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Мы представляем комплексную систему, включающую стандартные и размерные системы отсчета.
Мы предлагаем теорию, состоящую из трех взаимосвязанных систем преобразований. Стандартно-
мерная система преобразований сочетается с размерно-мерной системой преобразований, соответствующей
типичному преобразованию Лоренца-Эйнштейна и стандартно-мерной системой. Скорость, с которой
движется размерная рамка, играет решающую роль для того, чтобы уравнение сферических волн
Максвелла оставалось инвариантным, а переход волновой природы света в природу частиц подчинялся
системе преобразований.

Согласованность предложенных стандартно-мерных систем преобразований можно также проверить
в следствиях. Мы привели уравнения массы и энергии свободной частицы и обнаружили, что скорость
частицы и скорость движущейся рамки являются существенными. Мы также пришли к выводу,
что уравнение Шредингера остается инвариантным при предложенных преобразованиях. Дальнейшие
следствия для явлений, бросающих вызов специальной относительности, могут быть получены в другом
месте.
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A. Introduction

The recently observed violations of some principles of the special theory of relativity urged
theoretical interpretation and experimental confirmation to be proposed [1, 2, 3]. The Lorentz invariance
violation [4, 5, 6, 7, 8, 9] and deformed special relativity (DSR) [10, 11] including doubly special relativity
[12, 13] and modified dispersion relations [14, 15, 16] are a few examples to be recalled. The present
script suggests an alternative i) to preserve the special theory of relativity but instead ii) to take
into consideration Einstein’s original ideas about ”time” and ”space” including the distinction between
”position” and ”place” [17, 18] and iii) to account for the situations where the observer would be incapable
of tracking the trajectory of the motion [18, 19]. To resolve the observed violations of some special
relativity principles, the restriction to the standard-standard transformation system is relaxed and a
standard-dimensional transformation system shall be proposed.

The trio of event, reference frame, and observer can be categorized according to the observer’s
capability of monitoring the movement trajectory:

• Observer cannot monitor the movement trajectory: a set of values for time and space is perceived.
These are the standard values.

• Observer can monitor the movement trajectory: a set of values for time and space known as
dimensional values are then perceived. These are the dimensional values.

Let us assume that the stationary frame has i) the standard values (𝑥′, 𝑦′, 𝑧′, 𝑡′) and ii) dimensional
values (𝑥, 𝑦, 𝑧, 𝑡). Accordingly, i) the standard values (𝜉′, 𝜂′, 𝜁 ′, 𝑇 ′) and ii) dimensional values (𝜉, 𝜂, 𝜁, 𝑇 )

can be assigned to the moving frame. From the definition of the inertial reference frame in special
relativity [20], the spacetime transformation of an event from an inertial reference frame with velocity
𝜐 to an observer in a stationary inertial reference encompasses four types of spacetime transformations.

1. From the standard values of a stationary frame (rest) to the standard values of a moving frame
(standard-standard system),

2. From standard values of a stationary frame (rest) to dimensional values of a moving frame
(standard-dimensional system),

3. From the dimensional values of a stationary frame (rest) to the standard values of a moving frame
(dimensional-standard system), and

4. From the dimensional values of a stationary frame (rest) to the dimensional values of a moving
frame (dimensional-dimensional system).

With standard-dimensional, we mean that the frame of standard values is at rest while the frame
of dimensional values is moving. Equivalently, with dimensional-standard, we refer to the frame of
dimensional values which is at rest, while the frame of standard values moves. For the sake of simplicity,
we suggest to combine both transformations into one category, standard-dimensional transformation
system. Thus, the transformations in special relativity can be categorized into standard-standard,
standard-dimensional, and dimensional-dimensional transformation systems.

In this regard, we emphasize that the standard values within a frame are unaffected by the frame’s
motion. But upon leaving the frame, the standard values become impacted. Therefore, the relationship
between the standard values in a stationary frame and the ones in a moving frame relies on an unknown
function 𝛿(𝑣).

The standard-dimensional transformation system entails transformation between the standard
values conceived by an observer in a stationary frame and the corresponding dimensional values in
a moving frame with velocity 𝜐. Moreover, this system also represents the transformation between the
dimensional values observed by an observer in a stationary frame and the corresponding standard values
in a moving frame with velocity 𝜐.
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It should be noticed that the conclusions drawn from the three spacetime transformation systems
are based on the following assumptions:

1. All laws of physics are subject to the standard-standard transformation system.

2. The physical laws which are subject to the dimensional-dimensional transformation system is also
subject to the standard-dimensional transformation system with an assertion that the transition of
the wave-nature to particle-nature of light under the standard-dimensional transformation system
[20]. The physical laws which are not subject to the dimensional-dimensional transformation
system will be subject to the standard-dimensional transformational system without any additional
ingredients.

3. Under a standard-dimensional transformation, the speed of light in free space, 𝑐, remains constant
across all inertial reference frames regardless their relative motion to the source or each another,
and

4. The standard-dimensional transformation occurs in a homogeneous and isotropic spacetime [21].

When referring to subjecting laws to a specific transformation system, it implies that the laws remain
consistent across all inertial reference frames within that transformation system.

This paper is structured as follows. The formalism is outlined in section B. The transformations
under standard-dimensional system are introduced in section B.1. The velocity transformation and
Maxwell spherical wave equation under standard-dimensional transformation system are derived in
sections B.1.3 and B.1.4, respectively. The spacetime transformation under dimensional-dimensional
system is given in section B.2. The results are discussed in section C. As examples, we first discuss the
mass and energy under the standard-dimensional transformation system in section C.1. Then, in section
C.2, the Schrödinger equation shall be derived under the standard-dimensional transformation system.
Section D is devoted to the conclusions.

B. Formalism

We assume that the reference frame describing an event is denoted by 𝑘 and has the dimensional
values (𝜉, 𝜂, 𝜁, 𝑇 ) and the standard values (𝜉′, 𝜂′, 𝜁 ′, 𝑇 ′) of the spacetime. Also, let us assume that
the reference frame describing an observer is denoted by K whose dimensional and standard values
are (𝑥, 𝑦, 𝑧, 𝑡) and (𝑥′, 𝑦′, 𝑧′, 𝑡′), respectively. In this regards, we emphasize that under the standard-
dimensional transformation system, the reference frame 𝑘 moves with velocity 𝜐 in the direction of
increasing x-axis relative to the observer’s frame K.

B.1. Standard-Dimensional Transformation Systems

In this section, we introduce comprehensive details about the proposed standard-dimensional
transformation system. As introduced, such a transformation comprises two kinds. The first one is
the translation from the observer’s standard values in a stationary frame to the dimensional values in
a frame which moves at velocity 𝜐 (standard-dimensional). The second one is the translation of the
observer’s dimensional values in a stationary frame to the standard values in a frame which moves at
velocity 𝜐 (dimensional-standard).

B.1.1 Spacetime under Standard-Dimensional Transformation System

How the standard values observed by an observer in a stationary frame are to be transformed to
the corresponding dimensional values in a moving frame with velocity 𝜐? By using the specification of
the standard-standard transformation system as a guide, we can suggest an answer to this question.
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First, we express the spacetime transformations under standard-standard system

(𝑖) 𝑥′ = 𝛿(𝜐)𝜉′,

(𝑖𝑖) 𝑦′ = 𝛿(𝜐)𝜂′,

(𝑖𝑖𝑖)𝑧′ = 𝛿(𝜐)𝜁 ′,

(𝑖𝑣) 𝑡′ = 𝛿(𝜐)𝑇 ′.

