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1. Introduction

The spectral coverage of Earth-bound interferometric detectors of gravitational waves (GW),
including LIGO [1], Virgo [2] and KAGRA [3] is set by seismic noise and laser shot noise, at low
(≲ 20Hz) and high (≳ 200Hz) frequencies, respectively. The noise level in the core (20 − 200H𝑧)
observation-band is presently dominated by thermal noise in the highly reflecting (HR) coatings of the
test masses terminating the optical cavities that make the interferometer arms. A typical 2nd-generation
GW detector noise budget is shown in 1.
Coating thermal noise must be suitably reduced, to extend the detectors’ range, and is needed to take
advantage of already well developed quantum-noise reduction strategies [4].
Efforts to reduce coating thermal noise are ongoing, following different directions. This paper aims to
provide a short, yet up-to-date summary of the relevant research lines and achievements, including key
references to the topical Literature.
The needed modeling tools are summarized in Appendix-A and -B, where the relevant notation is
introduced.

*Работа частично поддерживается «Национальным институтом ядерной физики» (INFN), Италия (проект Virgo).
Work funded by "Istituto Nazionale di Fisica Nucleare"(INFN) of Italy (Virgo project).
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Рис. 1. Left: projected noise budget of 2nd generation GW detector (LIGO doc. P0900115). The strain
amplitude spectral density and the observation bandwidth determine the detector sensitivity and its visibility
range. Right: the aLIGO mirrors coated at CNRS-LMA (Lyon, FR); the coatings are deposited on 35cm⊘, 20cm
thick fused silica substrates.

2. Materials and Methods

HR coatings consist of 𝑁𝑇 homogeneous plane dielectric layers laid on a homogeneous half-space
(substrate), as sketched in Figure A1, placed in high-vacuum.
Candidate coating materials, and coating design optimization methods are discussed below.
More radical routes to coating thermal noise (CTN) reduction include coating-free mirrors [5], compound
mirrors [6] , and grating/diffractive reflectors [7]. These would require substantial modifications to
existing detectors.

2.1. Coating Materials

The simplest reflective coating design consists of stacked identical pairs of high (H) and low (L)
refractive index layers, each pair (doublet) having a total phase thickness of 𝜓𝐻 + 𝜓𝐿 = 𝜋 (Bragg
condition) [8]. Using Appendix-A it is easily shown that the minimum number 𝑁𝐷 of doublets for which
the coating transmittance at a reference wavelength does not exceed a prescribed value is a non-increasing
piecewise-constant function of the dielectric contrast 𝑛𝐻/𝑛𝐿, which is minimum for 𝜓𝐻 = 𝜓𝐿 = 𝜋/2,
i.e., for quarter-wavelength (QWL) layers.
On the other hand, as seen from eq. (B.1) of Appendix-B, coating thermal noise increases monotonically
with the total metric thickness of the (L) and (H) layers, and the material noise-coefficients (B.2).
It is thus seen that “good” coating material pairs should feature a large optical contrast, and small
noise-coefficients (B.2).

2.1.1 Material Downselection

Early material downselection surveys [9], [10] found that 𝑆𝑖𝑂2 and 𝑇𝑎2𝑂5 were the best available
option for the L and H materials, featuring also low optical absorption (required to limit thermal
deformation of the mirrors [11]) and diffusion. The introduction of 𝑇𝑖-doped (co-sputtered) 𝑇𝑎2𝑂5 was
an important step forward [12], yielding a substantial (roughly −30%) reduction of CTN power spectral
density (PSD). Other material mixtures were tried, but failed to meet all needed requirements in terms
of mechanical losses (thermal noise), optical absorption and scattering [13], with the notable exception
of 𝑆𝑖𝑂2 : 𝑇𝑖𝑂2 [14]. A 2010 review of candidate coating materials, for use at ambient or cryogenic
temperatures, can be found in [15].
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2.1.2 Exploratory Material Searches

