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OBOBIIIEHHBIE MOJEJIN KAJIVIIBI - KJIIEMHA C JIATPAHYXKMNAHAMMUI
TAYCCA - BOHHE

Keprep P.¢!

¢ Yuusepcurer Copbonna, r. [Tapmxk, 75005, @panrms.

IIarumepHoe 0600mEeHNe SHHINTERHOBCKOM Teopuu TpaBuTanuu, Biepsble npeigoxkenuoe T. Kamyneit (1921)
U yJydilleHHoe HeckosbkuMu rogamu mozxke O. Kueitnom (1926), npuseso k mogmenn Kanynpr-Koeiina,
BKJIFOUATOINIEH 9JIEKTPOMarHeTU3M W IPABUTAINIO, M BAPUAHTY Teopuu rpasuTanuu bpanca-/luke, comepxkamemy
CKaJISIPHOE TIOJTe, B3AMMOEHCTBYIOINEe ¢ METPUIECKAM TEH30PHBIM moJsieM. OIHAKO HU OJHA M3 ITUX MOomesei
HE HKCIOJIb30BAJIa BO3MOXKHOCTU, OTKPBLIBAIOIIMECS IIPU PACIIUPEHUH BAPUAIMOHHOIO IPWHIMIIA DAHIITEHHA-
I'mibbepra 3a cuer BKIOYeHHS MHBapuaHTa l'aycca-Bonue, KOTOPBI B 5 U3MEPEHUAX y2Ke HE SBJISIETCS YUCTOM
JUBEPreHIel M CYIIECTBEHHO MOTUMUINPYET yPABHEHUS JIBUYKEHUS TEOPHH.

Tlocsie HanomuHanust ocHoB Mozesn Kamnynpi-KieitHa, Bkitodast HeabesieB CIydaii, MbI JaeM KpPaTKuit 0630p
MHOTOMEPHBIX KOCMOJIOTHYIECKHUX MOJIEIEN CO CKAISPHBIMU MOJISIMU, TIOPOXKAECHHBIMA KaJIHOPOBOYHBIMIY TTOJISIMH,
BBIPOXK/IEHHBIMH Ha CTPYKTYPHOI IPyIIITe, BKII0OUasi 000DIEHHbII TarpaHKuaH, cofepxkamuit wien ['aycca-Borne
RupcpRABCD _ 4RApRAE + R2.

Ilasee Mbl BO3BparmaeMcss K 5-MepHoil mozenu Kamyrer-Kieiina, 6e3 ckajaspHOro mosisi u IpeHeOperast
rpaBuTaIueil, HO C BapUAIMOHHBIM IPUHIIUIIOM, ObOOraIeHHbIM wieHoM laycca-Bonue. D10 mnpuBoauT
B MHHKOBCKOM IIPOCTPAHCTBE-BPEMEHN K WHTEPECHOMY BapUAaHTy HEIWHEWHON 3jaekTpommHamuku. [locse
00CyX)KIeHnsT MOMUMPUIMPOBAHHBIX ypaBHEHH! MakcBejama MBI TOKa3bIBA€M, KAaK MOXKET OBITb IMOCTPOEH
TOPOUJAJILHBIN COJIMTOH, W JEMOHCTPUDYEM, YTO B HEM MPOSABJSIOTCS Hambojee CYIEeCTBEHHBbIE CBOMCTBA
asekTpoHa Jlupaka: sjeKTpudecKuil 3apsiji, MarHuTHbIH MoMeHT u ciinH. OH Tak»Ke MpeJICKa3biBaeT CUMMETPHIO
YaCTUIA-aHTHIACTHIA.

Karouesvie caosa: Teopus Kanyupi-Kieitna, unBapuants! [aycca-Bonne, HenHeiHas 9JIEKTPOINHAMUKA, TIYIKH

BOJIOKOH, KocMmoJiorus B 10 m3aMepeHusx.

GENERALIZED KALUZA-KLEIN MODELS WITH GAUSS-BONNET
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The five-dimensional generalization of Einstein’s theory of gravitation proposed first by Th. Kaluza (1921) and
improved a few years later by O. Klein (1926) has led to the Kaluza-Klein model incorporating electromagnetism
and gravitation, and a variant of the Brans-Dicke theory of gravity, containing a scalar field interacting with
metric tensor field. However, neither of these models did use the possibilities offered by the enlargement of the
Einstein-Hilbert variational principle via including the Gauss-Bonnet invariant, which in 5 dimensions is no more
a pure divergence, and modifies substantially the equations of motion of the theory.

After recalling the basics of the Kaluza-Klein model, including the non-abelian case. we give a short review
of multi-dimensional cosmological models with scalar fields generated by gauge fields defined on the structural
group, including the generalized lagrangian containing the Gauss-Bonnet term RapcpRAPP —4RAp RAE + R2.

Then we turn our attention back to the 5-dimensional Kaluza-Klein model, without scalar field and
neglecting gravity, but with variational principle enriched by the Gauss-Bonnet term, This leads, in the
Minkowskian space-time, to an interesting variant of non-linear Electrodynamics. After discussing the modified
Maxwell’s equations, we show how a toroidal soliton can be constructed, and show that it displays the most
essential features of Dirac’s electron: electric charge, magnetic moment, and spin. It also predicts the particle-anti
particle symmetry.
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1. Introduction

After the advent of the Relativity Theory proposed by Einstein i 1905, and its geometrical
interpretation by Hermann Minkowski a few years later, the fully relativistic interpretation of
electromagnetism was achieved. The Maxwell-Faraday theory was reformulated in terms of four-vectors
and one and two-forms defined on the four dimensional space-time manifold.

The Kaluza-Klein theory was an attempt to unify classical field theories of gravitation and
electromagnetism on the basis of the idea of the extension of the four-dimensional Minowskian spacetime
by adding an extra spatial dimension, thus passing to a five-dimensional spacetime with pseudo-
Euclidean metric g4 = diag(+1, —1,—1, —1, —1). Curiously enough, the first to come with this idea was
Gunnar Nordstrom (see [1]) who made his proposal of unification of gravitational and electromagnetic
fields in 1914, one year before Einstein published his paper on General Relativity. In order to take
gravitation into account Nordstrom added a fifth component to the electromagnetic vector potential.
Note that he meant the Newtonian theory of gravity, represented by the scalar potential. Then the
generalized Maxwell equations in five dimensions could be derived from a five-dimensional variational
principle mimicking the lagrangian of the usual electromagnetism.

