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JBU>KEHUE B TPABUTAIIIOHHOM IIOJIE YEPHOI ABIPHI B CUHXPOHHOI
CUCTEME KOOP/IVTHAT

Meiteposuua B.D. @1

¢ Wucturyt dpusndeckux mpodsaem umenu 1. JI. Kamumer, r. Mocksa, 119334, Poccust.

PaccmarpuBaercst nBukerHme mTpPOOHOTO Tesa, WM YACTHUIBI, B T'DABHTAIMOHHOM IIOJI€ YEPHON JBIPHI,
rpanunyaineii ¢ témHoi marepueil. CraTuyeckoe rpaBUTAIIMOHHOE I10JI€ IIPEIEJIBHO CXKATOM MATEPUN OLIPEIEIIseTCs
myTeM peleHus ypaBHeHuil DifHmreitna n Koieitna-T'oprona B curxponHOil cucreme koopauHar. [Ipemenbno
CXKATOe COCTOSIHWE MaTepu¥ B BHUJE KOHJIEHCATa KBAHTOBOW DBo3e-:KMIKOCTH 3HepreTHdyecKu 6oJjiee BBITOJIHO,
9eM BBIPOXKJIEHHBI depMu-ra3. BaxkapiM orTiimumeMm or depHbix gbip [IBaprmmmiasma u Keppa ssistercs
OTCYyTCTBUE CHHTYJISIDHOCTH B IIEHTPEe. B perysisipHoM I'DaBHUTAIIMOHHOM TIOJI€, B 3aBUCHMOCTH OT IIPUIIETHHOTO
mapaMeTpa, CyIIEeCTBYIOT TPAEKTOPHUH, BEAYIIUE CKBO3b "TOPM30HT COOLITHII"BHYTpb YEPHON MBIPBI, a He
TOJIBKO IIpoJsieTaromue MuMo. [Ipu HyseBoit TeMnieparype B 3aBUCUMOCTH OT IIapHOT'O B3aMMO/JEHCTBUS OO30HOB,
KOH/IEHCAT COCTOMT M3 KOMIIOHEHTOB CBEPXTEKYyUell 1 0OBIIHOI (He cBepXTeKyUeil) KBAaHTOBOI KUKOCTH. 3a1a9a
0 JIBUKEHUU MMPOOHOTO TeJIa BHY TPU YEPHOM JIBIPHI PEITaeTCst AHAJIUTUIECKH B IPEIEIHHOM CJIydae, Koraa Ha (hoHe
JOMUHHUPYIOIIEH TpaBUTAINN, TPEHUEM O HE CBEPXTEKY4Iyl0 KOMIOHEHTY Bo3e-KoHeHCcaTa MOXKHO ITPEHEOPED.
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SYNCHRONOUS COORDINATE SYSTEM
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Motion of a test body, or a particle, in the gravitational field of a black hole bordering dark matter is considered.
The static gravitational field of extremely compressed matter is determined by solving the Einstein and Klein-
Gordon equations in the synchronous coordinate system. An extremely compressed state of matter in the form of
a condensate of a quantum Bose liquid is energetically more favorable than a degenerate Fermi gas. An important
difference from the Schwarzschild and Kerr black holes is the absence of a singularity in the center. In a regular
gravitational field, depending on the impact parameter, there are trajectories leading through the “event horizon”
into the black hole, and not just passing by. At zero temperature, depending on the pair interaction of bosons,
the condensate consists of components of a superfluid and an ordinary (non-superfluid) quantum liquid. The
problem of the motion of a test body inside a black hole is solved analytically in the limiting case when, against
the background of dominant gravity, friction with the non-superfluid component of the Bose condensate can be
neglected.
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Introduction

In a synchronous coordinate system, a static regular solution to the system of Einstein and Klein-
Gordon equations for the gravitational field of extremely compressed matter was found [1]. A maximally
compressed black hole bordering dark matter claims to be the state that the gravitational collapse can
lead to. [2].