(B.1)

This transformation system is valid regardless whether the frame moves in the direction of increasing
𝑥-axis or in the opposite direction. The set of transformations, Eq. (B.1), shall be utilized in deriving
the standard-dimensional transformation system.

For an event in 𝑘, we assume that the origin points of 𝑘 and K were identical, at a dimensional time
𝑇0 and a corresponding standard time in 𝑡′ in K. We then suggest that a ray of light is emitted from
the origin point at the time 𝑇𝑜 along the 𝜉-axis and propagates in the direction of increasing 𝜉-axis. We
also assume that the ray of light has to cover a standard distance 𝜉′ over the time 𝑇1 before it reflects
back to its origin point in 𝑘. The ray of light returns in time 𝑇2. Based on the assumptions outlined in
section A, we can now express the relationships in 𝑘 as

𝑇2 − 𝑇1 = 𝑇1 − 𝑇0,
1

2
(𝑇𝑜 + 𝑇2) = 𝑇1. (B.2)

From the definition of the dimensional values, we then conclude that

𝑇 = 𝑇 (𝜉′, 𝜂′, 𝜁 ′, 𝑇 ′) , 𝑇0 = 𝑇 (0, 0, 0, 𝑇 ′
0) , 𝑇1 = 𝑇 (𝜉′, 0, 0, 𝑇 ′

1) , 𝑇2 = 𝑇 (0, 0, 0, 𝑇 ′
2) . (B.3)

Also, when a ray of light is emitted along the 𝜉-axis, the concept of forward and backward directions
is then applicable to the standard values of ”place” in the 𝜉′ dimension. However, this concept does not
apply to (𝜂′, 𝜁 ′) dimensions. Then, we obtain

𝑇 ′
0 =

𝑡′

𝛿(𝜐)
, 𝑇 ′

1 = 𝑇
′

0 +
𝜉′

𝑐
=

𝑡′

𝛿(𝜐)
+
𝜉′

𝑐
, 𝑇2

′ = 𝑇 ′
0 +

𝜉′

𝑐
− 𝜉′

𝑐
=

𝑡′

𝛿(𝜐)
. (B.4)

When substituting these quantities into Eq. (B.2), we get

1

2

[︂
𝑇

(︂
0, 0, 0,

𝑡′

𝛿(𝜐)

)︂
+ 𝑇

(︂
0, 0, 0,

𝑡′

𝛿(𝜐)

)︂]︂
= 𝑇

(︂
𝜉′, 0, 0,

𝑡′

𝛿(𝜐)
+
𝜉′

𝑐

)︂
. (B.5)

By differentiating Eq. (B.5) with respect to 𝑡′ and applying 𝑡′/𝛿(𝜐) + 𝜉′/𝑐 = 𝜌, we obtain

1

2

[︂
2

𝛿(𝜐)

𝜕𝑇

𝜕𝑡′

]︂
=

1

𝛿(𝜐)

𝜕𝑇

𝜕𝜌
,

𝜕𝑇

𝜕𝜌
=
𝜕𝑇

𝜕𝑡′
. (B.6)

Now, by differentiating Eq. (B.5) with respect to 𝜉′ and applying 𝜕𝜌/𝜕𝜉′ = 1/𝑐, we find

𝜕𝑇

𝜕𝜉′
+

(︂
1

𝑐

𝜕𝑇

𝜕𝜌

)︂
= 0, (B.7)

in which Eq. (B.6) can be substituted,

𝜕𝑇

𝜕𝜉′
+

1

𝑐

𝜕𝑇

𝜕𝑡′
= 0. (B.8)

With this regard we emphasize that the origin point of a coordinate system would be any other
point of the ray’s starting position. As a result, Eq. (B.8) holds true for all possible values of (𝜉′, 𝜂′, 𝜁 ′).
The same conclusion could be drawn for 𝜂′- and 𝜁 ′-axes. It is important to realize that when observed
from the stationary frame, the ray of light consistently travels along these axes, at the speed of light 𝑐,
and therefore, the variation in both term of Eq. (B.8) vanish,

𝜕𝑇

𝜕𝜂′
= 0,

𝜕𝑇

𝜕𝜁 ′
= 0. (B.9)
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Now we recall expression (iv) in Eq. (B.1), that of the standard-standard transformation system, as
well as (B.3), and (B.9). This allows to draw the conclusion that 𝑇 represents a function, 𝑇 = 𝑇 (𝑡′, 𝜉′),

𝑇 = 𝑎 · 𝑡′ + 𝑏 · 𝜉′, (B.10)

where 𝑎 and 𝑏 are constants. Here, the partial differentials of Eq. (B.10) with respect to 𝑡′, 𝜉′, separately,
lead to

𝜕𝑇

𝜕𝑡′
= 𝑎,

𝜕𝑇

𝜕𝜉′
= 𝑏. (B.11)

From Eqs. (B.8) and (B.11), 𝑏 can be related to 𝑎,

𝑏 = −1

𝑐
𝑎. (B.12)

whose substitution into Eq. (B.10) leads to

𝑇 = 𝑎

(︂
𝑡′ − 1

𝑐
𝜉′
)︂
. (B.13)

By substituting 𝑡′ = 𝑥′/𝑐 and 𝜉′ = 𝑥′/𝛿(𝑣), whose relationship reads 𝑡′ = 𝛿(𝜐)𝜉′/𝑐, into Eq. (B.13) and
applying 𝜉 = 𝑐𝑇 , we get

𝜉 = 𝑎 [𝛿(𝜐)− 1] 𝜉′. (B.14)

When taking into account that 𝜉′ = 𝑥′ − 𝜐𝑡′/𝛿(𝜐), which expresses the motion of the reference frame 𝑘,
we conclude that

𝑥′ =
𝜉𝛿(𝜐)

𝑎 [𝛿(𝜐)− 1]
+ 𝜐𝑡′. (B.15)

Now, we consider that a ray of light is emitted along the 𝜂-axis in the direction of its increment
and covers the standard distance 𝜂′. This leads to

𝑇 = 𝑎

(︂
𝑡′ − 𝜂′

𝑐

)︂
. (B.16)

Given that 𝑡′ = 𝑦′/𝑐 and 𝜂′ = 𝑦′/𝛿(𝜐), Eq. (B.16) can be reexpressed as

𝑇 =
𝑎

𝑐

(︂
1− 1

𝛿(𝑣)

)︂
𝑦′. (B.17)

By using 𝜂 = 𝑐𝑇 , we can derive that

𝑦′ =
𝛿2(𝜐)

𝑎 [𝛿(𝜐)− 1]

𝜂

𝛿(𝜐)
. (B.18)

Similarly, for a ray of light which is emitted along 𝜁-axis in the direction of its increment and
intersects the axis at the standard distance 𝜁 ′, then

𝑇 = 𝑎

(︂
𝑡′ − 𝜁 ′

𝑐

)︂
. (B.19)

Given that 𝑡′ = 𝑧′/𝑐 and 𝜁 ′ = 𝑧′/𝛿(𝜐) and by using 𝜁 = 𝑐𝑇 , we obtain

𝑧′ =
𝛿2(𝜐)

𝑎 [𝛿(𝜐)− 1]

𝜁

𝛿(𝜐)
. (B.20)

We are now able to determine 𝑡′. Since 𝜉′ = 𝑥′/𝛿(𝜐) and 𝜉′ = 𝑐𝑇 ′, we find that

𝑇 ′ =
𝑥′

𝑐𝛿(𝜐)
. (B.21)



