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MaitopaHOBCKHE CHOHUHODBHI HUIPAIOT BAXKHYIO POJIb B COBPEMEHHBIX (PU3NYECKUX TEOpUAX. DBOIbHINHCTBO
MEXaHU3MOB TeHepallid MacChl HEHTPUHO OCHOBAHBI Ha HaJUYAM MalOpaHOBCKOI'O MAaCCOBOIO dJeHa B
Jarpamkuase. B wactHocTm, mexanm3Mm "kadeseir" remeparum Macchl HeiffrpuHO. MaliopaHOBCKHe perreHust
ypasaenust lupaka cymectByior. OHAKO MBI JOKA3aJId, ITO MACCOBBIA WJIEH JIATDAHXKHAHA MailOpPAHOBCKOTO
crmHOpa paBeH Hy/0. Mbl qoKa3aan, 9T0 MAOPAHOBCKHE PEIIEHUS UMEIOT HYJIEBYIO SHEPIUI0 U UMITYJIHC KaK B
MAaCCHBHOM, TaK U B 6€3MaCCOBOM CIydae. DTO 03HAYAET, YTO MAHOPAHOBCKUE CIIUHOPBI HE MOI'YT COOTBETCTBOBATH
bu3nUecKn CyneCcTBYIOIIM JaCTUIAM.
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Majorana spinors play an important role in modern physical theories. Most of the neutrino mass generation
mechanisms are based on the presence of the Majorana mass term in the Lagrangian. In particular, the seesaw
mechanism of neutrino mass generation. Majorana solutions of the Dirac equation exist. However, we have proven
that Majorana spinor mass term of the Lagrangian is equal to zero. We have proven that Majorana solutions
have zero energy and momentum for both the massive and massless cases. This means that Majorana spinors
cannot correspond to physically existing particles.
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Introduction

Majorana spinors [1] play an important role in modern physical theories. Most of the neutrino
mass generation mechanisms are based on the presence of the Majorana mass term in the Lagrangian.
In particular, the seesaw mechanism of neutrino mass generation is a leading candidate for explaining
the smallness of the neutrino mass [2]. This mechanism is based on the assumption of the existence
of two types of neutrinos with a common mass matrix. When such a matrix is diagonalized, light and
heavy neutrinos with Majorana masses appear.

Majorana solutions of the Dirac equation certainly exist. However, we have proven that for the
Majorana spinor the mass term of the Lagrangian is equal to zero not only in the so-called c-theory [3],
but also in the g-theory (second quantization theory) [4]. Therefore, there was a need to carefully study
the properties of Majorana spinors in quantum field theory.

1E-mail: v.v.monahov@spbu.ru
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1. CHARGE CONJUGATION OPERATION AND MAJORANA SPINORS

A Majorana spinor is a charge-self-conjugate (or charge-anti-self-conjugate) solution of the Dirac
equation
Y410, ¥ = mU¥ (1.1)
Such solutions were found by Majorana [1].

Dirac spinor ¥ is a superposition of charge-self-conjugate and charge-anti-self-conjugate Majorana

spinors Wy, and tW 0
1

V2

In the Majorana representation of Dirac gamma matrices v# , the charge conjugation operator (-)¢

\I/D (\I]Ml +Z\I/M2) (12)

is the same as the complex conjugation operator (-)* , the gamma matrices are purely imaginary, and
Majorana spinors ¥y, and Wyo are real with respect to complex conjugation [1]
(=0,
Ui = Y, (1.3)
M2 = Va2
In the Weyl (chiral) representation, the charge conjugation operation [5]
() =mr ()", (14)
T = ()70 =y T° '

in addition to complex conjugation, requires multiplication by 1,72, where 7, is an arbitrary phase
factor. Usually it is considered equal to i [3], [6]. In what follows, we will assume that n; = 3.
In general case

1
Y = \ﬁ(‘I’D + V%),
1 (1.5)
Uape = —— (U — WS).
M2 Z\@( D D)
and
TS = Wy
M1 M1 (16)

Uire =Yz
2. LAGRANGIAN, HAMILTONIAN AND COMPONENTS OF MAJORANA SPINORS

As already said, we have proven that for the Majorana spinor the mass term of the Lagrangian is
equal to zero not only in the so-called c-theory [3], but also in the g-theory (second quantization theory)
[4]. Wherein

UanWan = Ua¥an =0, (2.1)

The non-zero mass term .Z); of the Lagrangian density arises only for the products of the fields of

charge-self-conjugate and charge-anti-self-conjugate Majorana spinors, one of which is Dirac-conjugate

m 6 — . — .
Ly = —5(\I/M12\I/M2+(\P]V[1’L\I/M2)+). (2.2)

The result is the Lagrangian density of the field of the Dirac spinor.
Left-chiral Dirac spinor in the Weyl representation can be represented as

2

r_ e (¢
o-[5]-). o
0
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From (1.4) and (2.3) it follows [3], [5] that

where

_ L 2%\ L ¢/
Vin = \/E(\IJL +my Vi) = NG (_n102¢,*> . (2.5)