In a synchronous reference frame ([3], §97) a spherically symmetric static metric

d82 — (diCO)Q . 62F1(11) (d$1)2 . 62F2(g;1) (d92 + sin29d<p2) (01)
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contains two functions Fj (xl) and F; (xl), depending on one coordinate z!'. Substitution

1

dr = eFl(Il)dx17 r(z') = / eFl(Il)dxl, B (z') = By (r (2Y)) (0.2)
changes (1) to the metric
ds?* = ?dt> — dr® + goz (r) (d6” +sin® 0 dp?),  goo (1) = —e2F2 (), (0.3)

containing only one metric function Fs (r). It simplifies the solution to the system of Einstein and
Klein-Gordon equations. In this case, the solution turns out to be more general, since it is valid for an
arbitrary function Fj(z!) [1]. Unlike the Schwarzschild metric [4], the synchronous coordinate r is the
real distance from the center.

In synchronous coordinates, as well as in Schwarzschild coordinates, in the equilibrium state of
the extremely compressed Bose condensate, there are two gravitational radii r4 and 77, on which the
conditions of the “Existence and Uniqueness Theorem” ([5], §3) are not satisfied. There is a difference
between these two coordinate systems. In the Schwarzschild coordinates (|3] formula (100.14)) the metric
component ¢! (r) = 0 at r = rg and 7 = 73, so that in the interval r4, < r < rj, the signature of
the metric tensor is violated. And in the synchronous coordinate system (3) g1 (r) = —1 does not
vanish anywhere. The metric signature does not change. In synchronous coordinates, the Einstein and
Klein-Gordon equations are reduced to a second order system (and not to the fourth order as in the
Schwarzschild ones). Taking into account the elasticity of the condensate in the A\¢)* model, the metric
component goo (r) in (3) is derived analytically (formula (36) in [1]).

Considering the structure of the static equilibrium state of a supermassive black hole, it is natural
to use the fact that gravity dominates over all other types of interactions. At the same time, today
we have no reason to believe that a strong gravitational field affects the basic quantum properties of
particles. That is, regardless of gravity, fermions remain fermions, and bosons remain bosons. It would
seem that with dominant gravity, an ensemble of particles of a gravitating object can be considered
a quantum ideal gas. However, without taking elasticity into account, the wave function of the Bose
condensate diverges logarithmically at the center [2]. The singularity disappears due to the presence of
arbitrarily weak repulsion of colliding particles [6].

1. Black hole and dark matter in synchronous coordinates

In a synchronous reference frame, a static solution to the Einstein and Klein-Gordon equations
exists if matter is compressed by its own gravitational field to the ultrarelativistic limit p = —&/3.
The pressure p turns out to be negative because gravitational forces are aimed to compress the Bose
condensate, and not to expand it. The equation defining the metric component ggs (r) = —e2%* 2(1) g
reduced to the form (formula (22) in [1]):

def2(r)

ar = \/1—K|p| (eFZ(T))2_ (11)

Here v = (87r/c4) k, k = 6.67x 1078cm3/ (g . secQ) — gravitational constant. The regular at the
center solution to equation (4) is

1
— _—e2fe(r) — __— gp? . 1.2
g22 (T') € K |p‘ S ( K |p|7"> ( )

Solution (5) is unique only inside the sphere 0 < r < r,.

Vs
2¢/k |pl

is the inner gravitational radius. At r = r, metric component

g22 (rg) = —1/K|pl. (1.4)

Tg =
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Puc. 1. Red line is metric component (1.7)

In the region r > r,, the solution (5) to equation (4) with the boundary condition (7) is not unique

[5]. The constant
1 2 \*
ga2 (1) = ~l =— (Wrg) , T >y (1.5)

is also a solution to equation (4) with the boundary condition (7). In a spherical volume of radius 7y,
the mass of the condensate M = 3¢

S Th in the solution (1.5) is bigger than the mass in the solution (5)
[1].