The range of optical coating materials for HR coatings is wide, and includes many oxides, halides,
chalcogenides, nitrides, carbides, and a few amorphous metalloids. An exhaustive characterization of
such materials and mixtures would require decades, and be fairly expensive.
Only a few beyond those already mentioned have been investigated so far, including, e.g., 𝑀𝑔𝐹2 [16],
𝐴𝑙𝐹3 [17], 𝑆𝑖𝐶 [18] and 𝐺𝑎𝑁 [19].
Also, a number of co-sputtered mixtures, besides 𝑇𝑖 : 𝑇𝑎2𝑂5, have been characterized, including, e.g.,
𝑆𝑖𝑂2 :𝐻𝑓𝑂2 [20], 𝑆𝑐2𝑂3 :𝑇𝑎2𝑂5 [21], 𝑇𝑖𝑂2 :𝑁𝑏2𝑂5 [22], 𝑍𝑟𝑂2 :𝑇𝑎2𝑂5 [23], and 𝑍𝑟𝑂2 :𝑇𝑖𝑂2 :𝑇𝑎2𝑂5

[24]. See [25], [26] for comprehensive reviews of viable options. As of today, 𝑇𝑖 : 𝑇𝑎2𝑂5 and 𝑆𝑖𝑂2 are
still used in all working detectors.
In the last couple of years, much hope and effort has been put into the development of 𝑇𝑖𝑂2 :𝐺𝑒𝑂2

mixtures [27],[28]. Coating prototypes using 𝑇𝑖𝑂2 :𝐺𝑒𝑂2/𝑆𝑖𝑂2 doublets recently achieved remarkably
low noise levels, a factor ≈ 0.5 lower in terms of PSD compared to the current 𝑇𝑖 :𝑇𝑎2𝑂5/𝑆𝑖𝑂2 based
aLIGO design [29]. This is not far from the 0.25 design goal of aLIGO+, but optical absorption is still
too high (by a factor ≈ 2), and defects (bubbles, cracks, delamination) and aging phenomena have been
observed [30], whose origin and remediation are not yet fully understood.
Titania-Silica (𝑇𝑖𝑂2 :𝑆𝑖𝑂2) mixtures could be another option, perhaps less-critical, and are also under
active development [31].

2.1.3 Nanolayered Mixtures

Nanolayered metamaterials are an alternative to co-sputtered mixtures. Modeling their relevant
optical and viscoelastic properties is straightforward [32], and their technology faces almost no challenge.
Nanolayering 𝑆𝑖𝑂2 : 𝑇𝑖𝑂2 was shown in [33] to hinder crystallization of 𝑇𝑖𝑂2 during post-deposition
annealing, thus preventing the ensuing blow-up of optical (and mechanical) losses 1.
It was further found that in nanolayered 𝑆𝑖𝑂2 :𝑇𝑖𝑂2 films the mechanical loss-peak observed in Silica
films at cryogenic temperatures is almost suppressed [35], [36]. Nanolayered mixtures with high and low
refractive index have been discussed [37], [38].
Nanolayered films have been deposited by several Groups. The key role of glass-forming (Silica)
nanolayers in preventing interdiffusion has been noted [39]. It has been confirmed that, for some
materials, nanolayered mixtures may exhibit lower mechanical losses than their (isorefractive)
cosputtered counterparts [40].
In a solid-state perspective, nano-layering can be seen as a wavefunction-confinement strategy, providing
a simple band-gap engineering tool, whereby both the refractive index and the extinction coefficient of
the composite can be tuned almost indendently over relatively wide ranges [41].

2.1.4 Mixture Modeling and Process Engineering Tools

Effective medium theories (EMT) [42] provide a simple yet accurate modeling tool to predict the
optical properties of mixtures [43]. A formal extension of EMT to visco-elastic properties was formulated
in [44], and used in [45] to model 𝑇𝑖 :𝑇𝑎2𝑂5.
At a more fundamental level, our working knowledge of optical and viscoelastic properties and their
interplay [46], [47] is improving, thanks to progress in molecular modeling [48], [49] that sheds light
into the link between microscopi structure/morphology and macroscopic properties, [50]-[52], and in
perspective, may suggest criteria for engineering the materials [53].
Molecular/atomistic modeling has been recently used to simulate film deposition processes [54]-[56].
This may help understanding the non obvious observed dependence of coating properties on deposition

1Early coating prototypes based on 𝑇 𝑖𝑂2/𝑆𝑖𝑂2 Bragg doublets were spoiled by almost complete crystallization after
annealing [34].
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technology, assisting gases, substrate heating, etc., and allow for considerable time saving in process
optimization.

