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ОБОБЩЕННЫЕ МОДЕЛИ КАЛУЦЫ - КЛЕЙНА С ЛАГРАНЖИАНАМИ
ГАУССА - БОННЕ

Кернер Р.𝑎,1

𝑎 Университет Сорбонна, г. Париж, 75005, Франция.

Пятимерное обобщение эйнштейновской теории гравитации, впервые предложенное Т. Калуцей (1921)
и улучшенное несколькими годами позже О. Клейном (1926), привело к модели Калуцы-Клейна,
включающей электромагнетизм и гравитацию, и варианту теории гравитации Бранса-Дике, содержащему
скалярное поле, взаимодействующее с метрическим тензорным полем. Однако ни одна из этих моделей
не использовала возможности, открывающиеся при расширении вариационного принципа Эйнштейна-
Гильберта за счет включения инварианта Гаусса-Бонне, который в 5 измерениях уже не является чистой
дивергенцией и существенно модифицирует уравнения движения теории.

После напоминания основ модели Калуцы-Клейна, включая неабелев случай, мы даем краткий обзор
многомерных космологических моделей со скалярными полями, порожденными калибровочными полями,
вырожденными на структурной группе, включая обобщенный лагранжиан, содержащий член Гаусса-Бонне
𝑅𝐴𝐵𝐶𝐷𝑅𝐴𝐵𝐶𝐷 − 4𝑅𝐴𝐵𝑅

𝐴𝐵 +𝑅2.
Далее мы возвращаемся к 5-мерной модели Калуцы-Клейна, без скалярного поля и пренебрегая

гравитацией, но с вариационным принципом, обогащенным членом Гаусса-Бонне. Это приводит
в минковском пространстве-времени к интересному варианту нелинейной электродинамики. После
обсуждения модифицированных уравнений Максвелла мы показываем, как может быть построен
тороидальный солитон, и демонстрируем, что в нем проявляются наиболее существенные свойства
электрона Дирака: электрический заряд, магнитный момент и спин. Он также предсказывает симметрию
частица-античастица.

Ключевые слова: Теория Калуцы-Клейна, инварианты Гаусса-Бонне, нелинейная электродинамика, пучки
волокон, космология в 10 измерениях.

GENERALIZED KALUZA-KLEIN MODELS WITH GAUSS-BONNET
LAGRANGIANS

Kerner R.𝑎,1
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The five-dimensional generalization of Einstein’s theory of gravitation proposed first by Th. Kaluza (1921) and
improved a few years later by O. Klein (1926) has led to the Kaluza-Klein model incorporating electromagnetism
and gravitation, and a variant of the Brans-Dicke theory of gravity, containing a scalar field interacting with
metric tensor field. However, neither of these models did use the possibilities offered by the enlargement of the
Einstein-Hilbert variational principle via including the Gauss-Bonnet invariant, which in 5 dimensions is no more
a pure divergence, and modifies substantially the equations of motion of the theory.

After recalling the basics of the Kaluza-Klein model, including the non-abelian case. we give a short review
of multi-dimensional cosmological models with scalar fields generated by gauge fields defined on the structural
group, including the generalized lagrangian containing the Gauss-Bonnet term 𝑅𝐴𝐵𝐶𝐷𝑅𝐴𝐵𝐶𝐷−4𝑅𝐴𝐵𝑅

𝐴𝐵+𝑅2.
Then we turn our attention back to the 5-dimensional Kaluza-Klein model, without scalar field and

neglecting gravity, but with variational principle enriched by the Gauss-Bonnet term, This leads, in the
Minkowskian space-time, to an interesting variant of non-linear Electrodynamics. After discussing the modified
Maxwell’s equations, we show how a toroidal soliton can be constructed, and show that it displays the most
essential features of Dirac’s electron: electric charge, magnetic moment, and spin. It also predicts the particle-anti
particle symmetry.

Keywords: Kaluza-Klein theory, Gauss-Bonnet invariants, Non-linear Electrodynamics, Fibre Bundles,
Cosmology in 10 dimensions.
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1. Introduction

After the advent of the Relativity Theory proposed by Einstein i 1905, and its geometrical
interpretation by Hermann Minkowski a few years later, the fully relativistic interpretation of
electromagnetism was achieved. The Maxwell-Faraday theory was reformulated in terms of four-vectors
and one and two-forms defined on the four dimensional space-time manifold.