Introducing the five-dimensional vector potential

Ac =[A,, As| =[A,, 9], with B,C,..=1,2,..,5, p,v=20,1,2,3. (1.1)
the Faraday-Maxwell field tensor could be generalized to five dimensons as follows:

FBC = 8BAC — acAB, — FMV = 8;1,141/ — 81/AM7 FN5 = _F5U« = M(b — 6514”. (12)

1 1 1
Ls = _EFBCFBC = —ZFWF“” — §8M¢8“¢. (1.3)

The homogeneous set of Maxwell’s equations is satisfied by virtue of the definition (1.2), giving two
independent identities, the usual one, valid also in four dimensional version:

a/LFu)\ + avF)\p + 8>\EJ,D = O; (14)
the extra set giving the following identities:
85F;w + auFl,g, + 61,F5M =0, —» 85FW, =0, (15)

which reduces to a tautology due to the definition of Faraday’s tensor; The last independent combination
of three indices, (5, p,5), say, yields the following identity:

O5F5 + 0, Fss5 + 05 F5, = 0, (1.6)

which is a tautology, too, because F55 = 0 and F,5 = —F5, Therefore we cannot exclude in principle
the dependence of the fifth component of our 5-dimensional vector potential (the scalar field ¢ included)
on the fifth coordinate z°. Let us however assume this for the sake of simplicity; then the differential
system resulting from the variation of action with integrand given by (1.3) including the generalized
current term JEAp = jrA, + j5¢ is:

8MF#>\ = _.7.)\7 = _j5a (L.7)
reproducing the usual pair of Maxwell’s equations with sources, which in appropriate units read:

D
rot H=j+ aa—t and divD = p (1.8)
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the fifth component yielding the d’Alembert equation for the gravitational potential ¢:

2

202 No=p, (19)
It is noticeable that in Nordstréom’s 5-dimensional unification there is no interaction whatsoever between
gravity and electromagnetism, they are described by totally independent potentials; on the other hand,
the gravitational field is dynamical and can propagate with the speed of light. This was a step forward
with respect to Newton’s theory of gravitation, to which Nordstrém’s model reduces in the case of a
purely static field ¢.

The 5-dimensional unification of electromagnetism and gravity was proposed by Th. Kaluza after
Einstein published his General relativity paper, and was based on the generalized Einstein’s equations,
involving the metric tensor as dynamical variable. After an approval letter from Einstein to whom Kaluza
sent his results in 1919, got an approval letter, he published them in 1921 ([2]).

Kaluza’s paper contained an extension of general relativity to five dimensions, with a metric tensor
of 15 components, out of which ten were identified with the four-dimensional spacetime metric, four
components with the electromagnetic vector potential, and one component with a hypothetical scalar
field (sometimes called the “dilaton”. The 5-dimensional variational principle yields the 4-dimensional
Einstein field equations, with the electromagnetic energy-momentum tensor as source on the right-hand
side, the Maxwell equations for the electromagnetic field, and an extra equation for the scalar field. In
order to simplify the theory, Kaluza introduced the “cylinder condition” hypothesis assuming that no
component of the five-dimensional metric depends on the fifth dimension.

After the advent of Quantum Mechanics, Oskar Klein ([3]) gave Kaluza’s classical five-dimensional
theory a quantum interpretation. He assumed that the fifth dimension was compact and microscopic, to
explain the cylinder condition. Klein suggested that the geometry of the extra fifth dimension could take
the form of a circle, with the radius of 1073 cm. More precisely, the radius of the circular dimension is
23 times the Planck length, which in turn is of the order of 10732 cm.

Kaluza’s and Klein’s ideas seemed attractive enough to Einstein, who published his comment on
five-dimensional theories in 1927 ([4]).

Classical theory was completed in the 40-ties and the full field equations including the scalar field
were obtained almost simultaneously Yves Thiry ([5], [6]), Pasqual Jordan ([7]) and W. Scherrer ([8].

Jordan’s work led to the scalar-tensor theory of Brans-Dicke ([9]), who were apparently unaware
of Thiry’s or Scherrer’s papers.

The full expressions for the curvature tensors in the complete Kaluza equations were given by
Coquereaux and Esposito-Farese ([16]).

What seems really amazing is that although the Gauss-Bonnet invariant of second order was known
since a long time, the fact that it can be used as a non-trivial integrand for variational principle in
mora than four dimensions, in particular in the Kaluza-Klein theory. The second-order Gauss-Bonnet
invariant is the unique quadratic combination of Riemann tensor’s components that under variation
yields only second-order differential equations. It is a pure divergence in 4 dimensions, but starting from
fivr dimensions its variation contributes to the second-order Einstein differential equations, although in
a very non-linear way.

The general definition of Gauss-Bonnet invariant of order p is given in the followoing formula:

Iy = gy OO R 017 Ry 227 R (1.10)
where the totally antisymmetric tensor of order n is defined as the anti-symmetrized prodict of n
Kronecker’s deltas:

ERRY 22— Hn
5511522.“;” = oM [,015522-~-5[pn] (1.11)
An important feature of these invariants is that an invariant of order p, I,, reduces to a pure divergence

and do not contribute to the equations of motion under variation in dimensions lower than 2p. Thus the
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first invariant, which is the Riemann scalar R, does not produce any equations in 2 dimensions: its integral
over the entire manifold is constant and equal to 27y, where Y is the Euler-Poincaré characteristic (equal
to 2 for a sphere, and 0 for a torus). The invariant I is a pure divergence up to 4 dimensions, and I3 is
not a pure divergence only for manifolds whose dimension is higher than 6.

In 1971 Lovelock ([10]) presented an extension of Einstein’s gravity to higher dimensions, with an
enlarged lagrangian containing Gauss-Bonnet invariants. But to our knowledge, no one noticed that even
in its original version the Kaluza-Klein five-dimensional theory can - and should - incorporate not only
the usual Riemann curvature scalar, but also a non-trivial second order Gauss-Bonnet invariant. This
possibility was never mentioned in modern expositions of the Kaluza-Klein theory that were written in
early eighties by E. Witten ([11]), M. Duff ([13]), Th. Appelquist et al. ([12]) or by J. M. Overduin and
P. S. Wesson ([14], [15]). The first extension of the Kaluza-Klein model incorporating the Gauss-Bonnet
invariant of second order appeared in 1987 ([19])

2. Kaluza-Klein theory revisited

In the language of modern differential geometry, such a structure is called a principal fibre bundle,
denoted by P(M,G), where M denotes a differential manifold (in this case a pseudo-Riemannian space-
time), and G is a compact and semi-simple Lie group (in this case the one-dimensional group U(1),
topologically equivalent to a circle. The canonical projection 7 : P(M,G) — M maps the points of
P(M,G) onto the points in M, w(p) = x € M. The set of points in P(M,G) that project on the same
point € M is called a fibre, and is isomorphic with the structure group G (here it is the U(1) group:
7 l(x) ~U(1).