2.1.5 Material Metrology

Research on optical coating materials for interferometric GW detectors triggered important
advances in the related Metrology.
The development of techniques [57], [58] for measuring extremely low optical absorption (photon common
path interferometry, PCPI) and scattering [59], the invention of new strategies for measuring the
thermoelastic and thermorefractive coefficients in thin films and multilayers [60], [61], the introduction of
improved setups for multi-mode mechanical ringdown measurement in thin films [62] and the extraction
of bulk and shear elastic moduli thereof [63], and of reliable instruments for the direct measurement
of the thermal noise power spectral density in HR optical coatings and optical thin films [64]-[68] are
noteworthy examples.

2.1.6 Crystalline Coatings

High-stakes research work has been focused on crystalline materials, offering a potential large
reduction of thermal (Brownian) noise [69] in HR coatings. Two possible material options have been
explored so far : 𝐺𝑎𝑃/𝐴𝑙𝐺𝑎𝑃 doublet-stacks grown on (lattice-matched) 𝑐-Silicon substrate - see [70]-
[72], and 𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠 doublet-stacks grown on 𝐺𝑎𝐴𝑠 and substrate-transferred [73] - see [74] for a
recent status report, and a review of relevant technological challenges.
It has been long assumed that thermal noise in crystalline coatings would be dominated by thermo-
optic (TO) and photo-thermal (PT) fluctuations. The thermoelastic and thermorefractive components
of TO and PT noise [75] may cancel out in part, insofar as they add coherently [76], and cancellation
can be maximized by suitably optimizing the layer thicknesses [77]. However, recent measurements in
𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠 coatings found additional birefringence-related extra noise [78], and highly spatially-
correlated excess-noise [79], that need to be addressed 2.

2.1.7 Silicon Nitrides

Silicon Nitride films have been proposed as candidate materials for both the H and L layers in
binary coatings [80]. Plasma-enhanced chemical vapor deposition (PECVD - a technology that has
almost no substrate-size limitations) can be used to produce non-stoichiometric 𝑆𝑖𝑁𝑥 films with flexible
composition, yielding a wide range of refractive indexes, with fairly low mechanical loss angles (𝜑 ≲

10−4).
A recently introduced 𝑁𝐻3-free PECVD process has further improved the material parameters. Films
with 𝑛 ≈ 2.68 and 𝜅 ≈ 1.2 · 10−5 @1550nm, with 𝜑 ≲ 10−4 down to cryogenic temperatures have been
produced [81].
Silicon Nitrides deposited via IBS [25] and IBD [82] are being developed too, and look promising.

2.1.8 Amorphous Silicon

Amorphous silicon has been indicated as an excellent candidate for multimaterial coatings [83]-
[87], featuring a large refractive index (𝑛 = 3.5@1550nm), and low mechanical losses, both at ambient
(𝜑 ≈ 10−4 at 290K) and cryogenic temperatures (𝜑 ≈ 2 · 10−5 @ 20K).
Current efforts are focused on reducing its optical absorption [88], and increasing its maximum annealing
temperature [89]. As noted in Section 3, 𝑎𝑆𝑖 could be an effective ingredient for ternary coatings even
assuming its optical extinction to remain relatively large (e.g., 𝜅 ≈ 10−3); however, increasing its
maximum annealing temperature is mandatory, in order to bring the mechanical losses of the other

2Spatial fluctuations correlation across the coating face would make the use wide beams ineffective to reduce noise.
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materials in the coating to comparably (low) values.
As a conclusion, several options exist, with different degrees of reliability and knowledge, for future
coating materials, both at ambient and cryogenc temperatures. As of today, Silica and Ti-doped Tantala
remain the best known and reliable candidates low- and high-index materials. However, new materials
may provide better performances, once stable and reliable deposition protocols are found, especially if
used in the advanced optimized designs discussed in the next sub-Section.

