, C MOMOIIBIO MOTOKA 3JIEKTPOHOB, HAIPABJIEHHBIX HA YEPBOTOYNHY, B
Hell CO3/aeTCs OTPHUIATEIbHOE JABJICHUE. DTO MIO3BOJISIET CHEJIaTh BBLIBOJ O TOM, ITO TAKHUM CIIOCOOOM MOXKHO
CTabMIM3UPOBATH YEPBOTOUNHY 0€3 9K30TUIECKON MaTEPUH.

Kmoueswvie crosa: Paccessume snekTponoB, dyuknus ['puna ypasHenus /Iupaka, 4epBOTOYMHA, SK30THIECKAS
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The wormholes which connect either two distant regions of the same Universe or two universes are one of the
intriguing hypothetical objects in the physics of gravitational interaction. For wormholes to be traversable, i.e.,
to allow a traveler to cross them safely, the wormholes must be filled with exotic matter within the framework
of general relativity. In this paper it is shown that under certain conditions the number of electrons elastically
scattered on an Ellis-Bronnikov wormhole exceeds the number of electrons of the incident flux. The additional
electrons appear as a result of their transition through the wormhole from the opposite side of the catenoid. In
other words, a negative pressure is created in the wormhole by means of the flux of electrons directed to the
wormhole. This allows us to conclude that the wormhole can be stabilized without exotic matter in this way.
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Introduction

Since John Wheeler introduced the concept “wormhole” in 1957, wormholes have caused a huge
interest among relativistic researchers, and till now this interest does not decrease. In particular, it is
worth noting the message [1], which states that as of January 19, 2023 the word “wormhole” for all
time occurs in the titles of 1614 articles on the resource ArXiv.org, and for the last 12 months 175
articles have this term in their titles. Over the past decades, scientists have done a lot of work to study
the nature of wormholes, but there are still many unsolved problems. Nevertheless, scientists remain
optimistic and, moreover, researchers are making various efforts to search for astrophysical wormholes
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in the Universe [2]. The main method of wormhole detection is currently gravitational lensing [3,4].
After the Event Horizon Telescope project obtained an image of the shadow of a black hole in the
center of the galaxy M87 [5], the method of wormhole detection by its shadow became relevant [6-8].
Researchers are most interested in traversable wormholes. Such wormholes would allow to travel long
distances without violating the velocity limit. In GR, for wormholes to be traversable, the presence of
exotic matter is required [9-14]. Traversable wormholes that are not filled with an exotic type of matter
are possible only in alternative theories of gravity [15-25]. However, unfortunately, one cannot be sure
in the absolute correctness of any theory of gravitation for our Universe. Therefore, it is impossible to
state definitively that the existence of traversable wormholes requires the presence or absence of exotic
matter. Nevertheless, it is concluded in this work within the framework of GR that by means of a particle
stream directed to the wormhole it is possible to create such a condition under which the wormhole could
remain open without exotic matter. Thus, the following task is set: to find out within the framework
of the Born approximation, what are the properties of the flux of electrons which are scattered on the
Ellis-Bronnikov wormhole.
To solve the task, let us:

. determine the Green’s function for the Dirac equation in the gravitational field;

. convert the Dirac equation to the integral form;

1

2

3. find the scattering amplitude in the Born approximation;

4. calculate the total cross sections for elastic and inelastic scattering;
5

. describe the properties inherent in the character of electron scattering on a wormhole.

A. Green’s function
It is known that the Green’s function G, (x — x/) of the Dirac equation for a free particle
iy Ddu1h —myp =0

satisfies the equation
i’y(“)aaGo (x — x,> - mG, (z — 9:,) =0 (x — x/)

and has the form

N\ 1 Z/?\+m —ip x—zl 4
G, (m—x)— @) et (=g D, (1)

where p = ~(@p,.
Similarly, we can define the Green’s function G (ac — x/) for the Dirac equation in an external
gravitational field

WV —my =0

as a solution of the equation
iV'V,.G (m—x/) —mG (x—m,) zé(m—x/), (2)

where y# = W(Q)eé‘a), ef‘a) is an orthonormal tetrad.