A similar formula is obtained for the Majorana spinor obtained from the right-chiral Dirac spinor.
For W, , the expression is similar

I R S ¢'/i _ b ¢
Yoz =g TN = (—71102(¢’/i)*> e (—nl@qﬁ/f*) ' 20

Thus, the most general expression for the components of the Majorana spinor is

L0
ar = V2 <—77102¢*> , @1)

¢ = (Z;) . (2.8)

It is valid for Majorana spinors of both Wj;q and Wj,o types.

where

It follows from formula (2.7) that the two lower components (right-chiral) are expressed in terms
of the two upper ones (left-chiral). Therefore, Majorana spinors have two times fewer independent
components than Dirac spinors.

Matrix o9 rearranges the components with the spin projection up and down, and the ordering of
the creation and annihilation operators for the left-chiral and right-chiral components of the Majorana
spinor is the same. Because of this, Majorana spinors cannot have angular momentum projections and
can only have helicity. In an implicit form, this was obtained in [5], and we indicate this explicitly. It
follows from this that any physical system, which includes a Majorana spinor that does not interact
with it, cannot also have a spin projection. Therefore, the Majorana spinor cannot exist as a physical
particle.

The Lagrangian density . of the Majorana spinor ¥, is

1— 1 — _
L = i\l’wj’y#iau\I/M + E(WMVHi(?H\I/M)JF —mU V. (2.9)
Corresponding Hamiltonian density 7 is
0L . 0L . —
H=——Vy— L =Wy = V%00 Wp = UFi00 Vs . (2.10)

In the Majorana representation, charge conjugation coincides with complex conjugation. That is
why formulas
()W =¥y =¥, (2.11)
(')C‘I’L = (\I’L)* = \I’XI
are satisfied in this representation.
From (2.10) and (2.11) it follows that

(Ve = —5(-)° (2.12)

in the Majorana representation.

Majorana spinor field operator W), is an eigenfunction of the charge conjugation operator (-)¢. It
follows from (2.12) that the Hamiltonian of the Majorana spinor cannot have nonzero eigenvalues. That
is, the energy of the Majorana spinor must be identically equal to zero. In a similar way, one can prove
that the spatial momentum of the Majorana spinor must be identically equal to zero. Therefore, the
Majorana spinor cannot exist as a physical particle.
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3. DIRAC AND MAJORANA SPINOR FIELD OPERATORS

Dirac spinor field operator is given by the standard formula [6]

3 m — -
Vp = XS:/(;T)];Q m(bs(p)us(p)e‘”’““‘ + ds(p)Fos(p)e™=), (3.1)

where b, (p) is annihilation operator of the Dirac spinor with spatial momentum p and spin projection
numbering s (s = 1 corresponds to the spin projection +1/2, s = 2 corresponds to the spin projection
—1/2, or, as will be shown below, it is better to use helicity rather than spin projection), d,(p)™ is
creation operator of the Dirac antispinor with spatial momentum p and spin projection (or helicity)
corresponding to the index s, us(p) and vs(p) are corresponding spinor columns.

We will use the Dirac representation, since the structure of us(p) and vs(p) is simpler in it. We

choose as a basis in the rest frame

1 0
0 1
u1(0) = ol uz(0) = 0 (3.2)
0 0
We have in the Dirac representation
0 0 1
0 10" 0O 0 -1 0
2 2
" <w2 o) 0 -1 0 0 3.3
0 0 O
It is possible to define two more basis spinors v1(0) and v3(0) as
0
c - 2 * 0
v1(0) = ua(0)" = in ur (0" = | 1,
1 (3.4)
. )
c - 2 0
v2(0) = u2(0)° = iy u2(0)* = .
0
In this case, relations
v1(0)¢ = u1(0),
(0 =i (0) 5

are also satisfied.
Operator (-)¢ commutes with Lorentz transformation generators y** = %(y“'y” —Y~4*). Therefore,

relations
(3.6)

are satisfied for all p and s =1, 2.
It follows from (3.4) that for negative-frequency states index s in vs(0) corresponds to the spin
projection opposite to the spin projection for us(0). That is, it corresponds to helicity, not spin projection.
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Operators bs(p), bs(p)*t, ds(p) and ds(p)™ have canonical anticommutation relations
{bi(p) ", b5 (")} = 630(p — '),
{di(p)*,d; (")} = 656(p — 1), (3.7)
{bi(p), b;()} = {di(p),d; ()} = {bi(p), d; (')} = {bi(p) ", d; (')} = 0.