256 С. Салума, А.Н. Тауфик

Then from Eq. (B.15) and Eq. (B.21), we conclude that

𝑇 ′ =
1

𝛿(𝜐)

(︂
𝜉

𝑐

𝛿(𝜐)

𝑎 [𝛿(𝜐)− 1]
+
𝜐𝑡′

𝑐

)︂
. (B.22)

By substituting 𝜉/𝑐 = 𝑇 and 𝑡′/𝛿(𝜐) = 𝑇 ′ into Eq. (B.22), we obtain

𝑇𝛿(𝜐)

𝑎 [𝛿(𝜐)− 1]
= 𝑡′

(︁
1− 𝜐

𝑐

)︁
, (B.23)

𝑡′ =
𝛿2(𝑣)

𝑎 [𝛿(𝑣)− 1]

𝑇

(1− 𝑣
𝑐 )𝛿(𝑣)

. (B.24)

Let 𝜙(𝑣) = 𝛿2(𝑣)/𝑎(𝛿(𝑣)− 1). Then, we get

𝑡′ =
𝜙(𝑣)

(1− 𝑣
𝑐 )𝛿(𝑣)

𝑇. (B.25)

Now, we are ready to derive the spacetime transformations under standard-dimensional system.
This comprises various cases as follows.

(i) When the frame 𝑘 moves with velocity 𝜐 in the direction of increasing 𝑥-axis

(𝑖) 𝑥′ = 𝜙(𝜐)

[︃
𝜉

𝛿(𝜐)
+

𝜐(︀
1− 𝜐

𝑐

)︀
𝛿(𝜐)

𝑇

]︃
,

(𝑖𝑖) 𝑦′ = 𝜙(𝜐)
𝜂

𝛿(𝜐)
,

(𝑖𝑖𝑖)𝑧′ = 𝜙(𝜐)
𝜁

𝛿(𝜐)
,

(𝑖𝑣) 𝑡′ =
𝜙(𝑣)

(1− 𝑣
𝑐 )𝛿(𝑣)

𝑇.

(B.26)

Alternatively, when substituting Eq. (B.25) into Eqs. (B.15), (B.18), and (B.20), we obtain the
same transformations as in Eq. (B.26).

(ii) When the frame 𝑘 moves at velocity 𝜐 in the direction of increasing 𝑥-axis (inverse transformation),
we find that

(𝑖) 𝜉 =
𝛿(𝜐)

𝜙(𝜐)
[𝑥′ − (𝜐𝑡′)] ,

(𝑖𝑖) 𝜂 =
𝛿(𝜐)

𝜙(𝜐)
𝑦′,

(𝑖𝑖𝑖)𝜁 =
𝛿(𝜐)

𝜙(𝜐)
𝑧′,

(𝑖𝑣) 𝑇 =
𝛿(𝑣)(1− 𝑣

𝑐 )

𝜙(𝜐)
𝑡′.

(B.27)

(iii) In a specific scenario that the frame 𝑘 moves at velocity 𝜐 in the opposite direction of increasing
𝑥-axis, an observation can be made but within the frame K̄. When assuming that the standard
values of the frame K̄ read (𝑥̄′, 𝑦′, 𝑧′, 𝑡′) and the dimensional values of the frame 𝑘 read (𝜉, 𝜂, 𝜁, 𝑇 ),
then, we get

(𝑖) 𝑥′ = 𝜙(−𝜐)

[︃
𝜉

𝛿(−𝜐)
− 𝜐(︀

1 + 𝜐
𝑐

)︀
𝛿(−𝜐)

𝑇

]︃
,

(𝑖𝑖) 𝑦′ = 𝜙(−𝜐) 𝜂

𝛿(−𝜐)
,

(𝑖𝑖𝑖)𝑧′ = 𝜙(−𝜐) 𝜁

𝛿(−𝜐)
,

(𝑖𝑣) 𝑡′ = 𝜙(−𝑣) 𝑇

(1 + 𝑣
𝑐 )𝛿(−𝑣)

,

(B.28)
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where 𝜙(−𝜐) = 𝛿2(−𝜐)/{𝑎̄ [𝛿(−𝜐)− 1]}.

(iv) The fourth case deals with the inverse transformation of the previous case. When the frame 𝑘
moves at velocity 𝜐 in the opposite direction of increasing 𝑥-axis, we then find that

(𝑖) 𝜉 =
𝛿(−𝜐)
𝜙(−𝜐)

[︀
𝑥′ +

(︀
𝜐𝑡′
)︀]︀
,

(𝑖𝑖) 𝜂 =
𝛿(−𝜐)
𝜙(−𝜐)

𝑦′,

(𝑖𝑖𝑖)𝜁 =
𝛿(−𝜐)
𝜙(−𝜐)

𝑧′,

(𝑖𝑣) 𝑇 =
𝛿(−𝑣)
𝜙(−𝜐)

(︁
1 +

𝑣

𝑐

)︁
𝑡′.

(B.29)

Now, we are capable of describing different scenarios and even the wave front of the light pulse.

1. From the four sets of standard-dimensional transformation systems, Eqs. (B.26) - (B.29), we can
define two scenarios as follows.

(a) First scenario: if the dimensional values of the frame 𝑘 are equivalent to the dimensional
values of the frame 𝑘, i.e., (𝜉, 𝜂, 𝜁, 𝑇 ) = (𝜉, 𝜂, 𝜁, 𝑇 ), then from Eqs. (B.27) and (B.29), the
inverse transformations, we obtain that

𝛿(𝜐)

𝜙(𝜐)
[𝑥′ − (𝜐𝑡′)] =

𝛿(−𝜐)
𝜙(−𝜐)

[︀
𝑥′ +

(︀
𝜐𝑡′
)︀]︀
. (B.30)

Since (𝜉, 𝜂, 𝜁, 𝑇 = (𝜉, 𝜂, 𝜁, 𝑇 )), it follows that (𝑥′, 𝑦′, 𝑧′, 𝑡′) = (𝑥̄′, 𝑦′, 𝑧′, 𝑡′). Because the only
possible condition which invalidates forward and backward directions should be 𝜐 = 0.
Then, the concept of direction along and opposite the frame of reference disappears, i.e.,
(𝑥′, 𝑦′, 𝑧′, 𝑡′)𝜐=0 = (𝑥̄′, 𝑦′, 𝑧′, 𝑡′)𝜐=0, and we obtain

𝛿(𝜐)

𝜙(𝜐)
𝑥′ =

𝛿(−𝜐)
𝜙(−𝜐)

𝑥′. (B.31)

From 𝛿(𝜐)𝜐=0 = 𝛿(−𝜐)𝜐=0 = 1, it is obvious to conclude that,

𝜙(𝜐) = 𝜙(−𝜐), (B.32)

i.e., equivalent forward and backward motion.