Puc. 1. Kaluza-Klein scheme.

The five-dimensional Kaluza-Klein space. The local coordinates are z# = (z,2°); A =
1,2,..5, p,v,.. = (0,7) = 0,1,2,3, which under the projection 7 reduce to points in the Minkowski
space-time: m(z4) = 7(a#, 2°%) = (z*) € My.

In its first version proposed by Th. Kaluza, the fifth dimension was just an extra space coordinate,
the entire space being isomorphic with My x R ~ [ct,x,y, z,2°] ~ M3, a five-dimensional Minkowski
space. the five-dimensional metric can be regarded upon as the composition of two independent metrics,
the 4-dimensional Minkowskian one and the “vertical” one defining an invariant scalar product in fibres,
which in this case can be taken as gs5 = 1.

If one assumes, as Oskar Klein proposed, that the fifth dimension is topologically closed, then it can
be considered as a circle with a very small radius. The dependence on the fifth dimension of functions
defined on the “compactified” space must be then periodic, admitting a Fourier-like decomposition:

f(zt, 2°) = iak(x“)eika. (2.1)
k=0

with dim (m) =cm~!. Then the eigenvalues of the fifth component of quantum momentum operator,
ps = —ihds are integer multiples of mass m.
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Let us recall the form of the Kaluza-Klein metric tensor in the absence of scalar field, g55 = —1:
B 9 +ALA, Ay
= 2.2
gaB ( A 2 (2.2)

or more explicitly,
g;w =Gguw + A,LLALM f]5,u = g#S = A;u Js5 = —1. (23)
with A, functions of space-time variables, identified as the 4-vector potential.
The inverse metric tensor 42 has the following components in 5-dimensional space-time:

. g —AM
=1, \ (2.4)
—AY =14 g)\,A AP
or more explicitly,
G = g, gSM — gu5 _ _A/“ §55 — 1+ g)\pA)‘Ap- (2.5)

Nevertheless it turned out that this particular ansatz is still a solution to the full set of 15 equations,
because in this case the last equation Rs5 — gs5R = 0 reduces to tautology 0 = 0. This circumstance is
often referred to as the “Kaluza-Klein miracle”

The explicit form of the remaining 14 equations in the 5-dimensional Einstein’s general relativity
theory is then:

R/w - §gm/R = inApFuAFuP - 8 i /\77 r FJHFAP = _THV (2'6)
Rmu5 = 8VF#V = 07 where F“uy = 3/“41, - al/All,' (27)

2.1. Adding the scalar field ®

The full version of the Kaluza-Klein model englobes the gravitational field given 4-dimensional
metric g, (z), the electromagnetic field given by its 4-potential A, (z) and the scalar field ®(z).

Guv = N = diag(+1,-1,-1,-1), p,v,..=0,1,2,3.

In this way we get the full set of 15 degrees of freedom present in the 5-dimensional Kaluza-Klein
symmetric metric tensor gap, A,B,..=1,2,...5.

In order to keep the fifth dimension spatial, gs5 should be strictly negative; this is why we shall
give it the form gs5 = —®2.

Several particular situations can be chosen for study now. We can consider a case with scalar
field only, without the electromagnetic one. This will lead to a variant of the tensor-scalar theory of
gravitation, similar to the one proposed by Brans and Dicke. Another choice is the classical Kaluza-Klein
model uniting gravitation and electromagnetism, but without scalar field. This amounts to suppressing
one degree of freedom out of 15, leaving only 14 degrees of freedom, the 4-dimensional space-time metric
guv and the 4-vector potential encoded in the components §,5 = g5, of the 5-dimensional metric.

Finally, we may consider the electromagnetic and scalar fields interacting in a flat Minkowskian
space-time, the gravitation field considered as being negligible.

The five-dimensional metric with scalar field ®(x) as the single degree of freedom remains diagonal:

gap = diag (+1,-1,—1, -1, —®*(z)) . (2.8)

In principle, the notation ®(z) can mean the dependence of the scalar field not only on the space-time
coordinates (20 = ct,x', 22, 2%) but also on the fifth coordinate %, so that in principle we may have not
only 0,® #= 0, but also J5® #= 0.

However, supposing that the fifth dimension is the structural group U (1) homeomorphic to a circle

5

S1, the dependence of ® on z° can be only a periodic one:

(2", 2°) = cos(n e z° +0) - p(z"), sothat 92® = —n?e?®. (2.9)
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Let us derive the set of general formulas for metrics, connections and curvature in 5 dimensions, with
all the 15 degrees of freesom present. The calculus in coordinates turns out to be quite complicated, but
introduucing non-holonomic local frames simplifies the computations considerably.
The non-holonomic local frame is defined by means of the following set of 1-forms and vector fields:
The 1-forms are:
O* =dazt, 0° =dz® +k A, dz", (2.10)

The dual vector fields, satisfying 64 (Dp) = 67 are:
D, =0,—kA,05, Ds=0s. (2.11)

—1 —1
Let us introduce the following transition matrices U and UE such that 04 = Ugdzr?, Do = UF0p,

so that we can write:
Ul =06k, Ut =0, U, =kA,, U7 =1;

-1 -1 -1 —1
Ul =6, U2 =—kA,, UL=0 U =1 (2.12)

The metric tensor expressed in the non-holonomic frame can be deduced from the 5-dimensional length
element squared, and becomes thus as follows

ds® = g datde” — &2 [da® + k A,dat] [da® + k A,da] (2.13)

leading to the following 5 x 5 matrix representation:

252 1.&2
e (;;W +E2D2A4,4, —kd A,,) (2.14)

—k®24, — P2

The inverse matrix becomes then:

vA
c g kA
gB _ <kAV o2y kQA"AA> (2.15)

One easily checks that
gABgBC = 5é-

The simplest and most elegant way to evaluate the connection coefficients and the components of the
Riemann tensor is to use the non-holonomic frame 64 and its dual basis of derivations (vector fields)
Dp, A,B=1,2...5.We need to know the commutators of non-holonomic derivations. We have:

[Da, D] = CXp Dg, (2.16)

where

C5, = Chus = —k Fy = —k (9,4, — 8, A,). (2.17)
We have then the connection coefficients in the non-holonomic basis:
. 1. A
FiB = igCE [DAQBE +Dpgar — DEQAB] + gCE [CEAB + CgBa — CBAE] (2.18)

where “hat” refers to the components with respect to the anholonomic frame.
The only non vanishing connection coefficients are then the following:

. . . . . 1
M =18, T =1 =——kFr, 15, =-13, = ikF*”’ (2.19)

The Riemann tensor expressed in a non-holonomic frame is:

RS p=DalGp —DelSp + 1905, — TG00 — ChsT6) (2.20)
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The Ricci tensor and the curvature scalar in 5 dimensions are calculated as usual,
RuD=RS. p, R=j*"PRup. (2.21)
The resulting expression for the five-dimensional curvature is quite simple indeed:
R=h-le F,, F* — lg‘“’@ﬁb&,@. (2.22)
4 3p2

Considered as the integrand of a 5-dimensional variational principle, this Lagrangian density will lead
to the following Einstein’s equations when varying with respect to the metric only:

R 1. - ® kK2 _F
where formally
1.
Ti) = 040950 — §9AB(9CD30(I)8D(I))7 (2.24)
and
(F) c L, CcD
Typ = Fackp - Z!JAB(FCDF )s (2.25)

5

which in the case of the “n-th mode”, i. e. the dependence ® on z° in a periodic way, only to the

space-time components different from zero:
1
T3 = 0,00, — 50 (720,20, ® — n?e?®?] (2.26)
(where we neglected the mixed terms with F),,, ) and where
%

1,
T = F\F, — 1gw(mpzﬂﬂ), (2.27)

Variation with respect to the scalar field ® and the 4-vector potential A, lead to the following

equations of motion:

1 v
@ ] =0, (2.28)
and
(0P + n?e?)® = 0. (2.29)

where the term n?e? comes from the second derivative of ® with respect to the circular coordinate z°

and plays the role of a mass term for the Klein-Gordon scalar field equation.
3. Non-abelian generalization

An immediate and trivial generalization of the Kaluza-Klein model consists in adding more
“external” dimensions, all of them repeating the same unit circle S* topology. In other words, instead
of one cyclic dimension which can be also interpreted as a 1-dimensional Lie group U(1), introduce a
K-dimensional torus T% = S x 1 x ... x S1.

The symmetry group of TX is [U (1)]K, the Cartesian product of K one-dimensional unitary groups
U(1). The corresponding Kaluza-Klein metric will be extended in a trivial way: let us label the extra
dimensiona by y',4?%,...y" , and the set of all the coordinates by = = (2#,y%), A,B,..=1,2,...,4 +
K, puvr=0,1,23, ab=12,.. K.

As a result, we shall get K distinct scalar fields ®*(z,y) and K distinct 4-potentials AZ(a:)‘), which
will contribute separately to the action principle without any mutual interaction. In the absence of gauge
fields and with the Minkowskian space-time the Kaluza-Klein multidimensional metric tensor would take
on the Kasner metric form:
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gap = diag [+1, -1, -1, -1, —®%(z,7), —®%(x,y), ... — % (2,7)] (3.1)
Let us suppose that the extra dimensions form a compact manifold of dimension N, endowed with a
positive defined metric tensor g,;, When incorporated as a part of the global Kaluza-Klein metric, it
will be taken with minus sign i order to comply with spatial nature of the extra dimensions. The extra
dimensions can be thought of as a maximally symmetric manifold (an N-dimensional sphere) with its
natural metric, or as a Lie symmetry group acting on it. The number of Killing vectors on the maximally
symmetric space of dimension N is K = N(N +1)/2
Let us denote the K Killing vectors - left-invariant vector fields on the structural group - by
Xa, a=1,2,..K:

0
Xo=Xo— 3.2
ayb ( )
They satisfy the following commutation relations:
X004X5 — X{04XC = C, X (3.3)
where the coefficients C’f;b = —Cl{a are the structure constants of the Lie group generating the gauge

symmetry. In what follows, we shall assume that the internal space is the group manifold itself.
The set of K 1-forms w® = wdy® dual to the invariant vector fields is defined as follows:

W(X,) =wlXe=6°, also X2wf =52 (3.4)

The w® are called the Maurer-Cartan forms. They satisfy the Maurer-Cartan equation:
8aw,{ — Oyl + dewgwgl =0. (3.5)

The invariant metric of the extra space is given by the Cartan-Killing symmetric tensor
guv = CL.Ciy. (3.6)

The overall metric tensor gap, A,B..= (,b) =1,2,..(K + 4) in the non-abelian case is then:
(g,w + gap AL Ay gabng3> 57)
Japwi AL, Japwlw}
( QV)‘ —g”ngAz ) (3.8)
fgp/\XgA; gab + g”ngXsAﬁAg ’

As in the 5-dimensional case, the calculus of the Riemann and Ricci tensors is made best in the non-
holonomic frame.

The full set of expressions can be found in an article published in 1981 (R.K., Ann. Inst. H.
(4+K)
Poincaré, 34, p. 437-463) Here we give the resulting 4 + K dimensional scalar curvature R serving

as integrand in the variational principle:

(G O CON | 1
R =R - Zgabgab - Zggb/\ngnguqum (39)
where F, is the gauge field tensor given by:
F%, = 0,A% — 9,A% + Cpy AL AL (3.10)

The resulting equations are similar as in the 5-dimensional case, with Einstein’s equations given by

) 1) @& 8rG

pv 5 g ,U,IIR = oA Tuu (3.11)
with the energy-momentum tensor given by:
1
T = 9avg FinFly — ~gavg" g Fi\F} . (3.12)

4
and the gauge field equations are:

g" DuFg\ = g" [0,F5 + ngAiFg)\] =0 (3.13)
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4. Kaluza-Klein cosmology

A Generalized FRW metric can be easily introduced on the Kaluza-Klein manifold. In 1980 Chodos
and Detwiler ([25]) proposed a Kasner-type cosmological solution in the 5-dimensional Kaluza-Klein
space. The metric element for this model was

1
ds® = dt* — Vit [da® + dy? + d2*] — —=pdx*. (4.1)
Vit
where the last angular variable x comes from the fifth cyclic dimension.

This metric can be generalized to more extra dimensions D; to be more precise:

3+D

ds* = dt* — Zt% (dx") Zt%“ dy*) (4.2)

=1

satisfying the following conditions:
3+D

Zk + Zk: =1, (4.3)

3+D

Zk2 + Zkb =1 (4.4)

The Friedmann-Robertson-Walker metric can be naturally generalized if we assume that the extra space
dimensions form a compact spherically symmetric manifold. Then the overall metric can be derived from
the following line element squared:

ds? = dt* — RA(t) gijda’dx? — R3(t)gapdy®dy’, (4.5)

with two time-dependent scale factors, Ry(t) for the space dimensions of our space-time, d = 3, and
Rp(t) for the D-dimensional internal D-dimensional compact space - most usually, a D-dimensional
sphere.