The sphere r = r, is the boundary of a black hole with dark matter. The gravitational properties
of dark matter are adequately described using a longitudinal vector field [7]. The covariant divergence
of the longitudinal vector field is a scalar that satisfies the same Klein-Gordon equation as the scalar
wave function of the Bose condensate ([8] §30). However, the rest mass of a dark matter quantum can
be many orders of magnitude less than the rest mass of Standard Model bosons. Using the condition
of continuity of the function F5 (r) and its derivative at the interface r = rp,, a solution to the system

of Einstein and Klein-Gordon equations was found. It determines the component gos (1) of the metric
tensor outside the black hole [1]:

9 2
g2 (1) = — (WTQ> —(r— rh)2 , >

In synchronous coordinates, in the Ay* model, the metric component gos (r) of the regular static
gravitational field of interdependent black hole and dark matter is:

(1.6)

_4,2402(x

3T sin (27«9)’ r<Tg,

922 (1) = —T:L—Qrg, rg <1 < rp, (L.7)
4.2

— 5T —(r—rh)Q, rp, <T.

g22 () is determined by two parameters — gravitational radii r4 and rj,. The graph of function gao (1)
is the red line in Figure 1 [1]. The dotted line is gaa (r) = —r? in Schwarzschild coordinates.

The parameters r, = 1 and r, = 5 were chosen for clarity. In reality 7, can be many orders of
magnitude greater than r,.

Wave function of dark matter

. 2 -1
¢T(T)*%)\7r£ [(i) +<rrh>2] L orzm, (1.8)

decreases rapidly with distance from the black hole [1].

Below in this article I consider the motion of a test body, or a particle, in the gravitational field
with metric (3), where the component gao (r) (1.7) is presented in Figure 1.
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2. Test body in the gravitational field of a black hole and dark matter
2.1. General approach to a trajectory in synchronous coordinates

Consider the motion of a particle with mass m in a gravitational field in the synchronous reference
frame (3). Let us choose the orientation of the metric so that the trajectory and the center are in the
plane 6 = 7/2. In a static spherically symmetric gravitational field z° = ¢t and ¢ are cyclic coordinates.
Accordingly, the associated energy E and angular moment M of a moving body are integrals of motion.
The action S (¢,r, ) satisfies the Hamilton-Jacobi equation (formula (9.19) in [3])

gik(as 35) 22y

ozt Hzk
and allows separation of variables:
E
S(t,r,p) =——a°+ M+ S, (r).
c
Metric (3) in the plane 6 = 7/2
ds? = Adt* — dr? + goo (r) dp.
From the Hamilton-Jacobi equation
E* <asr>2 M?
2 or g22 (1)

—m?? =0
c

we get the action

2

2
S(t,r,p)=—FEt+ M :I:/ — —m2c + dr 2.1
(t, 7, 9) @ \/02 o (2.1)

The partial derivative of action (2.1) with respect to the angular moment M determines the trajectory
of motion in polar coordinates r, ¢:

d

88—]\54 =p=x M/ — ! — = const. (2.2)
go2 (1) \/% —m2c? + 79321(”
By differentiating (2.1) with respect to energy FE

08 E d

3 = —t+ 0—2/ = L —= = const (2.3)
E2 _ 2.2
\/02 MEC" T+ G2 ()

the dependence of the radius on time 7(t) is determined.

The dark matter wave function (1.8) rapidly decreases with distance from the center. Far from
the black hole, the trajectory of a test particle is a straight line on the plane. At infinity, the distance
p between the trajectory and the parallel straight line passing through the center is called the impact
parameter. The impact parameter (impact factor) p is a constant connecting the conserved angular
momentum M and energy F with the momentum P of the test body far from the black hole:
f—;—m202:P27 %:%2
v is the speed of a test body along the trajectory. Taking into account (1.7) and (2.4), trajectory (2.2) is

M = Pp, (2.4)

determined by three parameters of length dimension — gravitational radii ry, 75, and impact parameter
p:

= const. (2.5)

dr
p(r)£p /
V922 (1) (922 () + p?)
The trajectory does not depend on the speed v of the test body. The distance to the center as a function
of time (2.3) depends on the speed v:

)+ L [ g (dr
V) /g2 (r) +p?

= const. (2.6)
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2.2. Trajectory outside a black hole

Outside a black hole, the test body moves through dark matter. To date, no direct interaction
between ordinary matter and dark matter has been detected. We observe manifestations of dark matter
only due to gravity. The test body outside the black hole moves in the common gravitational field of
the black hole and dark matter.