Moreover, by(p)* + by(p), by(p)* — by(p), ds(p)* + dy(p) and dy(p)* — dy(p) are generators of the
infinite-dimensional Clifford algebra. It is known that generators of the Clifford algebra can always be
chosen to be real with respect to the complex conjugation operation [7]. Therefore, we can set

bs(p)" = bs(p),
ds(p)* = ds(p) .
From (3.1), (1.5) and (3.8) it follows that

= Z/ o s/zﬁ(bs(p)“s(p)e"p“” + ds(p) s (p)e™ " + (3.9)

bs(p)us(p)°e®=™" + dy(p) oy (p)ce "y,

(3.8)

Let us define operators

as(p) = 3
V2
b)) - du(p)* (3.10)

Therefore, from (3.9), ((3.6) and (3.10) we obtain

Z/ o) 3/2 \/7)(%(p)us(p)e‘”"’”“M + as(p)us(p)e™ ). (3.11)

Similarly, we obtain the formula for ¥ ;o

Z/ 27) 3/2 \/7)(a;(p)us(p)e_ip‘””M — d.(p)vs(p)ePr="). (3.12)

Operators (3.10) have canonical anticommutation relations

{ai(p)*,a; ()} = 656(p — 1),
{ai(p)™, a5(0)} = 656(p — 1), (3.13)
{ai(p), a; (")} = {ai(p), a;(»")} = {ai(p), a;(»")} = {as(p)", a;(»)} = 0.

It should be noted that in (3.11) and (3.12) the same operators a,(p) and a’(p) appear as in the

negative-frequency terms as in the positive-frequency terms. This is because the charge conjugation
operator contains complex conjugation, but does not contain transposition. In this case, due to (3.8),

as(p)* = as(p), (3.14)
ay(p)* = —a.(p).

4. ENERGY AND MOMENTUM OPERATORS OF MAJORANA SPINORS

Similarly to how it was done in [6] for the Dirac spinors, we obtain energy Py and spatial momentum
Py, operators of Majorana spinor Wj,q

= Z/ @ppo(as(p) " as(p) = as(p)Fas(p) = 0,
: (4.1)
Pe= Y [ dpmila) o) - astr) e ) =0.
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The same results are obtained for Wj;q

o= Z/ d*ppo(a(p) " d,(p) — al(p) Tl (p)) = 0,
: (4.2)
= Z/ d*ppr(a (p) " (p) — al(p) el (p) = 0.

Formulas (2.11), (2.12), (4.1) and (4.2) are true not only for massive but also for massless Majorana
fields.

5. Discussion

Thus, we have proven that Majorana spinors have identically zero energy and momentum for both
massive and massless cases. This means that Majorana spinors cannot correspond to physically existing
particles.

The reason for the problems with spin projection, energy and momentum of Majorana spinors is
due to the charge conjugation operation (1.3), (1.4). Majorana [1] and Kramers [8] defined operators
(1.2) and (1.3) within the framework of the so-called c-theory, which preceded the theory of second
quantization. For Dirac spinors, such a conjugation makes sense only in combination with the theory
of “holes” in the Dirac Sea (fermions with negative energy). Majorana tried to construct a theory of
fermions that did not require the concept of the Dirac Sea.

However, in quantum field theory, the theory of “holes” in the Dirac Sea was replaced by the
use of fermion creation and annihilation operators. Therefore, in the theory of Dirac spinors, the
positive-frequency components received the fermion annihilation operator as an additional factor, and
the negative-frequency components received the antifermion creation operator.

Due to the fulfillment of equations (1.2) and (1.3), Majorana spinors have half the number of
degrees of freedom than a Dirac spinor. Therefore, the approach that is suitable in the case of the Dirac
fermion does not work in the case of the Majorana fermion.

It should be noted that charge conjugation operator C, defined by formulas (1.3) and (1.4), has
another fundamental drawback. This operator contains complex conjugation and is therefore anti-
unitary. But operator C'PT must be anti-unitary, operator P must be unitary, operator T must be
anti-unitary, and therefore operator C' must be unitary [6], [9].

The Schwinger charge conjugation operator [10] is also used in the literature. In comparison with
operators (1.3) and (1.4), it adds transposition of the creation and annihilation operators. However, it
also contains complex conjugation and is therefore anti-unitary. Therefore, the question of constructing
a consistent theory of charge-self-conjugate fermions and the see-saw mechanism based on it remains
open.

Conclusion

Majorana spinors exist as solutions of the Dirac equation. However, we have proven that Majorana
mass term in quantum field theory (QFT) must vanish and Majorana spinors can not have spin
projections. Also, we have proven that the charge conjugation operator anticommutes both with energy
and spatial momentum operators of Majorana spinors, that is why Majorana spinors cannot have non-
zero energy and momentum. We confirmed this conclusion by deriving QFT formulas for the energy
and momentum operators for both massive and massless Majorana spinors, by means of which we have
proven that energy and momentum operators of Majorana spinors are identically equal to zero.

Thus, we have obtained several independent proofs that Majorana spinors cannot be physical
particles. The results obtained do not imply the impossibility of constructing QFT theory of a
truly neutral fermion or the impossibility of the seesaw mechanism. They mean that the question of
constructing a consistent theory of charge-self-conjugate fermions and the see-saw mechanism based on
it remains open.
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