This ansatz yields the following Ricci tensor:

Ry _Rp
Ry = — |32 + D=2
00 Ry + RD)
2kqg d [ Ry Ry (. Ra Rp
o |2, 7 e ¢y p=£2 -
Big =1 t g (Rd> Rq <3Rd * RD> Jid»
QkD RD RD Rd RD
ab — = D ab
o[ (1) e (s )

In 1985 D. Sahdev (]|26]) obtained solutions of this system with several perfect fluids added on the
right-hand side. The nice feature was that Ry was increasing with time, and Rp decreasing. However,
instead of stabilizing at some small but finite value, as any reasonable physics would require, the internal
radius Rp tended to zero.

Other models attempting to stabilize asymptotically the internal radius Rp were proposed by
Matzner and Mezzacappa (see [23], by Copeland and Toms ([24]) and in six dimensions by Gleisser and
Taylor (1985).

All those models were using the Einstein-Hilbert variational principle, with the integrand of the

(4+D) (4+D)
5/ G ap R d*zdPy=0

form



O6061mennbie mogenn Kamypr - Kaeitna ¢ smarpamkunanamu [aycca - Bonne 175

In 1988 we proposed a generalized non-abelian Kaluza-Klein model in 10 dimensions, with two
gauge symmetry groups (B. Giorgini and R.Kerner, Classical and Quantum Gravity, 5 (1988), pp. 339-
351) , which can be described as a double fibre bundle space, ([18])

P(P(Vy,SU(2)),SU(2)).

The lagrangian contained not only the usual Riemann scalar, but also the second-order and third-order
Gauss-Bonnet invariants.

This situation gives place to three gauge fields, Ag‘, Aﬁ and A%, with indices A, B = 1, 2, 3 relating
to the upper gauge geoup SU(2), indices a,b = 1,2,3 relating to the lower gauge group SU(2),and

w,v.. =0,1,2,3 the space-time indices on Vy. The three field tensors become then:
B B B B 4C 4D
Fo, =047 —0,A; +CepA LAY,
FE5 =0.AF —0,AF + CBAP AL,
b b b b pc 4d
F,, = OuA, — 8VAM + Cch; AS.

L

Looking for cosmological solutions, only the scalar multiplet AZ(z,y) is of interest, the two vector
potentials put to zero.
Decomposing AZ that is defined on the lower group space along the Maurer-Cartan forms:

A7 = o (a")w, (4.6)
the corresponding field tensor becomes:
FE = (CEpolal — cd o) wiv]. (4.7)

due to the Maurer-Cartan identity fulfilled by w?.
The generalized FRW metric in 10 dimensions was as follows:

o = diag (1, —R2(1)8;j, —a®(t)0ap, ~b*(t)da5) . (4.8)

with o, 3= 1,2,...,10, 4,§ = 1,2,3, a,b=1,2,3 and 4, B = 1,2, 3.

10
The variational principle contained a linear combination of cosmological constant A, the scalar
10 10
curvature R and the 10-dimensional Gauss-Bonnet invariant GB.

The resulting differential equations determine the temporal behavior of three scale factors, the
observable 3-dimensional space, and the two separate scale factors for two SO(2) structural groups.

10 10 10 " 3.3
/@ A+ R+ GB| dzd®¢d®y. (4.9)

The equations are highly non-linear, but display several fixed points. Qualitative solutions were
found with finite initial conditions for all three scale factors, leading asymptotically to Friedmann’s
solution for R(t), while the internal scale factors behave differently: while a(t) grows, b(t) decreases, the
exchange providing energy needed for the expansion of R(t)

5. Classical electrodynamics
Let us start by recalling the standard Maxwell’s electromagnetism and fixing the notations. The

simplest and the most elegant form of Maxwell’s system is written in modern system of units as follows:

%?:—VXE, V-B=0, (5.1)
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oD
It should be underlined that the pairs of fields (E, H) and (D, B) represent different geometrical objects.

This can be better understood if we look at the integral form of Maxwell’s equations:

—Qj{B-dazf E-dl, B.o=0. (5.3)
ot Js as av

0 .
7{ {D—FJ} do=¢ H-dl, D.o=0Q. (5.4)
s Ot a5 av

Here S is a surface and 05 its boundary, which is a closed line; V' is a volume and 9V is its boundary
which is a closed surface. Correspondingly, we have vector fields and streams (2-forms). In the integral
form of Maxwell’s equations, the entities E and H are genuine vector fields which can be integrated
along curves, whereas B and D are in fact 2-forms, defining streams.

The rate of change of fluxes of D and B through a surface is determined by the circulation of their
conjugate fields H and E along the boundary, and vice versa.

A problem arises with number of equations versus number of functions: 8 equations for 4 x 3 = 12
components. The constitutive relations E = E(D, B) and H = H(D, B) reduce the number of
variables to 6, thus making the system seemingly overdetermined.

Things become straightened up in a four-dimensional notation, with 4-vector potential defined as a
vector in 4-dimensional space-time endowed wth Minkowskian metric 7, = diag(+, —, —,—), @ v,..=
0,1,2,3

We assume that the 6 variables corresponding to the fields E and B are the 6 independent
components of an antisymmetric 2-covariant tensor (a 2-form) F,, = —F,,, with Fo, = Ej, Fj, =
€ikmBm, i, k,m=1,23.

The Poincaré’s Lemma states that if a 2-form - e.g. F' = %Fw,dx“ A dz? - is defined on an open
subset of Minkowskian space-time My, then it is an exterior differential of some 1-form, then A = A, dz":

F=dA — F, =0,A, -0A, (5.5)
We have two independent relativistic invariant functions of Faraday’s 2-form F),,:

1
S = —Zn”’\n”pFWF)\p = - (E*-B?), (5.6)

DN =

pP= —%e’w”\pFWF)\p = F,F" =E B, (5.7)
with 1
e = Lo,
The choice of symbols is not accidental: S stands for “scalar”, and P stands for “pseudo-scalar”.
To ensure relativistic invariance, the variational principle should be derived from a Lagrangian

depending on these two invariants, £(.5, P). The equations of motion of the electromagnetic field form
two groups: the homogeneous ones,

a,uFuA + auFA,u + a)\F;w =0, (58)

which are the consequence of the fact that F = dA — dF = d?A = 0, and the equations resulting from
variational principle applied to L,

oL
[ i HY —
0u.G 0, with G P (5.9)
GH = %FW’ + %F#V (5.10)

S or
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The dual Faraday tensor is given by definition:
GOi _ _GiO _ Di7 sz _ _Gki _ Eilel (511)
so the equations of motion become:

oD
= =VxH, V-D=0, (5.12)
ot
which coincide with Maxwell’s second set of equations when the sources (the current density j and the
charge density p) are put to zero.