According to (1.7), geo (1) = — ((%7’9)2 + (r— rh)z) at r > 7. The trajectory of the test body
(2.5) outside the black hole

dr

p(r) =+p
/V (Fra)* + =) ()" + 0= = 2)

Outside the black hole » > rj, the bracket ((%79)2 +(r— rh)2 - p2) under the root vanishes at r = ryj,,

+ const, > (2.7)

2 2
Tmin = Th + p2 — <7T7"g> =7rn+pV 1—a?2. (28)

Here the dimensionless parameter
2r
a=—2 (2.9)
mp
The point on the trajectory closest to the center (turning point) (2.8), where the movement towards
the center changes to the movement away from the center, exists provided that a < 1. That is, the ratio
of the impact parameter p to the internal gravitational radius rg
2
L5 2 2063662 (2.10)
rg T
The trajectory of a test body does not touch the black hole under the condition a < 1.

The integral in (2.7) reduces to an elliptic integral of the first kind ([9], p. 918):

¢ do siné dx
F(é.vk):/ '2:/ 5 AN
0 V1—-Ek?sin”« 0 V(1= 22) (1 - k2a?)
Namely, to the formula 3.152 6 on page 260 in [9)]:
/“ dx _ F(£,s)
b /(@2 +a?) (22 -b%) Va2 +b?’

Outside the black hole, the trajectory is given by the formula:

a

VeI

& = arcsin \/(a2 +62) (a® +u?), s=

5 -1/2
2 2

@ (r)==+F | arcsin |p ((rg) + (r— Th)2> ’ﬂ + const, T >Th. (2.11)
T T

However, it is easier to present a graph of the trajectory r(y) based on the equation

3—; = j:% l(irg)z + (r— Thf] [(i%)z +(r— 7”h)2 - le y T >The (2.12)

One can see that equation (2.12) is satisfied by an independent of ¢ constant 7 (¢) = Tmin (2.8). It

means that a circle with the radius ryi, is a trajectory of the test body. I draw your attention to the
fact that one would not immediately notice how the trajectory r (¢) = rmin is contained in formula
(2.11). According to the existence and uniqueness theorem ([5], §3), this solution to equation (2.12) with
a boundary condition r (¢g) = rmin exists, but it is not unique even for an arbitrary ¢g. It is natural to
look for other solutions to equation (2.12) with the same boundary condition r (¢g) = Tmin in the form

7 (¢o 4 0¢) = rmin + 7 (39p)" (2.13)
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with a small d¢ different from zero. In the linear approximation, function (2.13) satisfies equation (2.12)

1/ 2 \?
v7v-3 p2_<ﬂrg> =0. (2.14)

Solution with v = 0 is the circle of radius rmin: 7 (¢) = Tmin- A solution, different from this circle, is

if p=2 and

obtained by numerical integration of equation (2.12) with the boundary condition

2
(oot 0) =i+ 5162 = (21 607, dp << (2.15)
It is convenient to choose the origin of the angular coordinate ¢ = 0 so that the turning point, where
both solutions coincide, lies on the horizontal axis at the distance (2.8) from the center.

The expression under the radical (2.15) must be positive. If the ratio p/r, is large, then the
trajectory does not differ much from a straight line. In Figure 2a, the red circle is the boundary of the
black hole with dark matter. Ratio rj/ry = 10. The blue circle is a trivial solution r (¢) = 7min. The
blue line tangent to the blue circle is the numerical solution to equation (2.12) with boundary condition
(2.15). Ratio p/ry = 5. With the decrease of p/ry, both solutions approach the surface of the black hole.
In Figure 2b ry,/ry = 10, p/ry = 1. As it approaches the lower boundary (2.10), the trajectory envelops
the black hole. In Figure 2¢ p/ry = 0.651. But this is not the limit. In the limit p/r, — 2/m = 0.63662
(2.10) the trajectory is completely wound around the black hole. At p/ry, = 2/7 both solutions merge
into one circle on the surface of the black hole.