(b) Second scenario: if the standard values of the frame K are equivalent to the dimensional
values of the frame 𝑘. Then from Eqs. (B.26) and (B.29), we obtain

𝛿(−𝜐)
𝜙(−𝜐)

(︀
𝑥′ +

(︀
𝜐𝑡′
)︀)︀

= 𝜙(𝜐)

[︃
𝜉

𝛿(𝜐)
+

𝜐(︀
1− 𝜐

𝑐

)︀
𝛿(𝜐)

𝑇

]︃
. (B.33)

The condition
(︀
𝑥′, 𝑦′, 𝑧′, 𝑡′

)︀
𝜐=0

= (𝜉, 𝜂, 𝜁, 𝑇 )𝜐=0 allows to rewrite Eqs. (B.33) as

𝛿(−𝜐)
𝜙(−𝜐)

𝑥′ =
𝜙(𝜐)

𝛿(𝜐)
𝑥′, (B.34)

which in turn leads to
𝜙(𝜐)𝜙(−𝜐) = 𝛿(𝜐)𝛿(−𝜐). (B.35)

From 𝛿(𝜐)𝜐=0 = 𝛿(−𝜐)𝜐=0 = 1, Eq. (B.35) can be rewritten as

𝜙(𝜐)𝜙(−𝜐) = 1. (B.36)

Then, with Eq. (B.32), we obtain

𝜙(𝜐) = 𝜙(−𝜐) = 1, (B.37)

i.e., a normalization condition.
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2. To describe the wave front of the light pulse, an alternative set of the spacetime transformations
must be formulated. Based on the information provided so far and the conditions outlined in
section A, the wave front of the light pulse is then described as

𝜉 = 𝑐𝑇, (B.38)

𝑥′ = 𝑐𝑡′. (B.39)

By substituting (iv) of Eqs. (B.1) into Eq. (B.39), we get

𝑥′ = 𝑐𝛿(𝜐)𝑇 ′. (B.40)

Also, by substituting Eq. (B.38) and Eq. (B.40) into (i) of Eq. (B.26),

𝛿2(𝜐)𝑇 ′ = 𝑇 +
𝜐
𝑐

1− 𝜐
𝑐

𝑇. (B.41)

From the assumption 3 which was introduced in section A and the propagation of ray of light in
a straight line, we notice that 𝑇 = 𝑇 ′. Therefore, with simple mathematical operations, we get

𝛿(𝜐) =
1√︀
1− 𝜐

𝑐

. (B.42)

Similarly, it is easy to find that

𝛿(−𝜐) =
1√︀
1 + 𝜐

𝑐

. (B.43)

Now, we can apply this to the set of spacetime transformations under the standard-dimensional
system of special relativity, Eq. (B.26),

(𝑖) 𝑥′ =
𝜉

𝛿(𝜐)
+ 𝜐𝛿(𝜐)𝑇,

(𝑖𝑖) 𝑦′ =
𝜂

𝛿(𝜐)
,

(𝑖𝑖𝑖) 𝑧′ =
𝜁

𝛿(𝜐)
,

(𝑖𝑣) 𝑡′ = 𝛿(𝜐)𝑇

. (B.44)

B.1.2 Spacetime under Dimensional-Standard Transformation System

The second case derives a set of equations for the transformation of spacetime under dimensional-
standard system. This translates the dimensional values observed by an observer in a stationary frame
to the corresponding standard values in a moving frame with velocity 𝜐. According to Eq. (B.44),
when the moving frame 𝑘 is stationary within the standard-dimensional transformation system, the
dimensional values (𝜉, 𝜂, 𝜁, 𝑇 ) become equivalent to the standard values (𝑥′, 𝑦′, 𝑧′, 𝑡′). Consequently,
when the moving frame 𝑘 is at rest, the dimensional values (𝑥, 𝑦, 𝑧, 𝑡) become equivalent to the standard
values (𝜉′, 𝜂′, 𝜁 ′, 𝑇 ′). Therefore, we consider the process of establishing a stationary state for the moving
frame 𝑘 by aligning it with respect to (𝑥, 𝑦, 𝑧, 𝑡) and (𝜉′, 𝜂′, 𝜁 ′, 𝑇 ′). To this end, another frame is utilized,
This is a frame moving at velocity 𝜐 in the opposite direction of increasing 𝑥-axis within the standard-
dimensional system. The motion of this frame impacts both K and 𝑘. Consequently, to establish the
values (𝜉′, 𝜂′, 𝜁 ′, 𝑇 ′) and (𝑥, 𝑦, 𝑧, 𝑡) at the rest of the standard-dimensional transformation system without
impacting both frames, 𝑘 and K, we suggest to follow a procedure as follows.

• The values (𝜉′, 𝜂′, 𝜁 ′, 𝑇 ′) when transformed to the corresponding ones in the frame K become
(𝑥′, 𝑦′, 𝑧′, 𝑡′). The latter values within the frame K have motion in the direction of increasing
𝑥−axes.
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• Since the frame K is at rest, we can apply a frame with velocity 𝜐 in the opposite direction of
increasing 𝑥-axes whose values are (𝑥′, 𝑦′, 𝑧′, 𝑡′). By transformation, this now frame get the values
(𝑥, 𝑦, 𝑧, 𝑡).

In this regard, we draw two conclusions.

• The concept of opposite direction of velocity does appear in 𝑥 and 𝑡 dimensions only, because
the movements of 𝑦 and 𝑧 are not influenced by the concept of opposite direction of increasing
𝑥-axis. Hence, the standard values 𝑥′ and 𝑡′ are affected by the value of 𝛿(−𝜐), while the standard
values 𝑦′ and 𝑧′ are affected by the value of 𝛿(𝜐). In addition, the values of 𝑥′ and 𝑡′ represent
the observed values outside the frame, while the standard values 𝑦′ and 𝑧′ represent the observed
values within the frame.

• Based on the foregoing information and the spacetime transformations in a generalized form under
the standard-standard system, it is possible to deduce that the standard values observed outside
the frame are equal to the standard values observed inside the frame multiplied by the velocity
function, 𝜐-function.

Accordingly, the dimensional values 𝑥 and 𝑡 can be expressed as

𝑥 =
𝑥′

𝛿(−𝜐)
,

𝑡 =
𝑡′

𝛿(−𝜐)
,

(B.45)

while the values 𝑦 and 𝑧 read

𝑦 = 𝛿(𝜐)𝑦′,

𝑧 = 𝛿(𝜐)𝑧′.
(B.46)

From the standard-standard transformation system, Eqs. (B.45) and (B.46), we can summarize
both kinds of spacetime transformation under standard-dimensional system,

1. the set of equations describing the spacetime transformation under standard-dimensional system
when the frame 𝑘 moves with velocity 𝜐 in the direction of increasing 𝑥-axis is given as

(𝑖) 𝑥 =
𝛿(𝜐)

𝛿(−𝜐)
𝜉′,

(𝑖𝑖) 𝑦 = 𝛿2(𝜐)𝜂′,

(𝑖𝑖𝑖)𝑧 = 𝛿2(𝜐)𝜁 ′,

(𝑖𝑣) 𝑡 =
𝛿(𝜐)

𝛿(−𝜐)
𝑇 ′,

(B.47)

2. we can now derive the spacetime transformations under standard-dimensional system by repeating
the same steps when the frame 𝑘 moves with velocity 𝜐 in the opposite direction of increasing 𝑥-axis

(𝑖) 𝑥̄ =
𝛿(−𝜐)
𝛿(𝜐)

𝜉′,

(𝑖𝑖) 𝑦 = 𝛿2(−𝜐)𝜂′,
(𝑖𝑖𝑖)𝑧 = 𝛿2(−𝜐)𝜁 ′,

(𝑖𝑣) 𝑡 =
𝛿(−𝜐)
𝛿(𝜐)

𝑇 ′.

(B.48)

Obviously, we find that the velocity plays a crucial role in the proposed theory of the standard-
dimensional transformation system. In the section that follows, we derive the velocity transformations
under the same system.
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B.1.3 Velocity under Standard-Dimensional Transformation System

To derive the velocity under standard-dimensional transformation system in frame 𝑘 which moves
with velocity 𝜐 in the direction of increasing 𝑥-axis, we have two scenarios.