2.2. Coating Design Optimization

An early insightful analysis of HR binary coatings consisting of identical cascaded doublets of lossy
dielectrics, aimed at determining the doublet structure and the number of doublets yielding the largest
reflectance at a given wavelength was introduced by Zel’dovich and Vinogradov [90].
The more general case of 𝑚-ary coatings consisting of stacked 𝑚-tuplets of 𝑚 > 2 lossy dielectrics was
later studied by Larruquert in a series of papers [91]-[93]. He notably pointed out that in order to achieve
the largest reflectance, the materials in each 𝑚-tuplet should be orderd so as to turn clockwise in the
complex refractive-index plane when moving toward the substrate from one layer to the next in each
𝑚-tuplet.
In the present context the optimization goal is minimizing coating thermal noise at some assigned
transmittance, while also keeping coating absorbance below some prescribed level, and the previous
results are not directly applicable.
Robust (genetic) optimization shew that even in this case, the optimal (binary) coating design consists
of almost identical stacked quasi-Bragg doublets, where the thickness of the noisier material (𝑇𝑖 :𝑇𝑎2𝑂5,
at the time of the study) is trimmed to the advantage of the other one (𝑆𝑖𝑂2). Only a few layers near
the coating top and bottom may deviate (slightly) from the above regularity in the optimized design,
and can be adjusted sequentially [94]. This suggested a simple iterative coating design procedure [8] that
was experimentally validated [95], and eventually adopted to build the aLIGO mirrors [96] used in the
first GW observations [97]. A more refined analysis, including subtler effects in [98], led to equivalent
results.
Some general bounds to the noise reduction (compared to the simplest QWL design) achievable by the
above optimization were obtined in [99].

3. Ternary Coatings: Rationale and Early Results

Using three different materials in HR oatings for GW detectors was first suggested in [100], [101],
in connection with the development of 𝑎𝑆𝑖, and demonstrated in [103].
Denote as 𝐿, 𝐻 and 𝐻 ′ three different materials, and assume that

𝑛𝐻′/𝑛𝐿 > 𝑛𝐻/𝑛𝐿, 𝑏𝐿 < 𝑏𝐻′ < 𝑏𝐻 , 𝜅𝐻′ ≫ 𝜅𝐻 ∼ 𝜅𝐿. (3.1)

where 𝑛 − 𝚤𝜅 is the complex refractive index, and 𝑏 the noise coefficient (B.2). In view of (3.1) a
coating using [𝐿|𝐻 ′] doublets would exhibit lower mechanical losses (hence noise) but larger absorbance
compared to a coating using [𝐿|𝐻] doublets feauring the same transmittance.
The basic idea proposed in [100], [101] is using 𝐻 ′ only in the doublets close to the substrate, where the
field intensity is sufficiently low to make the larger extinction coefficient of 𝐻 ′ harmless 3. The resulting
coating will thus consists of a stack of 𝑁𝑡 doublets [𝐿|𝐻] laid on top of a stack of 𝑁𝑏 doublets [𝐿|𝐻 ′].
In the simplest case, all layers can be QWL (i.e., with phase thickness 𝜋/2), and the design optimization
problem has only two degrees of freedom, (𝑁𝑡, 𝑁𝑏).
By analogy with the binary case, a better coating design may be obtained by assuming the phase
thicknesses

𝜓𝐿,𝐻 = 𝜋/2(1± 𝜉), 𝜓𝐿,𝐻′ = 𝜋/2(1± 𝜉′),with 𝜉, 𝜉′ ∈ (0, 1( (3.2)
3It was also suggested to put a crystalline layer (or a few high-contrast, low-noise doublets) on top of the coating stack,

to further reduce the field transmitted beyond the first layers [102].
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whereby all doublets fulfill the Bragg condition. In this case the design/optimization problem has four
degrees of freedom (𝑁𝑡, 𝑁𝑏, 𝜉, 𝜉