30

fi ™ ~/ )
K R K

-20 201

30
a)p=>5 b)p=1

Fig. 2. Trajectories with parameters % > %, rg=1,7,=10

In reality, the internal gravitational radius rg of a black hole can be many orders of magnitude
smaller than the surface radius 7. The presence of an internal gravitational radius r4, no matter how
small it may be, qualitatively changes the picture of motion of test bodies in the gravitational field of a

black hole. If we put 7, = 0 in formulas (2.11) and (2.12), we get

(r— ’I”h)2

v (r) = £ arctan g

—-1,
whence

= — . 2.16
P =t ol T (216)

For r4 = 0 and finite values 7, > 0, p > 0 we exclude the range of parameters p/r, < 2/7 = 0.63662
from consideration. The range of applicability for formula (2.16) is not only 7y << 74, but also ry << p.



Motion in the gravitational field of a black hole 205

20 ¢
I I c) I
-15 A0 -5 5
-20 -20 ¢ P S ¢
-3 -2 -1 0 1 2 3
a)rg =0 b) ry=1 c)rg=0andr, =1

Fig. 3 The trajectories with 7y = 0 (blue lines) and 7y = 1 (green lines) . r;, = 10, p = 0.64

The trajectory with parameters ry = 0,7, = 10,p = 0.64 is presented in Figure 3a. For the
same parameters rp, = 10,p = 0.64, but r, = 1 the trajectory is shown in Figure 3b. For comparison,
trajectories with r, = 0 (blue curve) and r, = 1 (green curve) are combined on a single graph in Figure
3c in Cartesian coordinates.

When r, = 0 it follows from equation (2.12) that for any values 7, > 0 and p > 0 there is a turning
point (2.8)

Tmin =Th +p, 7T4=0,

located outside a black hole. It means that at r4 = 0 there is no path along which anything could get
inside a black hole. A “point-like” Schwarzschild’s black hole (with a singularity at the center) [4] has
only one gravitational radius r;,. For this reason, the surface radius rj of a Schwarzschild black hole was

considered to be an event horizon.
2.3. About the trajectory inside a black hole

Regularity at the center of a black hole without mass limitation occurs in the presence of an
internal gravitational radius r, [6]. When r, > 0 the point closest to the center on the trajectory outside
a black hole (2.8) exists if the parameter a < 1 (2.9). In this case, the impact parameter (impact factor)
p > %rg (2.10). For a > 1, the impact factor is p < %rg, and the bracket ((%TQ)Q + (r— rh)2 - ,02)
in the denominator (2.7) does not vanish outside the black hole. Therefore, there is no turning point
outside the black hole, if p < %rg. Naturally, trajectories with an impact parameter p < %rg inevitably
lead inside the sphere r = rj,. In principle, this fact opens up the possibility of studying not only the
surface, but also the internal physical properties of black holes.

The fate of a test particle inside a black hole is more complicated than outside. Outside a black
hole, no interactions, other than the gravitational one, has been observed between ordinary and dark
matter. Inside a black hole r < 7, the test particle falls into the Bose condensate of ordinary (not dark)
matter. Deriving the metric tensor component (1.7), I took into account that gravity dominates over
all other interactions of black hole bosons. Bosons were considered as an extremely compressed ideal
Bose gas. At zero temperature, the condensate of extremely compressed bosons can be in the state of a
quantum liquid having the property of superfluidity ([8], Chapter 3). In an ideal superfluid liquid, the
motion of a test body would occur without dissipation. But in an ideal liquid with no elasticity, the wave
function of the condensate diverges logarithmically at the center [2]. Even arbitrarily small elasticity
can be sufficient for regularity at the center. But in the presence of elasticity, a condensate is no longer
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an ideal liquid. Even at absolute zero, a Bose liquid contains both superfluid and normal components.
Due to friction with the normal component, the motion of a test particle becomes dissipative. In this
article, I consider the motion inside a black hole in the limiting case when the friction with the normal
component can be neglected due to the dominating gravity. So, the test body moves with no violation
of conservation of energy and angular momentum. I would like to note that the considered limit is the
basis, deviations from which contain information about the properties of a black hole.