1. The first scenario deals with the transformation between the observer’s standard values in a
stationary frame and the corresponding dimensional values in a moving frame. By differentiating
the expression (i) of Eqs. (B.44) with respect to 𝑡′, we get

𝑑𝑥′

𝑑𝑡′
=

1

𝛿(𝜐)

(︂
𝑑𝜉

𝑑𝑇

𝑑𝑇

𝑑𝑡′

)︂
+ 𝛿(𝜐)𝜐

𝑑𝑇

𝑑𝑡′
, (B.49)

and by differentiating the expression (iv) of Eqs. (B.44) with respect to 𝑡′, we obtain

1 = 𝛿(𝜐)
𝑑𝑇

𝑑𝑡′
⇒ 𝑑𝑇

𝑑𝑡′
=

1

𝛿(𝜐)
. (B.50)

The substitution of Eq. (B.50) into Eq. (B.49) leads to

𝑑𝑥′

𝑑𝑡′
=

1

𝛿2(𝜐)

𝑑𝜉

𝑑𝑇
+ 𝜐. (B.51)

Hence, the velocity in the 𝑥-axis reads

𝑢𝑥′ =
𝑢𝜉
𝛿2(𝜐)

+ 𝜐, (B.52)

where 𝑢𝑥′ = 𝑑𝑥′/𝑑𝑡′. Likewise, the velocity transformations in 𝑦- and 𝑧-axis can be expressed,
respectively, as

𝑢𝑦′ =
𝑢𝜂
𝛿2(𝜐)

,

𝑢𝑧′ =
𝑢𝜁
𝛿2(𝜐)

.
(B.53)

2. Second scenario elaborates the transformation between the observer’s dimensional values in a
stationary frame and the corresponding standard values in a moving frame.

By differentiating the expression (i) of Eqs. (B.47) with respect to 𝑡, we find that

𝑑𝑥

𝑑𝑡
=

𝛿(𝜐)

𝛿(−𝜐)

(︂
𝑑𝜉′

𝑑𝑇 ′
𝑑𝑇 ′

𝑑𝑡

)︂
. (B.54)

Also, by differentiating the expression (iv) of Eqs. (B.47) with respect to 𝑡, we obtain

1 =
𝛿(𝜐)

𝛿(−𝜐)
𝑑𝑇 ′

𝑑𝑡
→ 𝑑𝑇 ′

𝑑𝑡
=
𝛿(−𝜐)
𝛿(𝜐)

. (B.55)

Then, the substitution of Eq. (B.55) into Eq. (B.54) leads to

𝑑𝑥

𝑑𝑡
=

𝑑𝜉′

𝑑𝑇 ′ . (B.56)

Hence, the velocity transformation in the 𝑥-axis reads

𝑢𝑥 =
𝑑𝑥

𝑑𝑡
= 𝑢𝜉′ . (B.57)

Likewise, the velocity transformations in 𝑦- and 𝑧-axis can be respectively expressed as

𝑢𝑦 =
𝑑𝑦

𝑑𝑡
= 𝛿(𝜐)𝛿(−𝜐)𝑢𝜂′ , (B.58)

𝑢𝑧 =
𝑑𝑦

𝑑𝑡
= 𝛿(𝜐)𝛿(−𝜐)𝑢𝜁′ . (B.59)

Now, we conclude this section by studying the Maxwell spherical wave equation in spacetime
transformations under standard-dimensional system, section B.1.4.
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B.1.4 Maxwell Spherical Wave Equation under Standard-Dimensional Transformation
System

To study the Maxwell spherical wave equation under standard-dimensional transformation system
[22, 23], we assume that the frame 𝑘 moves at velocity 𝜐 in a specific direction relative to an observer
in the frame K. Furthermore, we suggest that at time 𝑡 = 𝑇 = 0, the origins and axes of both frames, 𝑘
and K, coincide. Also, we assume that a light pulse, which was emitted at time 𝑡 = 𝑇 = 0 in the frame
K has a spherical wave front which is characterized by

𝑥2 + 𝑦2 + 𝑧2 = 𝑐2𝑡2, (𝑥′)2 + (𝑦′)2 + (𝑧′)2 = 𝑐2(𝑡′)2. (B.60)

Based on the assumptions outlined in section A, the wave front of light pulse when observed from
the perspective of the frame 𝑘 has two scenarios.

First scenario considers the difference between the observer’s standard values in a stationary frame
and the corresponding dimensional values in a moving frame at velocity 𝜐 along the direction of
increasing 𝑥-axis. In view of Eqs. (B.44) and the second part of Eq. (B.60), we obtain[︂

𝜉

𝛿(𝜐)
+ (𝛿(𝜐)𝜐𝑇 )

]︂2
+

[︂
𝜂

𝛿(𝜐)

]︂2
+

[︂
𝜁

𝛿(𝜐)

]︂2
= 𝑐2 [𝛿(𝜐)𝑇 ]

2
. (B.61)

Therefore,

𝜉2 + 𝜂2 + 𝜁2 + 𝜐2𝛿4(𝜐)𝑇 2 + 2𝛿2(𝜐)𝜉𝜐𝑇 − 𝑐2𝛿4(𝜐)𝑇 2 = 0. (B.62)

Let us assume 𝜉2 + 𝜂2 + 𝜁2 = 𝑐2𝑇 2. Then, we find that[︂
𝑐2

𝛿4(𝜐)
+ 𝜐2 − 𝑐2

]︂
𝛿2(𝜐)𝑇 = −2𝜉𝜐. (B.63)

With some substitutions, we reach at the wave front

𝜉 = 𝑐𝑇. (B.64)

Second scenario considers the difference between the observer’s dimensional values in a stationary frame
and the corresponding standard values in a moving frame at velocity 𝜐 along the direction of
increasing 𝑥-axis. In view of Eqs. (B.47) and the first part of Eq. (B.60), we obtain[︂

𝛿(𝜐)

𝛿(−𝜐)

]︂2
(𝜉′)

2
+ 𝛿4(𝜐) (𝜂′)

2
+ 𝛿4(𝜐) (𝜁 ′)

2
=

[︂
𝛿(𝜐)

𝛿(−𝜐)

]︂2
𝑐2 (𝑇 ′)

2
. (B.65)

Therefore, (︀
1 + 𝜐

𝑐

)︀2
(𝜉′)

2(︀
1 + 𝜐

𝑐

)︀ (︀
1− 𝜐

𝑐

)︀ + (𝜂′)
2(︀

1 + 𝜐
𝑐

)︀ (︀
1− 𝜐

𝑐

)︀ + (𝜁 ′)
2(︀

1 + 𝜐
𝑐

)︀ (︀
1− 𝜐

𝑐

)︀ =

(︀
1 + 𝜐

𝑐

)︀2
𝑐2 (𝑇 ′)

2(︀
1 + 𝜐

𝑐

)︀ (︀
1− 𝜐

𝑐

)︀ . (B.66)

This implies that

(𝜉′)
2
+
𝜐2

𝑐2
(𝜉′)

2
+ 2

𝜐

𝑐
(𝜉′)

2
+ (𝜂′)

2
+ (𝜁 ′)

2
= 𝑐2 (𝑇 ′)

2
+ 𝜐2 (𝑇 ′)

2
+ 2𝜐𝑐 (𝑇 ′)

2
. (B.67)

With the assumption that (𝜉′)2 + (𝜂′)2 + (𝜁 ′)2 = 𝑐2(𝑇 ′)2, the wave front becomes

𝜉′ = 𝑐𝑇 ′. (B.68)

To summarize the findings of this section, we recall the analytical observation that the Maxwell
spherical wave equation which was determined under spacetime transformations of the standard-
dimensional-type is found invariant, i.e., the Maxwell spherical wave equation remains unchanged
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although this type of spacetime transformations. Furthermore, this constancy can be interpreted as
being conditioned to the motion within the frame 𝑘 which follows a straight line parallel to the 𝑥-axis
with velocity equal to the speed of light, 𝑐. Also, according to principles of optics, which assert that the
phenomena resulting from the propagation of light in straight lines support the hypothesis that light
has particle-nature, this type of motion seems to be consistent with the particle’s behavior. As a result
of these observations and by consulting refs. [24, 25], we conclude that the spacetime transformations
under standard-dimensional system adheres to the second assumption outlined in section A.