The dynamical properties of the electromagnetic field are described by the energy-momentum tensor

TH:
™ = F*G™ — " L, (5.13)
T"=E-D- L, (5.14)
T = (ExH)!, T°=(DxB)), (5.15)
T* = —F'D* -~ H'B* 4 6*(£ + H- B). (5.16)
The energy-momentum tensor is symmetric and conserved:
T =T""  9,T" =0, (5.17)
The proof uses the following identity:
FnFY =61 P, (5.18)
The relations (5.17) result in the following conserved quantities
PH = / THOdr3, MM = / (T — ¥ TH0)dr? (5.19)

Let us also note that the energy-momentum tensor could be obtained directly as

_aW/Tgle
Ty = g (5.20)

yielding the same expressions for the Hamiltonian Tyy and the Poynting vector P, = Toy.
6. Kaluza-Klein Electrodynamics

Countless theories based on lagrangians depending on F,, F* and (FW*F‘“’)2 (the square is
needed to keep the invariance under space reflections) can be produced if we lack a guiding principle to
fix the form of the lagrangian. In the Kaluza-Klein theory, as well as in its improvements by P. Jordan
and Y. Thiry was based on the Einstein-Hilbert variational principle in five-dimensional space, with
lagrangian equal to R, the scalar curvature of the metric. This lagrangian is unique in four dimensions,
because already the second invariant of the Riemann tensor,

I ZRABCDRABCD —4RABRAB—|—R2 (6.1)

turns out to be a pure divergence and does not modify the equations of motion.

The invariant (6.1) is the unique quadratic combination of the Riemann tensor leading under
variation to the second-order equations. In five dimensions this invariant is no more a divergence,
therefore there is no reason to exclude it in the full theory. This fixes the lagrangian in five dimensions,
leaving the place for the arbitrariness only in the choice of one dimensional parameter.
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This is the starting point for non-linear modification of the electrodynamics. In our calculations
we shall discard the gravitational and scalar fields, both too weak to influence the behaviour of the
electromagnetic field at short distances.

The invariant Iy for the metric (2.2) is easily calculated and is found to be (discarding the pure
divergence term equal to 0, (Foy0* FPY) — 20¥(F,70, F**):

I, = % [(FF")? — 2F\F, ,F*" F*] . (6.2)

For fixed Minkowskian metric 7,,, we can put /| g | = 1 and write the full lagragian as

3e
16¢e2

1
L= FuWF" + o [Fu F')? = 25,0 F, FFY] (6-3)

with € a numerical parameter to be determined.
The equations of motion in vacuo are then

3¢ v 3¢ "
O\ |FM — Tl VF 4 E—QFWFA”F’) : (6.4)
The identities
OuFrp +O0Fpy +0,F0 =0 (6.5)

hold by definition (2.7), too:
Fu = 0,A, — 0,A,.

Both lagrangian and equations of motion are more transparent when expressed by means of the fields

E and B, D and H:

_ L2 g2y 36 m gy
L= (B ~B)+ —(E-B) (6.6)

The new term contains only the square of the second invariant of the electromagnetic field. The full set
of modified Maxwell’s equations is:

B
divB =0, rotE:—aa—t, divD:fi—gB-grad(E-B),
oD 3:[. O(E-B
rotH:——l——E Hg—Exgrad(E-B) . (6.7)

ot e2 ot

In what follows we shall use the units in which ¢ = 1, and in which we can put in the vacuum
E =D and H = B. Therefore the equations in vacuum will be

div B =0, rotE:—%—]?, divE:—§B~grad(E-B),
OE 3¢ [_O(E-B)
rot B = N + = BT —E xgrad(E-B)|. (6.8)

When ¢ is put equal to zero, the equations recover their usual Maxwellian form. Two other possibilities,
up to a scale that can be incorporated in e?, are ¢ = +1 or —1.

7. General properties
The non-homogeneous couple of equations,
. 3e
divE = = B-grad(E-B) (7.1)

and OE JE-B
rotB:—Jr36 Bg

5 T2 T E x grad(E - B) (7.2)
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can be implemented by adding the charge density p to the right-hand side of (7.1) and the current
density j to the right-hand side of (7.2)

However, even in the absence of these “external sources”, the right-hand sides of the egs. (7.1) and
(7.2) behave like conserved induced charge and current densities; their conservation is independent of
eventual other non-induced similar objects. As a matter of fact, let us compare:

g, .. _ 3e0B 3e JE-B)
3e 3e O(E-B)
= —;(rotE) -grad(E-B) — G—QB . gradT (7.3)
and OE 3 JE-B 3
div &= = div(rotB) - e—gdiv <B (8t)> - e—gdiv(E x grad(E - B)) =
3e, .. IE-B) 3¢ OE-B) 3¢
because
divB =0, rot(gradf) =0, div(axb)=Db-(rota)—a- (rotb),
therefore 5 3 5 O(E.B)
€ ) € :
We shall denote the induced charge density by pinq:
3e
pind = ——B - grad(E - B), (7.6)
e
and the induced current density by jina:
. 3e_0(E-B)
with P
% + div(jing) = 0. (7.8)

The theory does not need any non-induced charges if we can prove the existence of charged stable static
solutions, (solitons localized in space). If we form the sum:

0B OE
B - —+E.— 7.9
ot (7.9)
we shall easily find another conservation law:
8 1 2 2 35 2 .
En i(E +B )+e—2(E-B) =div (E x B) (7.10)

The Poynting vector in this theory is the same as in the linear electrodynamics, whereas the energy
density contains a new term, as compared with the classical theory:

H= %(E2+B2)+§(E~B)2 (7.11)
Note that the parameter € has to be positive, in order to ensure the positivity of the energy. From now
on we shall set € = 1, leaving only the coupling constant e? to be determined.