2.4. Motion within the spherical layer ry < r < rp

At p < (2/7)ry the metric component (1.7) in the spherical layer between the gravitational radii

s

9 \2
g22 (1) = — <Tg> , Tg<T <71

does not depend on . There is no turning point in the spherical layer r, < r <. ¢ () (2.5) is a linear
function:
F=t—0 "y <r< (2.17)
r)=ft——— rg <r<r .
i o —1ir, 0 Te=TET

The test particle inevitably falls inside the black hole if the parameter (2.9) a = %‘i > 1. Moving from
r =14 to r = rp, the angular variable increases by

P () = () = 51—t (218)
Trajectory r (¢) (2.17)
(2.19)
is the spiral with a step
(2.20)

a) p=0.5 b) p=0.635

Fig. 4. Spirals within the layer ry, <r <rp.rg =1, r, =10

In Figure 4, there are two spiral trajectories within the layer r, < r < 7}, between the red spheres. I
chose gravitational radii 4 = 1 and 7, = 10 for clarity. In Figure 4a impact parameter p = 0.5. As p
increases, the helix pitch (2.20) decreases. For comparison, at p = 0.635 (with @ = 1.00255 very close to
unity), spiral (2.19) with the same gravitational radii ry = 1 and r, = 10 is shown in Figure 4b.

2.5. Trajectory within the central area r < rq

If we neglect dissipative processes during the motion of a test body through the Bose condensate
of a black hole, then the dependence ¢ (r) in the central area r < 74 is determined by formulas (1.7)
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and (2.5):
1 d
p(r) =+ . . <, (2.21)

ap Tmin Tr
i T 24in2 () _
5111(2,)) a” sin (2rg> 1

Minimum distance r,;, from the trajectory to the center

Tmin = aparcsin (1/a), = <r,. (2.22)

a= %%" is the same parameter (2.9). For particles falling inside a black hole, a > 1.

Integrating (2.21)

a?—1
2(zm
cos (2Tg)

we find the trajectory r (¢) in the central region:

2 a? -1
T (SD) = ;Tg arccos m, O<r< T‘g. (223)

With increasing modulus of the angular coordinate |¢| from zero to m/2, function tan®¢ in the

¢ (r) =  arctan —a?, 0<r<rg,

denominator (2.23) varies from zero to infinity. The distance from the center r(y) increases from r = ryn
(B.74) to r =ry.

Trajectory (2.23) is not unique inside the sphere r < ry. It becomes clear if formula (2.21) is
presented in differential form:

d
é — +apsin (g:g) \/a2 sin? (g:g) 1, r<n, (2.24)

Obviously, the circle with radius ryi, (B.74)

7 () = Tmin = const (2.25)

is also a solution to equation (2.24). Equation (2.24) with the boundary condition 7 (0) = ryy is satisfied
by two solutions (2.23) and (2.25). The blue circle in Figure 5 is the solution (2.25). The blue line
connecting the top pole of the red circle to the bottom is the solution (2.23). Ratio p/ry = 0.5, ry =1,
radius of the blue circle (2.25) rmin = 0.57508.

Fig. 5. Trajectories inside r < ry. 74 = 1, p = 0.5.

In Figure 5, the blue line, connecting the upper and lower poles of the red circle, is the trajectory r (¢)
(2.23) inside a sphere of radius ry = 1. Impact factor p = 0.5. The blue circle touching the blue line at
point rmin (B.74) is also a possible trajectory inside the sphere r < 7.
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2.6. Time dependence r(t) inside the sphere r < 7,4

I choose the beginning of time at the moment of passing the turning point (B.74) ¢ (rmim) = 0.
Equation (2.6) with metric component (1.7)

4 5 . o (7T
g22 (1) = — 5T, sin (21") , r<rg

g

and with a boundary condition ¢ (rmin) = 0 has two solutions. First, time-independent rotation in a
circle with a constant radius 7ryi,. And, secondly, the “schedule” at what time the test body is at the
distance r from the center:

2 2
t(r)= $T—g [1 - arcsin ( cﬂal) Ccos ( d )] s Tmin < T < Tg. (2.26)

v TTg

Movement along the trajectory into the sphere < r, begins from the gravitational radius 7, (moment
t(ry) = —rg/v ), penetrates deep into the turning point rmi, (at the moment ¢ (rmin) = 0), and returns
back to 4 (at the moment ¢ (r4) = r4/v). The minus sign in (2.26) on the way towards the center, and
the sign plus on the way back from the region r < r4. The total time inside the sphere r < ry is 2ry/v,
regardless of the impact parameter p < (2/7)r,.