B.2. Spacetime under Dimensional-Dimensional Transformation System

In this section, we delve into the dimensional-dimensional transformation system. As the
dimensional values are in the moving frame, we divide the moving observer’s frame into two possible
directions. The first case considers that the frame 𝑘 moves at velocity 𝜐 in the same direction of increasing
𝑥-axis. The second case counts for frame 𝑘 which moves at velocity 𝜐 in the opposite direction of increasing
𝑥-axis.

Case 1: Spacetime transformations under dimensional-dimensional system in the frame 𝑘 which moves
at velocity 𝜐 in the same direction of increasing 𝑥-axis. In view of Eqs. (B.44), Eqs. (B.45) and
Eqs. (B.46), we obtain,

(𝑖) 𝑥 =
𝜉

𝛿(𝜐)𝛿(−𝜐)
+

𝛿(𝜐)

𝛿(−𝜐)
𝜐𝑇,

(𝑖𝑖) 𝑦 = 𝜂,

(𝑖𝑖𝑖)𝑧 = 𝜁,

(𝑖𝑣) 𝑡 =
𝛿(𝜐)

𝛿(−𝜐)
𝑇.

(B.69)

From the identities 𝛿(𝜐) = 1/
√︀
1− 𝜐

𝑐 and 𝛿(−𝜐) = 1/
√︀

1 + 𝜐
𝑐 , the corresponding set of

dimensional-dimensional transformation equations becomes

(𝑖) 𝑥 =
𝜉√︁

1− 𝜐2

𝑐2

+
𝛿(𝜐)

𝛿(−𝜐)
𝜐𝑇,

(𝑖𝑖) 𝑦 = 𝜂,

(𝑖𝑖𝑖) 𝑧 = 𝜁,

(𝑖𝑣) 𝑡 =
𝑇(︀

1− 𝜐
𝑐

)︀
/
√︁
1− 𝜐2

𝑐2

.

(B.70)

From the third assumption introduced in section A, we notice that the wave front of the light
pulse can be described by

𝜉 = 𝑐𝑇, 𝑡 =
𝑥

𝑐
. (B.71)

Let 𝛾 = 1/
√︁
1− 𝜐2

𝑐2
, then we get

𝑇 = 𝛾
[︁
𝑡− 𝑡

𝜐

𝑐

]︁
. (B.72)

From 𝑡 = 𝑥
𝑐 for the light pulse [22], we find that

𝑇 = 𝛾
[︁
𝑡− 𝜐𝑥

𝑐2

]︁
. (B.73)

Then, in view of expression (i) in Eq. (B.70), we obtain

𝑥 =
𝜉

𝛾
+

𝛿(𝜐)

𝛿(−𝜐)
𝜐𝑇. (B.74)
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By substituting Eq. (B.73) into (??), we get

𝑥− 𝑥𝜐2

𝑐2
=

1

𝛾
(𝜉 + 𝜐𝑇 ). (B.75)

Therefore, we suggest that
𝑥 = 𝛾(𝜉 + 𝜐𝑇 ). (B.76)

Also, by substituting Eq. (??) into (B.73), we arrive at

𝑡 =
𝑇

𝛾
+
𝑥𝜐

𝑐2
. (B.77)

Hence, we derive 𝑡

𝑡 =
𝑇

𝛾
+
𝜐

𝑐2

(︂
𝜉

𝛾
+ 𝜐𝑡

)︂
,

𝑡− 𝑡𝜐2

𝑐2
=
𝑇

𝛾
+
𝜐

𝑐2
𝜉

𝛾
,

𝑡 = 𝛾

(︂
𝑇 +

𝜐𝜉

𝑐2

)︂
.

(B.78)

This allows to summarize the dimensional-dimensional transformation system as

(𝑖) 𝑥 = 𝛾(𝜉 + 𝜐𝑇 ),

(𝑖𝑖) 𝑦 = 𝜂,

(𝑖𝑖𝑖)𝑧 = 𝜁,

(𝑖𝑣) 𝑡 = 𝛾

(︂
𝑇 +

𝜐𝜉

𝑐2

)︂
.

(B.79)

It is obvious that Eq. (B.79) represents the inverse Lorentz–Einstein spacetime transformations in
special relativity [18, 22].

Case 2: The spacetime transformations under dimensional-dimensional system in the case that the frame
𝑘 moves at velocity 𝜐 in the opposite direction to increasing 𝑥-axis. Based in Eq. (B.79), we obtain

(𝑖) 𝑥̄ = 𝛾
(︀
𝜉 − 𝜐𝑇

)︀
,

(𝑖𝑖) 𝑦 = 𝜂,

(𝑖𝑖𝑖)𝑧 = 𝜁,

(𝑖𝑣) 𝑡 = 𝛾

(︂
𝑇 − 𝜐𝜉

𝑐2

)︂
.

(B.80)

Again, these transformations are the Lorentz–Einstein spacetime transformations in special
relativity [18, 22].

We then conclude that in both directions of the moving frame 𝑘, the resulting
spacetime transformations under dimensional-dimensional system are the Lorentz–Einstein spacetime
transformations in special relativity.

C. Consistency Results

C.1. Mass and Energy Equations under Standard-Dimensional Transformation System

In this section, we refer to the standard-dimensional transformation system as the equations which
govern the transformation of mass and energy in the spacetime. This relates the observed standard
values measured by an observer in the rest frame to the corresponding dimensional values in the moving
frame at velocity 𝜐.
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Case I: Moving frame 𝑘 at velocity 𝜐 in the direction of increasing 𝑥-axis. Assuming a particle has a mass
𝑚𝑔 in the frame K. According to Newton’s second law motion in the frame K, this particle is
affected by a force 𝑓 [26, 27]

𝑓 = 𝑚𝑔
𝑑2𝑥′

𝑑(𝑡′)2
. (C.1)

By differentiating Eq. (B.52) with respect to 𝑡′, we get

𝑑2𝑥′

𝑑(𝑡′)2
=

𝑑

𝑑𝑡′

(︃
𝑑𝜉
𝑑𝑇

𝛿2(𝜐)
+ 𝜐

)︃
=
𝑑𝑇

𝑑𝑡′
𝑑

𝑑𝑇

(︃
𝑑𝜉
𝑑𝑇

𝛿2(𝜐)
+ 𝜐

)︃
. (C.2)

By using 𝑡′ = 𝛿(𝜐)𝑇 , we then obtain

𝑑2𝑥′

𝑑(𝑡′)2
=

1

𝛿(𝜐)