′).
The performance of doublet-based ternary designs has been discussed in [104], where also the more
general cases of quasi-Bragg doublets, and end-layer tweaked stacks have been considered, and shown to
provide only marginally better results. The main results of the analysis in [104] are illustrated in Figure
2, that refers to optimized ternary coatings with QWL layers, using 𝑆𝑖𝑂2 (𝐿), 𝑇𝑖 :𝑇𝑎2𝑂5 (𝐻), 𝑎𝑆𝑖 (𝐻 ′)
on 𝑐𝑆𝑖 substrate operating at 1550 nm. The figure shows the calculated coating thermal noise reduction
factor (w.r.t. the current aLIGO design), for different values of the 𝐻 ′ extinction coefficient, under the
constraints 𝜏𝐶 ≤ 6ppm and 𝛼𝐶 ≤ 1ppm.. Each design is identified by the couple of integers (𝑁𝑡, 𝑁𝑏)
representing the number of QWL doublets in the top and bottom stack.
The noise reduction achievable by the triplet-based optimal design discussed in the next Section is also
shown for comparison. Note that noise reduction is quite effective even for relatively large values of the
the extinction coefficient 𝜅𝐻′ .
Prototypes of optimized 𝑆𝑖𝑂2/𝑇 𝑖 :𝑇𝑎2𝑂5/𝑆𝑖𝑁𝑥 QWL coatings have been deposited and characterized

Рис. 2. Coating thermal noise PSD reduction factor (w.r.t. the current aLIGO design) for Silica/Ti-doped
Tantala/𝑎Silicon based ternary coatings with QWL layers, vs log of extinction coefficient of 𝑎𝑆𝑖. Three different
operating temperatures (290, 120, and 20 K) are considered. The red markers refer to the optimized triplet-based
design discussed in Section 3.2.

at LMA-CNRS, and their thermal noise has been measured using the MIT-CTN facility, with promising
results [105].

3.1. Multiobjective M-ary Coating Optimization

Optimizing the design of 𝑀 -ary coatings with 𝑀 > 2 without any prior assumption on the coating
structure requires a more general approach.
A coating design is fully specified by the set

𝒟 = {(𝑚𝑘, 𝛿𝑘)|𝑘 = 1, 2, . . . , 𝑁𝑇 } (3.3)

where 𝑚𝑘 ∈ N identifies the material making the 𝑘−th layer, out of a finite list of candidates, and
𝛿𝑘 ∈ (0, 1/2) is the optical thickness of the 𝑘−th layer. As already stated, the sought optimal design
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should minimize coating thermal noise (i.e., the coating loss angle 𝜑𝐶) subject to the constraints4

𝜏𝐶 ≤ 𝜏0, 𝛼𝐶 ≤ 𝛼0 (3.4)

with typical (LIGO) values 𝜏𝐶 = 6ppm and 𝜏𝐶 = 1ppm.
This a constrained/multi-objective optimization problem with conflicting requirements. Such problems
are most conveniently managed by constructing their Pareto (or tradeoff) manifold P [106]. In our case,
P is a 2D-surface in the 3D-space (𝜏𝐶 , 𝛼𝐶 , 𝜑𝐶) (objective-space). Each point of P corresponds to a
coating design (a point in the design space) for which (3.4) are met; different points represent different
tradeoffs among the conflicting requirements. The manifold P is the set of all non-dominated designs,
i.e., those designs that are better than any other in terms of at least one objective, and not worse in
terms of all other objectives.
Constructing the Pareto manifold is nontrivial: exhaustive sampling of the design space is unaffordable
due to the combinatorial blow-up of the computational burden with the number of layers, and candidate
materials. To attack the problem, meta-heuristics are used [107]- a branch of experimental (i.e., computer
aided) Mathematics, that uses an arsenal of robust algorithmic tools like, e.g., evolutionary [108] and
co-operative-agent [109] engines, to sample the manifold P as densely/uniformly as possible/needed,
capitalizing on the accumulating knowledge about its structure.
To obtain the ternary optimized designs illustrated in the next Subsection we used a state-of-the-art
meta-heuristics based tool [110], freely available to non-commercial users [111], that allows to set the
desired resolution along each direction in the (𝜏𝐶 , 𝛼𝐶 , 𝜑𝐶) space.
A typical Pareto manifold is shown in Figure 3, for the special case of a ternary coating using 𝑆𝑖𝑂2,
𝑇𝑖 : 𝑇𝑎2𝑂5 and 𝑎𝑆𝑖 with 𝑐𝑆𝑖 substrate working at 𝜆 = 1550𝑛𝑚 and 𝑇 = 20𝐾. The manifold sections
with 𝜏𝐶 = 6ppm and 𝛼𝐶 = 1ppm are also shown, illustrating the corresponding tradeoff curves.