2.7. Complete trajectory

Trajectory (2.23) smoothly passes from the region r < r, to the region ry < r < rp,

=t (1oL ) <<y, 2.27
90() 2( Tgm) g h ( )

if the constant ¢ = +3 (1 S ) in (2.17) . At the boundary of a black hole and dark matter, the

Vaz-1

spiral trajectory ends with coordinates r = rp,, ¢ = ¢ (r,) (C.1). Being a solution to equation (2.12)

with the boundary condition ¢ (r,) = £7 (1 + 19 ) the trajectory smoothly continues outside
T

g\/a271
the black hole.

An example of a complete trajectory of a particle in the dominant gravitational field of a black hole
and dark matter is presented in Figure 6. ry = 1, r; = 10, p = 0.5. The paths to and from the center
are marked in different colors (blue and green). Spheres with radii r, and rj, are highlighted in red.
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—15+

Fig. 6. Example of a complete trajectory. ry =1, r;, =10, p = 0.5

The central sphere within the radius r4 = 1, magnified by the factor of 10, is shown in the previous
Figure 5.

3. Real role of gravitational radii

In the Schwarzschild metric [4], a remote observer does not have the opportunity to reach the
gravitational radius 7, of a black hole in a finite time. On this basis, for more than a hundred years,
there is an opinion that a singularity at the center is inevitable. But nobody cared, because the singularity
is located beyond the event horizon r,. In fact, the distance to the gravitational radius 7y, infinite in
time, is exclusively a property of the Schwarzschild coordinate system. In a synchronous coordinate
system, the static gravitational field of a black hole and dark matter does not have a singularity in the
center. Regularity in the center occurs due to existence of the internal gravitational radius rq < 7.
The possibility or impossibility of a test body to get inside a black hole depends on the ratio of the
impact parameter p and the internal gravitational radius r4. At p/ry > 2/7 the minimum distance of
the trajectory to the center (2.8) exceeds the radius 7, of the black hole surface. A test body flies past
a black hole. And vice versa: when p/r, < 2/7 there is no turning point outside a black hole. In this
case, a test body inevitably falls inside the black hole, no matter how small the finite radius r4 > 0 is.

In the Schwarzschild [4] and Kerr [10] metrics there is a singularity at the center, and there is no
internal gravitational radius r4. If r, = 0 and the impact factor p # 0, than the turning point ryin > 75
is located outside the black hole. Moving of a test particle towards the center changes to moving away
at r = rmin, not reaching the surface of the black hole. In this sense, the gravitational radius rj of the
Schwarzschild and Kerr black holes appears to be an event horizon for a distant observer.

A regular at the center static solution to the system of Einstein and Klein-Gordon equations exists
due to the arbitrarily low condensate elasticity [6]. The internal gravitational radius r, > 0 in the
regular solution depends on the elasticity of the condensate. In the Schwarzschild coordinate system,
gravitational radii are separated by the fact that the component of the metric tensor g™ =0 at r =1,
and r = rj,. The same solution in a synchronous coordinate system once again confirms that vanishing
g'" at r =rg and r = ry, is the exclusive property of the Schwarzschild coordinate system. A distinctive
property of invariance of gravitational radii r4 and 7, is the fact that in any frame of reference, solutions
to the set of Einstein and Klein-Gordon equations with boundary conditions at r = r, and r = 7, exist,
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but are not unique.
Conclusion

In the synchronous coordinate system, the existence of a regular static solution to the system of
Einstein and Klein-Gordon equations is confirmed. This solution pretends to describe the extremely
compressed state of a black hole surrounded by dark matter, to which gravitational collapse can lead.
Moreover, with no limiting mass of a black hole. Unlike the singular in the center Schwarzschild’s
solution, regular solutions allow trajectories passing through the “event horizon” inside a black hole.
Hence, a possibility opens up to study internal properties of black holes.
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