𝑑

𝑑𝑇

(︃
𝑑𝜉
𝑑𝑇

𝛿2(𝜐)
+ 𝜐

)︃
=

1

𝛿3(𝜐)

𝑑2𝜉

𝑑𝑇 2
. (C.3)

Accordingly, we obtain that
𝑑2𝑥′

𝑑(𝑡′)2
=
[︁
1−

(︁𝜐
𝑐

)︁]︁ 3
2 𝑑2𝜉

𝑑𝑇 2
. (C.4)

If we assume that the particle was designated through that moment as being momentarily at rest
from an observer’s point of view in frame K and by using Eq. (B.52), then, the particle’s velocity
in relation to frame 𝑘 at that time becomes

𝜐 =
𝑑𝜉
𝑑𝑇

𝑑𝜉
𝑑𝑇

1
𝑐 − 1

. (C.5)

By substituting Eq. (C.5) into Eq. (C.4), we obtain

𝑑2𝑥′

𝑑𝑡′2
=

[︂
1−

(︂
𝑑𝜉

𝑑𝑇

1

𝑐

)︂]︂−3
2 𝑑2𝜉

𝑑𝑇 2
(C.6)

Also by substituting Eq. (C.6) into Eq. (??), the equation of motion in the frame 𝑘 reads

𝑓 = 𝑚𝑔

[︂
1−

(︂
𝑑𝜉

𝑑𝑇

1

𝑐

)︂]︂− 3
2 𝑑𝑢𝜉
𝑑𝑇

. (C.7)

The velocity of the particle in the frame 𝑘, is given as 𝑑𝜉/𝑑𝑇 = 𝑢𝜉. Then, Eq. (C.7) can be
rewritten as

𝑓 = 𝑚𝑔

(︁
1− 𝑢𝜉

𝑐

)︁− 3
2 𝑑𝑢𝜉
𝑑𝑇

. (C.8)

In the special case that 𝑢𝜉 = 𝜐, we arrive as

𝑓 = 𝑚𝑔

(︁
1− 𝜐

𝑐

)︁−3
2 𝑑𝑢𝜉
𝑑𝑇

. (C.9)

Back to the general situation, we suggest that

𝑑

𝑑𝑇

2𝑚𝑔𝑐(︀
1− 𝑢𝜉

𝑐

)︀ 1
2

=
𝑚𝑔(︀

1− 𝑢𝜉
𝑐

)︀ 3
2

𝑑𝑢𝜉
𝑑𝑇

. (C.10)

From Eqs. (C.8) and (C.10), we can reformulate the force 𝑓 under standard-dimensional
transformation system as

𝑓 =
𝑑

𝑑𝑇

⎛⎝2𝑚𝑔

(︁
𝑐
𝑢𝜉

)︁
𝑢𝜉√︁

1− 𝑢𝜉
𝑐

⎞⎠ . (C.11)

Consequently, we can derive the rate of the change in the momentum, i.e., the force. Now, the
mass of a particle in the frame 𝑘 can be determined,

𝑀𝑘 =

(︂
𝑐

𝑢𝜉

)︂
2𝑚𝑔√︁
1− 𝑢𝜉

𝑐

. (C.12)
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Case II: the frame 𝑘 moves at velocity 𝜐 in the opposite direction to the direction of increasing 𝑥-axis.
Similarly, by using the same method as in the previous case, but with transformations in the
opposite direction of the increasing 𝑥-axis, we determine the mass of a particle in the frame 𝑘,
whose velocity becomes 𝑢𝜉,

𝑀𝑘̄ =

(︂
𝑐

𝑢𝜉

)︂
2𝑚𝑔√︁
1− 𝑢𝜉

𝑐

. (C.13)

Consequently, the generalization of the mass transformation can be suggested as

𝑀𝑔𝑑 =
(︁ 𝑐
𝑢

)︁ 2𝑚𝑔𝑑√︀
1− 𝑢

𝑐

, (C.14)

where 𝑢 is the particle’s velocity, 𝑚𝑔𝑑 is the mass of the particle in the rest frame, while 𝑀𝑔𝑑 is
the mass of the particle in the moving frame. This specific transformation of mass should not be
mixed with the relativistic mass as dictated by special relativity.

Now, we can derive a relationship between mass and energy.

𝑑

𝑑𝑥′

(︃
2𝑚𝑔𝑑

(︀
2𝑐2 − 𝑐𝑢

)︀√︀
1− 𝑢

𝑐

)︃
= 𝑚𝑔𝑑

𝑑𝑢
𝑑𝑡(︀

1− 𝑢
𝑐

)︀ 3
2

. (C.15)

Since 𝑓 = (𝑚𝑔𝑑 · 𝑑𝑢/𝑑𝑡)/
(︀
1− 𝑢

𝑐

)︀ 3
2 , hence

𝑑

(︃
2𝑚𝑔𝑑

(︀
2𝑐2 − 𝑐𝑢

)︀√︀
1− 𝑢

𝑐

)︃
= 𝑓𝑑𝑥′. (C.16)

By integrating both sides, we derive the work

2𝑚𝑔𝑑

(︀
2𝑐2 − 𝑐𝑢

)︀√︀
1− 𝑢

𝑐

=

∫︁
𝑓𝑑𝑥′ ≡ Work. (C.17)

From the work-energy theorem [27], the energy can be obtained

Energy =
2𝑚𝑔𝑑

(︀
𝑐
𝑢

)︀ (︀
2𝑐𝑢− 𝑢2

)︀√︀
1− 𝑢

𝑐

. (C.18)

Since 𝑀𝑔𝑑 = 2𝑚𝑔𝑑

(︀
𝑐
𝑢

)︀
/
√︀
1− 𝑢

𝑐 , the energy can be expressed as

Energy =𝑀𝑔𝑑

(︀
2𝑐𝑢− 𝑢2

)︀
. (C.19)

We conclude that the energy in the moving frame is proportional to 𝑢. Its positiveness is
conditioned to 2𝑐 > 𝑢, which is obviously fulfilled in special relativity.

C.2. Schrödinger Equation under Standard-Dimensional Transformation System

The Schrödinger equation [28, 29, 30] can be expressed in the scenario where the spacetime
transformation relates the observer’s standard values in the stationary frame K to the corresponding
dimensional values in the frame 𝑘 which moves at velocity 𝜐 in the direction of increasing 𝑥-axis. We
assume that the potential 𝑉 can be solely determined by the ”position”.

𝑖ℏ
𝜕

𝜕𝑡′
𝜓 (𝑥′, 𝑡′) =

−ℏ2

2𝑚

𝜕2

𝜕 (𝑥′)
2𝜓 (𝑥′, 𝑡′) + 𝑉 (𝑥′)𝜓 (𝑥′, 𝑡′) . (C.20)

The solutions 𝜓 (𝑥′, 𝑡′) = 𝐴 exp[𝑖(𝜅 · 𝑥′ − 𝜔 · 𝑡′)] satisfy Schrödinger equation, where 𝐴 is a constant,
𝜅 = 𝜔/𝑐 is wave number and 𝜔 is angular frequency. Then, Eqs. (B.44) leads to

𝜓 (𝑥′, 𝑡′) = 𝜓

(︂
𝜉

𝛿(𝜐)
+ 𝛿(𝜐)𝜐𝑇, 𝛿(𝜐)𝑇

)︂
= 𝐴 exp

{︂
𝑖

[︂(︂
𝜅

𝛿(𝜐)

)︂
𝜉 − [𝜔𝛿(𝜐)− 𝜅𝛿(𝜐)𝜐]𝑇

]︂}︂
. (C.21)
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When assuming 𝑎 = 𝜅/𝛿(𝜐) and 𝑏 = 𝜔𝛿(𝜐)− 𝜅𝛿(𝜐)𝜐, we obtain

𝜓 (𝑥′, 𝑡′) = 𝐴 exp [𝑖 (𝑎𝜉 − 𝑏𝑇 )] . (C.22)

Now 𝑏 can be reexpressed as

𝑏 = 𝜔𝛿(𝜐)− 𝜅𝛿(𝜐)𝜐 = 𝜅𝛿(𝜐)(𝑐− 𝜐) =
𝜅

𝛿(𝜐)
𝛿(𝜐)(𝑐− 𝜐)𝛿(𝜐)

= 𝑎𝑐
(︁
1− 𝜐

𝑐

)︁ 1

1− 𝜐
𝑐

.