Рис. 3. Ternary coating using 𝑆𝑖𝑂2, 𝑇 𝑖 : 𝑇𝑎2𝑂5 and 𝑎𝑆𝑖 with 𝑐𝑆𝑖 substrate working at 𝜆 = 1550𝑛𝑚 and
𝑇 = 20𝐾. Left: computed Pareto manifold in the objective space (𝜑𝐶 is the coating loss angle scaled to the
current aLIGO one). Right: its sections 𝜏𝐶 = 6ppm and 𝛼𝐶 = 1ppm.

4Further constraints, e.g., requiring moderate reflectance at a second wavelength (for alignment purposes) and/or a
reflection coefficients phase close to 𝜋 at the working wavelength (so as to minimize the electric field on the coating face,
and reduce contamination) may be also enforced.
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3.2. Some New Results and Discussion

A systematic study of optimized ternary coatings using 𝑆𝑖𝑂2 as the low-index (L) material, 𝑎𝑆𝑖 or
𝑆𝑖𝑁𝑥 for the large-extinction high-index material (H’), and different (𝑇𝑖 :𝑇𝑎2𝑂5, 𝑇 𝑖 : 𝑆𝑖𝑂2, 𝑇 𝑖 : 𝐺𝑒𝑂2)
for the high-index low extinction material (H) is ongoing, in the above described framework, based on
the above framework and tools. A preliminary account can be found in [112].
The typical structure of an optimized ternary coating is illustrated in Figure 4. It consists of triplets
[𝐿|𝐻|𝐻 ′] satisfying Larruquert criterion. Close to the coating top and the substrate, the triplets
degenerate into [𝐿|𝐻] and [𝐿|𝐻 ′]doublets, respectively. In between, there is a group of bridging triplets
where as we move toward the substrate, the 𝐻 layers get thinner, while the 𝐻 ′ ones become thicker.

Рис. 4. Left: Typical structure of optimized ternary coating. The simulation assumes a 𝑐𝑆𝑖 substrate and
𝑇 = 20𝐾. The calculated coating thermal noise PSD reduction factor w.r.t. the current aLIGO design is ≈ 0.126.
Right: transmittance vs wavelength. Additional requirements on a second reflectance window, and on the phase
of Γ𝐶 at the working wavelength are satisfied.

The calculated CTN PSD reduction factor of a number of ternary coatings (both doublet and triplet
based) using 𝑆𝑖𝑂2, 𝑇𝑖 : 𝑆𝑖𝑂2 and 𝑎𝑆𝑖 are collected in the following Table. As anticipated, the CTN

Таблица 1. Table I - CTN PSD reduction factor of some optimized ternary coatings fulfilling (3.4) w.r.t. the
current aLIGO design.

reduction is quite good (and reaches the aLIGO+ goals) even for relatively large values of the 𝑎𝑆𝑖

optical extinction.
As a conclusion, we stress that optimized multimaterial coatings may achieve superior performances
in terms of CTN, under the given transmittance and absorbance requirements, compared to binary
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coatings, using new materials at their present stage of development.

4. Conclusion and Recommendations

The science of HR coatings with extremely faible thermal noise has been developing in the last
few years, driven by the GW detectors’ Community. Its application potential is however not limited to
GW detectors, but impacts several fields, including optical frequency standards, ultra-stable clocks, and
estreme Metrology at large.
Substantial efforts have been made during the last two decades, and important results have been
achieved. Many research directions and tools remain to be explored, though. Studying the properties of
more glass-forming materials, e.g., 𝑇𝑒𝑂2, and using powerful material modeling tools like, e.g., Kramers-
Konig and universal-relaxation relationships may offer new insight into the physics of low-noise optical
coatings, and open new directions.
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Appendix A - Coating Reflection and Absorption

Let the coating operate in vacuum, and consist of 𝑁𝑇 homogeneous plane layers laid on a
homogeneous half-space, as sketched in Figure A1.