To characterize the gravitational field let us define the operator T by the equality
T (@) [ m b
I'= Y (E(G)v# eo(a)vop,) )

where V,, = 0,4+, is a covariant derivative in a gravitational field; I';, = iv/\'y A;u 18 & spinor connection
in a gravitational field; V, w= Ou+T, 15 eo’(‘a) and I',, are orthonormal tetrad and spinor connection in
curvilinear coordinates in the absence of external gravitational field. In a Cartesian coordinate system
607(1) =0 and 'y, = 0.
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Then equation (2) can be rewritten as
i'y(“)VOHG (m — x/) +il'G (x - x/) —mG (;v — x/) =0 (x — x/) .
This equation can be represented in the integral form

G (x - m/) =G, (m - x/) +i/G (x - x”)f (:C”) G, (fv” - SE/> —g(«")d'", (3)

where g(z) is a determinant of the matrix (g, ). It is possible to verify the validity of (3) by acting on
the left and right parts of the equality (3) with the operator

i’y(”)Vou +il(z) — m.

In the case when the gravitational disturbance is small, it is possible to solve the equation (3) by
applying the method of successive approximations and find the Green’s function in the form of a series:

G (m — :cl> =G, (:c — :v/) +i/ G, (:C — x//)f (x// G, (x// — m/> —g (:E")d4x”+

+42 / G, (ac - :cm>f (acm> G, (:EW - x“) r x//) G, (2" - x/> \/—g (x'”)\/—g ()% d*a" + .

(4)

B. Dirac Integral Equation

The following theorem is valid: Let a gravitational field be given in which the Green’s function
G (x/ — a:) can be expressed as a uniformly convergent series (4). Then at an arbitrary point 2 of
the space-time region bounded by the closed hypersurface ¥ the bispinor describing the motion of an
electron in this field can be represented as

P (ml) = z% G (x/ — x)’y”(a:)w(x)\/—g(x)dSM, (5)

where § ... \/—g(x)dS,, is the integral over the closed three-dimensional hypersurface X.
To prove the theorem let us first prove two auxiliary lemmas:
Lemma 1. The equality is valid:

1 1
Vi = 7V = 37 =0,

where vy, = V7 is the covariant derivative of vy.
Proof. It is known that

AV = —29H.

Let us take the covariant derivative of both sides of this equality

Y VY + A+ v, = 295 (6)
Considering the equality
YA P = 2gMA
let us rewrite (6) in the form
Y (20" = V) + Bt + (264 — AP ) v = —294.

From where
67", — Taw Y — Y M + v = 0.
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Since
MU = <€€La);#7(a)) 7= 7267@)#7((1) = 2%
we get
4yl = V™ = P g = 0.
Q.E.D.

Lemma 2. For the Green’s function G (x/ — ac) the following equality is valid:

106+ (2-2') 70 =G (o ~ ).

Proof. From the equality
A (O 1)+ (0) — ()