Whenever the fields E and B are orthogonal to each other, our system in vacuum (7.1, 7.2) coincides
with Maxwell’s equations. Such is the case of the electromagetic waves, which are also solutions to the
equations (7.1, 7.2). Moreover, these solutions are stable with respect to perturbations. As a matter of
fact, any deviation from the usual solution in which E is everywhere orthogonal to B, leads automatically

to the rise of the energy H, ensuring stability.
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8. Static solutions

Let us rewrite the equations (7.1 and 7.2 in the stationary case, when all the time derivatives

vanish:
divB=0, rotE=0,

: 3 3
divE = ng -grad(E-B), rotB= fe—QE x grad(E - B). (8.1)

It would be very interesting to obtain a static and non-singular solution of this system, having finite
energy and behaving like a soliton.

This is excluded in the linear case, therefore, if such solution exists, both fields E and B must be
different from zero and non-orthogonal at least in some finite domain of space. We should also impose
the rapid enough vanishing of both fields at infinity. Spherical symmetry for B leads immediately to the
singularity at the origin; so, if the condition div B is to be maintained everywhere, the lines of force of
the field B have to be closed.

The lines of the local current

Jina = rot B = % E x grad(E - B)

o2
must be closed, too. This suggests the axial symmetry in which the current would have only the azimuthal
component, and the field B would be everywhere perpendicular to the azimuthal unit vector e, (in
cylindrical coordinates (p = \/m, z, ¢), i.e. B having its components along e, and e, only. Also
the field E should have only the z and p components; then the Poynting vector P = E x B will have
only the azimuthal component.

Such a configuration has some remarkable symmetry properties:

The trilinear combinations on the right-hand sides of equations (8.1) produce induced charge and
current densities.

The current having only the azimuthal component will produce magnetic field which at great
distances is similar to that of a circular distribution of currents, i.e. the one of a magnetic dipole. At the
same time, one can expect a non-vanishing charge concentration falling off quite rapidly with distance
from the origin, at large distances E should be then similar to the Coulomb field of an electric point-like
charge.

All these conditions put together lead to the following symmetry properties of the components E
and B:

E.(p,2) = —E:(p, —2); Ep(p,z) = Ep(p, —2), (82)
and
B.(p,z) = B:(p, —2); By(p,z) = —By(p,—2). (8.3)

Let us evaluate the behaviour of charge and current distributions far away from the origin. We can take
the field of a magnetic dipole and of concentrated charge as zeroth approximation satisfying Maxwell’s
equations, then insert them into the right-hand sides of egs. (8.1) and compute the first corrections,
supposing that the fields E and B develop as:

E=E+—SE+.., B=B+—B+.. (8.4)
(& e
if we put
©)
E-—9F o, 9% (8.5)
(p* +22)2 (p* +22)2
and . ) )
0 92,2 _
B__ dmpr o p(2 p)ez’ (8.6)

4p2+22)% 7 A(p? +22)3

where @ is the total charge, y the total magnetic moment.
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As the first correction, we obtain

(€] 32
divE = — 9 (24 q0.2), (8.7)
R
and
1) 2
rot B = SHQ” p e, (8.8)

2p? + 22)8
which shows that the charge density falls off as R=2 and the current density as R~ (R = \/p? + 22),
i.e. very fast indeed.

The lines of force of the field B form a family of closed curves which can be transformed into a

family of circles by a suitable coordinate transformation; the toroidal coordinates are best adapted to
describe the situation.

Let us introduce toroidal coordinates (i, 1, ¢):

a sinh p _ a sinn

:77 = :7 8.9
P cosh yu — cosn N cosh yu — cosn o= (89)

with 0 < ¢ <27, 0<n <27 and 0 < pu < oo; a is the constant of dimension of length fixing the
scale; i, n and ¢ are dimensionless.

Puc. 2. Constant coordinate lines y = Const. and 7 = Const. in the (p, z)-plane.

A surface u = pog = Const. is a torus with he external radius a coth 1o and internal radius a/ sinh pg.
When 1 — oo it reduces to a circle of radius a in the (x, y)-plane. When p — 0, the corresponding circle
approaches the z-axis.

The lines of force of B coincide with circles ;1 = Const., i.e. in new coordinates (8.9)
B = B, (1, n) ey. (8.10)

while B, (i, n) = 0. This determines the dependence of B on #:

as B, (u,m) = (rotA)-e, with A = Ag(u,n)es, (8.11)
we have )
(coshpu — cosn)? 0 sinh p
B = — Ay ) =0. 12
s 7) a sinh p On \ cosh u — cosn ¢ 0 (8.12)
Therefore
Ag(p,m) = (cosh pu — cosn) G(u), (8.13)
and )
~ (coshp —cosn)® 0 .
By () = ~ I (s Gl (3.14)

with a yet unknown function G(u).
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Putting aside the problem of eventual singularity, we can at this point see quite well what the
induced charge and current distributions look like. Consider one of the lines of force of B, i.e. a circle
U =m Up, ¢ = ¢ in the (p, z) plane (Figure 1, left).

The symmetry properties of the field E impose the vanishing of its n-component for z = 0, i.e. for
n =0 or 7, because E, (1) = —E, (27 —n). On the other hand, B, (n) = B,(2m —n) >, so that the scalar
product E - B = E, B, on the circle ;1 = 10 is an odd function of  (Figure 1, right).

£

4

=
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-

Puc. 3. Illustration for n

In order to obtain the charge distribution along this circle, we have to compute —B - grad(E - B),
which reduces to the expression
(coshp —cosn) 0

B e AUR DR (8.15)

The corresponding functions are displayed in Figure 3:

Puc. 4. a) The projection of grad(E - B) on the unit vector e, as a function of n; b) The charge density
distribution ¢(n) as function of 7

The charge density changes its sign between n; and 7o = 27 — 7;. This phenomenon describes
vacuum polarization: if at the core of the static solution there is an accumulation of charge density of a
given sign, it must be surrounded by a cloud of charge density of opposite sign.

The value of 7; at which the change of sign occurs depends on the line (i.e. the value of p).
Reproducing similar reasoning for all circles p = Const. we obtain the picture of the overall charge
density (Figure 4):

The strongest vacuum polarization is on the z-axis and in the symmetry plane (z,y), around the
axially symmetric charge distribution at the core. If at any point of this distribution we wanted to
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Puc. 5. The cross-section (x, z, ¢ = Const.) of the charge density distribution.

interpret the azimuthal current density obtained from the last equation (8.1) as being produced by a
rotational movement of the charge density around the z-axis, then it is easy to see, just comparing
the units (remember that we chose the units in which ¢ = 1), that the induced charge has to “move”
with the speed of light. In reality, nothing is moving here: there is just a distribution of static fields
E and B which produces this illusion, because the Poynting vector E x B has only the azimuthal
component. Nevertheless, the illusion produced is the same as for the electron as a whole submitted to
the “Zitterbewegung” with the speed c as it comes out from the relativistic Dirac equation describing the
electron.