Рис. A1. Coating structure and notation

For a monochromatic, locally plane-wave with normal incidence, the transmission matrix of the 𝑚-th
layer is [8]

T𝑚 =

⎡⎣ cos (𝜓𝑚) (𝚤/�̃�𝑚) sin (𝜓𝑚)

𝚤�̃�𝑚 sin (𝜓𝑚) cos (𝜓𝑚)

⎤⎦ , (A.1)

where
𝜓𝑚 =

2𝜋

𝜆0
�̃�𝑚𝑑𝑚, (A.2)

is the layer (complex) phase-thickness, 𝑑𝑚 being its metric thickness,

�̃�𝑚 = 𝑛𝑚 − 𝚤𝜅𝑚, (A.3)
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its complex refractive index, and 𝜆0 the free-space wavelength 5. An exp(𝚤𝜔0𝑡) time dependence is
understood. The transmission matrix (A.1) connects the electromagnetic fields at the input (left, in
Figure A1) and output (right) face of the 𝑚-layer as follows:[︃

𝐸(𝑚)

𝑍0𝐸
(𝑚)

]︃
= T𝑚

[︃
𝐸(𝑚+1)

𝑍0𝐻
(𝑚+1)

]︃
, (A.4)

𝑍0 being the free-space characteristic impedance.
The coating optical response is fully described by its transmission matrix T,

T = T1 ·T2 · · · · ·T𝑁𝑇
. (A.5)

The equivalent (complex) refractive index of the whole substrate-terminated coating is,

�̃�𝐶 =
𝑇21 + �̃�𝑆𝑇22
𝑇11 + �̃�𝑆𝑇12

, (A.6)

whence the coating reflection coefficient and power transmittance can be written:

Γ𝐶 =
1− �̃�𝐶
1 + �̃�𝐶

, 𝜏𝐶 =
𝒫in
𝒫+

= 1− |Γ𝑐|2, (A.7)

𝒫in being the power density (power per unit area) flowing into the coating face, and 𝒫+ the power
density of the incident wave,

𝒫+ =
1

2𝑍0
|𝐸inc|

2. (A.8)

The power density dissipated in the coating is

𝒫𝑖𝑛 − 𝒫𝑜𝑢𝑡, (A.9)

where
𝒫out =

1

2
Re[𝐸(𝑆)𝐻(𝑆)*] (A.10)

is the power density flowing into the substrate, 𝐸(𝑆) and 𝐻(𝑆) being the electric and magnetic fields at
the coating/substrate interface,[︃

𝐸(𝑆)

𝑍0𝐻
(𝑆)

]︃
= T−1

[︃
𝐸(0)

𝑍0𝐻
(0)

]︃
= T−1

[︃
𝐸inc(1 + Γ𝐶)

𝐸inc(1− Γ𝐶)

]︃
. (A.11)

The coating absorbance is therefore

𝛼𝐶 =
(𝒫in − 𝒫out)

𝒫+
. (A.12)

Typical design values for the HR coatings of interferometric detectors of gravitational waves are
𝜏𝐶 ≈ 5𝑝𝑝𝑚 and 𝛼𝐶 ≈ 1𝑝𝑝𝑚. Transmittance affects the light-storage time (and bandwidth) and
the effective optical path-length (and minimum detectable GW geodetic deviation) of the detector;
absorbance originates thermal-lensing mirror distortion, that should be actively compensated to avoid
alignment loss [115].

Appendix B - Coating Thermal Noise

The power spectral density (PSD) of coating thermal noise can be derived from the fluctuation-
dissipation theorem [116].
Coating thermal noise has multiple origins [117], [118]. We restrict here to Brownian noise, which turns
out to be dominant for amorphous metal-oxides based coatings, and assume the same coating structure

5Running GW detectors use a 1064nm laser sources; future interferometers may use 1550nm [113] or 2000nm sources
[114].
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as in Figure A1.
The frequency dependent power spectral density 𝑆(𝐵)

coat(𝑓) of coating thermal noise can be written :

𝑆
(𝐵)

coat(𝑓) =
2𝑘𝐵𝑇

𝜋2𝑤2𝑓

𝑁𝑇∑︁
𝑘=1

𝑏𝑘𝑑𝑘, (B.1)

where 𝑘𝐵 is Boltzmann constant, 𝑇 the (absolute) temperature, 𝑤 the (assumed Gaussian) laser-beam
waist, 𝑓 the frequency, 𝑑𝑘 the metric thicknesses of the 𝑘-th coating layer, and