for the operators of the form A= 'y(“)AM follows
YO ATH O = 4, (7)
and for the multiplication of operators follows

~~~\ T ~ ~ ~ ~~ o~
() ( n BO) A0 — (0 G+(0)4(0) B+ (0),(0) F+,(0) — GBA. 8)

Let us substitute the series (4) into the expression v(G+ <ac —x/) 7). Given the uniform
convergence of series (4) and using (7) and (8) we obtain

O G+ (m - x/> VO =¢c (x/ - :c) 9)
Here the sign of the argument changes because the sign of the exponent changes at the complex
conjugation (1).
Q.E.D.
Proof of the theorem. Consider 4-vector

Fr=G (x - x) A (@)Y (). (10)
Let us calculate the covariant derivative of this 4-vector
G (x — 2 - N
V. F¥ =0, F" +TH F = gx”)w(x)w(x) +G (x — ) 7&; ) p(a)+
o W) =
_ I _ BV _
+G (a: x ) ~H(x) pr +G (m x ) h (z) ()

= —i (iV,G- "+ G- iy" Vb)) + G (V" =Tyt — 44T, 1.
Here spinor connections have the form

1 — 1
F/L = 17)\’7)\;#7 F,U. = Z’YA;/L’Y)\'

Then given lemma 1 we obtain
V. F'(z) = iy 0§ (a: — .I/) P(z). (11)

Substituting (10) and (11) into Gauss’ formula

/VMF“\/—gd‘la: = ?{Ffa/—gdsu
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we obtain
0 () = =i § 208 ('~ ) (@)(o) g5, (12)

By using lemma 2 it is possible to transform the equation (12) into the following form:
P (ZL‘ ) = —i%G (x - x)’y“(:v)z/}(x)\/—g(x)dsu.

Q.E.D.

The closed 3-surface over which integration is performed (5) consists of infinitely distant timelike 3-
surfaces and spacelike 3-surfaces t = ¢; and t = t/l t < t;) The Green’s function in spacelike directions
decreases to zero at infinity. Therefore, the integrals on timelike 3-surfaces will be equal to zero. Then
given that

YV =gdS, = YV =gn,dS = 24/ =ge[VdS = £V /=gds,

we represent the equation (5) in the form
V(xs) =i | G(xa— 217 (x1)v/—g (x1)d>z4 —i/ G (x2 _— ~ Oy ) —g (! B (13
(@2) =i | Gz =)y (@) V=g (ar) , (72 = 21)7 0% (21) /=g (z1)d}. (13)

The first summand corresponds to electrons with positive energy, and the second summand
corresponds to electrons with negative energy. In this form the equation has a more universal character.
It can be used not only for the Born approximation, but also in solving the particle scattering problem by
the method of Feynman diagrams. In addition, the equation allows a visual interpretation. The Green’s
function determines the amplitude of the transition of the electron from the initial state with the wave
function v (z1) to the state with the wave function % (z2) under the influence of the gravitational field.

C. Born Approximation

Let the gravitational field be central and stationary. Then we have
U(w) = (r)e ",
where ¢ is the energy of an electron. In this paper the case of interest is that the function ¢ (r) at r — oo

has the form of a superposition of plane and spherical divergent waves

) ipr
U ()~ uemm A ()

where py and p are electron momenta before and after scattering at infinity; w is a bispinor describing
the state of an electron with momentum pg; n = 7. Let the initial state of the electron be described by

a plane wave
Y (x1) = ueH(et—por)
Let us substitute (4) into the first summand of equation (13). Let us restrict ourselves to the first
approximation. Then after the transformations known from quantum mechanics [26, 27], we obtain the
bispinor A (n) in the form

A(n) = z% (f'y p+y Ve + m) /F (r/) ueiKr/dSTI, (14)

where K = pg — p. Here the function T (7) is defined from the equality
Tueiet=por) — T (r)uefi(”*po").

Choosing the normalization in the form wu = 2m, uy*u = 2pt (28], we find the scattering
amplitude and differential cross section for scattering of electrons which possess polarization s in the
final state in the form

fs(n) = —mﬁsA(n), (15)
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dos = |fs (n)|* d9, (16)

where wu, is a bispinor describing the state of elastically scattered electrons on a wormhole with
momentum p = ppn and polarization s, d2 is the solid angle element having direction n.
Given that T, (—y - p++®e —m) = 0,, from (14) and (15) we obtain

fs(n) = ﬁﬂs / r (r/)ueiKT B3’

By substituting this expression into the (16) and averaging the differential scattering cross section
over the polarization states, we obtain it in the form

do = B (n) ususB (n) dS,

where B (n) = .= [T (r/)ueiK r d3r'; the line above u, 1, means averaging along the direction of vector