There is also another striking similarity between the predictions of this model and those of the
Dirac equation. Both the lagrangian and the equations it led to (8.1) are invariant with respect to the
independent changes of sign, E - —E and B — —B.

This means that any static solution generates automatically three other ones, obtained by the
inversions of E and B. Now, the total charge is linear in E, while the total magnetic moment is linear
in B; the Poynting vector is proportional to E x B, and so will be the total kinetic angular momentum
obtained by the integration of r x (E x B) over the entire space.

The four solutions so obtained can be put together in the following Table 1:

’ Solution ‘ Energy ‘ Charge ‘ Magnetic p ‘ Spin ‘

E, B m q n S
E -B m q - -S
-E, B m —q n -S
-E, —-B m —q -1 S

Any static solution is, as a matter of fact, a quadruplet of solutions with the same rest mass. The
first two solutions describe a particle with electric charge ¢ and magnetic moment g parallel to spin S,
in states with spin up or down (with respect to the z-axis).

The second pair of solutions describes a particle with the opposite charge —g and magnetic moment
antiparallel to the spin S, also in two states with spin up or down. This result is identical with the
predictions of Dirac’s equation for the electron, which leads to the existence of the positron and a
half-integer spin, too.

The bad news is that unfortunately a C'°°-class solution of the system (8.1 does not exist. The
proof is simple and goes as follows: Knowing that div B = 0, we can write

B grad(E - B) = div (B (E - B)) (8.16)

Similarly,
E x grad(E - B) =rot(E (E- B)), (8.17)
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because rot E = 0. This leads to

div (E + e% B(E- B)) =0, rot <B - e% EE- B)) =0. (8.18)

If the space we are working in has the topology of R?, and all the functions are supposed to be C*°-
smooth, then the Poincaré lemma states that

E+ e% B(E-B)=rotC ; and B-— e% E(E - B) = gradi. (8.19)

with C(r) and ¢(r) supposed to be C*° smooth (vector and scalar, respectively) functions of r.
Taking the scalar product of the first equation in (8.19) by E and of the second equation by B we
get (supposing that E = —gradV):

3 .
E? + = (E-B)? = E-rotC = —(gradV) - rotC = —div (VrotC), (8.20)
and 3
2 2 .
B® - — (E-B)® = B grady = div(y B). (8.21)

e

Combining equations (8.20) and (8.21) together, we have
E’? + B? = div(yB — V rot C). (8.22)

If we want the total energy, as well as the total charge, to be finite, then both E and B must decrease
at infinity at least as R™2, so that the right-hand side of (8.22) must be of the order of R~*, which
means in turn that the vector field ¢» B — V rot C is decreasing at infinity as R~3. Applying the
Gauss-Ostrogradsky theorem to a finite 3-volume €2 and its 2-dimensional boundary 0f2:

/ div(y) B —V rot C) d°r = / (v B—V rot C) -dx, (8.23)
Q oQ
we see that the integral of E2 4+ B2 over a spherical volume of radius R behaves as R™!, i.e. it vanishes
when taken over the whole space. Both expressions E? and B? being positive, this means that E = 0
and B = 0, unless the solution is not C*° and the Poincaré lemma does not hold at least on some line
or surface.

The impossibility of obtaining a C' solution with finite energy can be also seen if we try to
construct it by applying the method of successive approximations in toroidal coordinates.

Now the problem can be reduced down to two equations for two unknown functions, the azimuthal
component of the vector potential A, and the scalar potential V. We can believe that in basic state the
dependence on the azimuthal angle ¢ is trivial, therefore we may set

Ap=Ag(p,m) and V =V (u,n) (8.24)

The dependence of both potentials on the toroidal angle  must be of the form sin(kn) or cos(kn), k=
1,2, ...; using the substitution

Ay =u(n) v/cosh p — cosn = (cosh u — cosn) G(u) (8.25)

we make the py-component of the magnetic field vanish, B, = 0.
Along with another substitution

V =wv(n) /coshu — cosn (8.26)

the laplacians appearing on the left-hand side of equations (8.1) will have their variables separated. For
example, the equation

_ 3
divE = = B grad(E-B) (8.27)
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will take on the form:

L i sinh @ +&+lv*
sinh p Op M@,u on? 4

3 (coshp —cosn) [ 0 2
— (sinh 2
I sinh g G | Y () (829
with
0%v ov  (5sin®n + 2cosh prcosn — cos?n)
W = sh u — cosn) =—= + 4sinn— . 8.29
[cosh i = cosn) on? + bm"an + 4(cosh p — cosn) (8.29)

Similarly, the laplacian of the function u(y,n) is equal to some non-linear terms mutiplied by
3/(a%e?). Developing functions u and v as e.g.

SV () sin(rn) + 0 (1) cos(nn)]
n=1

the second derivatives in (8.28) will be replaced by n?v, and the solutions of the homogeneous
equations,nwhich correspond to the zeroth approximation (ﬁ = () are given as a series in spherical
harmonics of half-integer order (cf. Morse and Feshbach).

Py (cosh ) and @n—1 (cosh p) (8.30)
The functions P, , 1 display a logarithmic singularity for u = oo, i.e. on the circle p = a, whereas the
functions Qn_% have a logarithmic singularity for u =0 (i.e. p,z — 00).

In order to avoid singularity we may use the combination of both, but the price to pay is a
discontinuity for some value of 1 (on some toroidal surface). If we feed in such a solution to the right-
hand side and use the Green functions in order to compute the first correction, we shall be faced with
exactly the same problem, because any Green function has at least one singularity of the same kind.

The failure of producing a non-singular soliton is probably due to the fact that we have projected
everything onto three space dimensions, discarding the fifth circular one. It seems possible to obtain
solitons using the fifth dimension in a non-trivial way, like in the case of Kaluza-Klein monopoles of
Sorkin and Gross and Perry.

Puc. 6. The constant energy density surfaces in cartesian coordinates

Another development should include the non-abelian generalization of the Kaluza-Klein theory into
more dimensions, in which also higher order invariants of the Riemann tensor might be included to the
generalized lagrangian.

Recently toroidal solutions for the Higgs-"t Hooft SU(2)xU (1) monopole were produced numerically
by M.S. Volkov et al..

The constant energy density surfaces are represented in cartesian coordinates Fig. 6.
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