Hence, we find that 𝑏 is scaled by the speed of light, 𝑐,

𝑏 = 𝑐 𝑎. (C.23)

From Eq. (C.23), we realize that 𝐴 exp[𝑖(𝑎𝜉 − 𝑏𝑇 )] solves the Schrödinger equation in 𝜉 and 𝑇 ,

𝐴 · exp [𝑖 (𝑎𝜉 − 𝑏 · 𝑇 )] = 𝜓 (𝜉, 𝑇 ) , (C.24)

i.e., the solution represents an optical wave function of 𝜉 and 𝑇 . From Eq. (C.22) and Eq. (C.24).

𝜓 (𝑥′, 𝑡′) = 𝜓 (𝜉, 𝑇 ) . (C.25)

By substituting Eq. (C.25) and (iv) in Eq. (B.44), we obtain

𝑖ℏ
𝜕

𝜕𝑡′
𝜓 (𝑥′, 𝑡′) =

1

𝛿(𝜐)
𝑖ℏ

𝜕

𝜕𝑇
𝜓 (𝜉, 𝑇 ) . (C.26)

By differentiating (i) in Eq. (B.44) with respect to 𝜉, we find that

𝜕𝑥′
𝜕𝜉

=
1

𝛿(𝜐)
. (C.27)

Hence,

𝜕𝜔

𝜕𝜉
=

1

𝛿(𝜐)

𝜕𝜔

𝜕𝑥′
, (C.28)

𝜕2𝜔

𝜕𝜉2
=

1

𝛿2(𝜐)

𝜕2𝜔

𝜕(𝑥′)2
. (C.29)

According to the transformations introduced in section C.1, we conclude that the Newton’s second law,
𝑓 = 𝑚𝑔[𝑑

2𝑥′/𝑑(𝑡′)2], in the frame K becomes

𝑓 = 𝑚𝑔

[︂
1−

(︂
𝑑𝜉

𝑑𝑇

1

𝑐

)︂]︂− 3
2 𝑑𝑢𝜉
𝑑𝑇

. (C.30)

Consequently, we express the transformation of the mass 𝑚 from the frame K to the frame 𝑘, i.e.,

𝑚|frameK → 𝑚
(︁
1− 𝑣

𝑐

)︁− 3
2

⃒⃒⃒⃒
frame 𝑘

. (C.31)

From Eqs. (C.26), (??), and (C.31), we get

−ℏ2

2𝑚

𝜕2

𝜕 (𝑥′)
2𝜓 (𝑥′, 𝑡′) =

−ℏ2

2𝑚
𝛿(𝜐)−3 𝜕

2

𝜕𝜉2
𝜓 (𝜉, 𝑇 ) 𝛿2(𝜐). (C.32)

According to the relation 𝑥′ = 𝜉/𝛿(𝜐) + 𝛿(𝜐)𝜐𝑇 , we note that 𝑥′ can be represented as a summation of
two parts. The first part is 𝜉/𝛿(𝜐), which is the value assigned to 𝑥′ in the frame 𝑘. The second part is
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𝛿(𝜐)𝜐𝑇 , which is the value that results from the movement of frame 𝑘. Therefore, the potential energy
𝑉 (𝑥′) in the frame K can be related to the potential energy 𝑉 (𝜉/𝛿(𝜐)) in the frame 𝑘,

𝑉 (𝑥′) =
1

𝛿(𝜐)
𝑉 (𝜉). (C.33)

From Eqs. (C.26), (C.32), and (C.33), we get

𝑖ℏ
𝜕

𝜕𝑇
𝜓(𝜉, 𝑇 ) =

−ℏ2

2𝑚

𝜕2

𝜕𝜉2
𝜓(𝜉, 𝑇 ) + 𝑉 (𝜉)𝜓(𝜉, 𝑇 ). (C.34)

We conclude that the Schrödinger equation under standard-dimensional transformation system is
invariant. Also, this finding obviously demonstrates that the second assumption in section A is upheld
by the Schrödinger equation.

D. Conclusions and Outlook

The recently observed violations of some principles of special relativity such as Lorentz invariance
violation and modified dispersion relations urged theoretical interpretations. We suggest alternative
transformation systems preserving the current version of special theory but taking into consideration that
Einstein’s original ideas about ”time” and ”space” and also his distinction between ”position” and ”place”.
The proposed theory extends the standard-standard transformation system. The standard-dimensional
transformation system suggested combines the dimensional-dimensional transformation system which
corresponds to the typical Lorentz–Einstein transformation and the standard-standard transformation
system.

The key ingredient is whether the observer able to monitor the movement trajectory (standard
values time and space are perceived) or not (dimensional values time and space are then perceived).
Accordingly, standard-standard transformation system from the standard values of a stationary frame
to the standard values of a moving frame, standard-dimensional transformation system from standard
values of a stationary frame to dimensional values of a moving frame or vice verse, i.e., dimensional-
standard transformation system and finally dimensional-dimensional transformation system from the
dimensional values of a stationary frame to the dimensional values of a moving frame can be
defined. We conclude that the standard-dimensional transformation system combines both dimensional-
dimensional system, which is typical to the Lorentz–Einstein transformation and the standard-standard
transformation system. In this regard, we find that the relationship between the standard values in
a stationary frame and the ones in a moving frame seems to rely on a velocity function 𝛿(𝑣). This
means that the velocity at which the dimensional frame moves plays a crucial role. Therefore, even
the velocity transformations of this velocity under the standard-dimensional transformation system are
found 𝛿(𝑣)-dependent.

Under standard-dimensional transformation system, we conclude that the Maxwell spherical wave
equation remains unchanged although this type of spacetime transformations. This observed invariance
is conditioned to the motion within the moving frame in the rays are parallel to the 𝑥-axis and moving
at speed of light. We conclude that straight rays manifest the particle-nature of light. We found that the
dimensional-dimensional transformation system is identical to the typical Lorentz–Einstein spacetime
transformation. Also, we conclude that the spacetime transformations under standard-dimensional
system adheres the assumption that the physical laws are straightforwardly subject to the standard-
dimensional transformational system.

For the mass and energy equations of a free particle under the standard-dimensional transformation
system, we conclude that both quantities in both standard and dimensional frames depend on the velocity
of the free particle and that of the moving frame. Another implication, we discussed, is the Schrödinger
equation under standard-dimensional transformation system. We conclude that the Schrödinger equation
remains invariant, which means that assumption of speed of light is upheld by the Schrödinger equation.
Further implications, especially where special relativity is challenged, shall be carried out elsewhere
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