n. It can be shown that the density matrix of electrons which are scattered by the solid angle element
ds,

p(n) = us (n) s (n)

and the density matrix of electrons for the incident flux
pPo = uu

are equal. This means that the fraction of electrons of a certain polarization which are scattered in the
direction of the vector m is equal to the fraction of electrons of the same polarization in the incident
flux. Then for the differential cross section for scattering we have

do = B (n)uuB (n) dQ.

From where we find that the scattering amplitude of the electron is equal to

f(n)=uB(n) i */ r (r/)ueiK",d?’rl. (17)

:Eu

D. Electron Scattering on an Ellis-Bronnikov Wormhole

As a scattering center we choose the Ellis-Bronnikov wormhole, the metric of which has the following
form
dr?

R2
r2

ds* = dt* — — 7% (d6® + sin® 0 dyp?) (18)

where R is the radius of the throat. In spite of the fact that in spacetime with metric (18) there is no
gravitation, the scattering on such a wormhole can be described by the above formulas. To find the
operator I let us write out the nonzero components of the Christoffel symbols for the metric (17):

R2 RZ . R2
Fh - T rR2 F%z =T (1 - 7’2> , 1—‘;1;3 = —rsin?6 (1 — 7"2) ,

1 1
I, = - I'2, = —sinf cosh, T3 = - I, = ctgh, (19)

and also choose the orthonormal tetrad in the form

R2 1 1
B=di 1A/l — —;— —— | . 20
€(a) Lag ( Yy r2’ oy’ rsin@) (20)
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Substituting (19) and (20) into the expression for spinor connection

1 c
Ly = le?b)e(C)A;/ﬂ(b)'V( ),

we find that all its components are equal to zero. Then assuming R is small, for the operator T we get

~ 1 R? 9
[=_—_y0 2
27 2 Or

Then from (17) we obtain the scattering amplitude in the form

1 CoOS per) /
fn) = gregd [
where o = (7', py ), r is the radius-vector of an arbitrary point. The integration is performed over
such points. The angle « is equal to
T 0 / / —
a=—=—=—0,where § = (r’,K).
2 2

Writing down the result of the integration as a series and leaving only the terms that give the
summands containing the sixth degree R® and below for the total cross section for elastic scattering, we

obtain 0 ) )
™ ? .
f(n)= —ZR?’p(Q) cos 5 + §R2p0 (1 - §R2pg sin? 2) .
As a result, we obtain the total cross section for elastic scattering in the form
S |
a =R +2m (T — =) R}
From the optical theorem
4
Otot — — * Imf(O)
Po

we find that the total cross section for scattering is equal to
Otot = 27TR2.

Then the total cross section for inelastic scattering has the form

2 4.2 ™ 1 6. 4
Oinel = 2TR* — TR py — 2w 63 R°py,

and the fraction of inelastically scattered electrons is equal to

Oinel 1 o o ™ 1 44
— =1—=R°p5f— | — — = )| R"p;.
51t Po <16 3 Do

Otot

It follows that at Rpy = 1,0923 electron scattering will be completely elastic, and when the
condition Rpg > 1,0923 is satisfied, the total cross section for inelastic scattering becomes negative.
Conclusion

Within the framework of the approximations used, the following statements can be made:

1. There is no total absorption of electrons by the wormhole. The existence of inelastic reaction

channels necessarily entails the existence of elastic scattering.

2. There is a condition on the size of the throat R and on the value of the initial electron momentum

Po, at which the flux of electrons will be completely scattered elastically.
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3. There is a condition on the size of the throat R and on the value of the initial electron
momentum pg, at which the total cross section for inelastic scattering becomes negative. The
Born approximation used in this study restricts the inelastic scattering channels. The electron
creation processes in this problem can be excluded. Therefore, there remains only one possibility
to increase the number of elastically scattered electrons which exceeds the number of electrons in
the initial flux. Additional electrons can appear only as a result of transition of electrons through
the wormhole from the region of space located on the opposite side of the wormhole. Thus, it is
possible to create such a flow directed to the wormhole which will create a “negative pressure” in
the region containing the wormhole. Perhaps wormholes can be stabilized without exotic matter
in this way.
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