𝑏𝑘 =
𝜑𝑘
𝑌𝑆

[︂
𝑌𝑆
𝑌𝑘

(1 + 𝜈𝑘)(1− 2𝜈𝑘)

1− 𝜈𝑘
+
𝑌𝑘
𝑌𝑆

(1 + 𝜈2𝑆)(1− 2𝜈2𝑆)

(1− 𝜈2𝑘)

]︂
, (B.2)

𝜑, 𝑌 and 𝜈 being the mechanical loss angle and the elastic Young and Poisson moduli, and the suffixes
𝑘 and 𝑆 referring to the 𝑘-th layer and the substrate, respectively.
Equation (B.1) is often rewritten in terms of a whole-coating loss angle 𝜑𝐶 as

𝑆
(𝐵)

coat(𝑓)=
2𝑘𝐵𝑇

𝜋3/2𝑤𝑓𝑌𝑆
𝜑𝐶 ,with 𝜑𝐶=

1

𝜋1/2

𝑁𝑇∑︁
𝑘=1

𝜑𝑘
𝑑𝑘
𝑤

[︂
𝑌𝑆
𝑌𝑘

(1+𝜈𝑘)(1−2𝜈𝑘)

1−𝜈𝑘
+
𝑌𝑘
𝑌𝑆

(1+𝜈2𝑆)(1−2𝜈2𝑆)

(1−𝜈2𝑘)

]︂
. (B.3)

Equation (B.2) was independently derived in [119] in terms of the elastic moduli for parallel and
perpendicular stresses, and in [120], from first principles. More recently, it has been re-obtained in
[121], using an effective-medium approach6. Equation (B.2) neglects correlation between intra-layer (1st
term) and layer-substrate (2nd term) fluctuations, and other subtler effects discussed in [117] - [123].
It is seen from (B.1) that CTN could be reduced by increasing 𝑤, i.e., the illuminated area (see [124] for
a broad discussion), and/or reducing temperature 𝑇 - a choice made, e.g., for KAGRA and the planned
Cosmic Explorer [125]and ET [126] detectors. It should be noted that mechanical loss-peaks at cryo
temperatures are observed (with a few notable exceptions, including 𝑇𝑖𝑂2) in most coating materials,
including 𝑆𝑖𝑂2 [127] and 𝑇𝑎2𝑂5 [128] films 7.
The following remarks are in order:

• material noisyness should not be gauged on the basis of the mechanical loss angle 𝜑𝑘 alone (a
frequent/persistent mistake in the technical Literature), since the 𝑏𝑘 coefficients (B.2) are strongly
dependent on the Young modulus ratio 𝑌𝑘/𝑌𝑆 as well (the Poisson moduli have a lesser impact,
as seen from Figure B1, being 𝜈 ≈ 0.25 for all materials of interest);

• computation of the 𝑏𝑘 via eq. (B.2) requires accurate knowledge of the elastic moduli and loss
angles of the coating materials - which isn’t available for many materials of potential interest (the
situation is even worse for more complicated noise models, like, e.g., in [123], that depend on
additional material parameters);

• loss angle measurements based on mechanical ringdown experiments on single- vs. multi-layer
coatings lead to inconsistent results (see the discussion in Sect. V of [45]), for reasons yet to be
understood;

• equation (B.1) can be seen as an operational definition of the material-dependent coefficients 𝑏𝑘.
These latter can be cheaply retrieved from direct thermal noise PSD measurements made on
a suitable number of different coatings that use the same layer materials, with different total
thicknesses. In this connection, several instruments for the direct measurement of coating thermal
noise PSD have been devised and built in recent years - see, e.g., [64] - [66], and some are currently
in operation [67], [68].

6In ref [121] the coefficients B.2 are also written in terms of the bulk and shear elastic moduli.
7Cryogenic mechanical loss measurements on multilayer HR films laid on different substrates gave contradictory results

[129], [130], for yet unclear reasons.
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Рис. B1. Coating noise coefficient dependence on 𝑌/𝑌𝑆 for various 𝜈 values and 𝜈𝑆 = 0.25.
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