The Kaluza-Klein theory was an attempt to unify classical field theories of gravitation and
electromagnetism on the basis of the idea of the extension of the four-dimensional Minowskian spacetime
by adding an extra spatial dimension, thus passing to a five-dimensional spacetime with pseudo-
Euclidean metric 𝑔𝐴𝐵 = diag(+1,−1,−1,−1,−1). Curiously enough, the first to come with this idea was
Gunnar Nordström (see [1]) who made his proposal of unification of gravitational and electromagnetic
fields in 1914, one year before Einstein published his paper on General Relativity. In order to take
gravitation into account Nordström added a fifth component to the electromagnetic vector potential.
Note that he meant the Newtonian theory of gravity, represented by the scalar potential. Then the
generalized Maxwell equations in five dimensions could be derived from a five-dimensional variational
principle mimicking the lagrangian of the usual electromagnetism.

Introducing the five-dimensional vector potential

𝐴𝐶 = [𝐴𝜇, 𝐴5] = [𝐴𝜇, 𝜑], with 𝐵,𝐶, .. = 1, 2, .., 5, 𝜇, 𝜈 = 0, 1, 2, 3. (1.1)

the Faraday-Maxwell field tensor could be generalized to five dimensons as follows:

𝐹𝐵𝐶 = 𝜕𝐵𝐴𝐶 − 𝜕𝐶𝐴𝐵 , → 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇, 𝐹𝜇5 = −𝐹5𝜇 = 𝜕𝜇𝜑− 𝜕5𝐴𝜇. (1.2)

ℒ5 = −1

4
𝐹𝐵𝐶𝐹

𝐵𝐶 = −1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 − 1

2
𝜕𝜇𝜑𝜕

𝜇𝜑. (1.3)

The homogeneous set of Maxwell’s equations is satisfied by virtue of the definition (1.2), giving two
independent identities, the usual one, valid also in four dimensional version:

𝜕𝜇𝐹𝜈𝜆 + 𝜕𝜈𝐹𝜆𝜇 + 𝜕𝜆𝐹𝜇𝜈 = 0, (1.4)

the extra set giving the following identities:

𝜕5𝐹𝜇𝜈 + 𝜕𝜇𝐹𝜈5 + 𝜕𝜈𝐹5𝜇 = 0, → 𝜕5𝐹𝜇𝜈 = 0, (1.5)

which reduces to a tautology due to the definition of Faraday’s tensor; The last independent combination
of three indices, (5, 𝜇, 5), say, yields the following identity:

𝜕5𝐹𝜇5 + 𝜕𝜇𝐹55 + 𝜕5𝐹5𝜇 = 0, (1.6)

which is a tautology, too, because 𝐹55 = 0 and 𝐹𝜇5 = −𝐹5𝜇 Therefore we cannot exclude in principle
the dependence of the fifth component of our 5-dimensional vector potential (the scalar field 𝜑 included)
on the fifth coordinate 𝑥5. Let us however assume this for the sake of simplicity; then the differential
system resulting from the variation of action with integrand given by (1.3) including the generalized
current term 𝐽𝐵𝐴𝐵 = 𝑗𝜇𝐴𝜇 + 𝑗5𝜑 is:

𝜕𝜇𝐹
𝜇𝜆 = −𝑗𝜆, = −𝑗5, (1.7)

reproducing the usual pair of Maxwell’s equations with sources, which in appropriate units read:

rot H = j+
𝜕D

𝜕𝑡
and divD = 𝜌 (1.8)
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the fifth component yielding the d’Alembert equation for the gravitational potential 𝜑:

1

𝑐2
𝜕2𝜑

𝜕𝑡2
−Δ𝜑 = 𝜇, (1.9)

It is noticeable that in Nordström’s 5-dimensional unification there is no interaction whatsoever between
gravity and electromagnetism, they are described by totally independent potentials; on the other hand,
the gravitational field is dynamical and can propagate with the speed of light. This was a step forward
with respect to Newton’s theory of gravitation, to which Nordström’s model reduces in the case of a
purely static field 𝜑.

The 5-dimensional unification of electromagnetism and gravity was proposed by Th. Kaluza after
Einstein published his General relativity paper, and was based on the generalized Einstein’s equations,
involving the metric tensor as dynamical variable. After an approval letter from Einstein to whom Kaluza
sent his results in 1919, got an approval letter, he published them in 1921 ([2]).

Kaluza’s paper contained an extension of general relativity to five dimensions, with a metric tensor
of 15 components, out of which ten were identified with the four-dimensional spacetime metric, four
components with the electromagnetic vector potential, and one component with a hypothetical scalar
field (sometimes called the “dilaton”. The 5-dimensional variational principle yields the 4-dimensional
Einstein field equations, with the electromagnetic energy-momentum tensor as source on the right-hand
side, the Maxwell equations for the electromagnetic field, and an extra equation for the scalar field. In
order to simplify the theory, Kaluza introduced the “cylinder condition” hypothesis assuming that no
component of the five-dimensional metric depends on the fifth dimension.

After the advent of Quantum Mechanics, Oskar Klein ([3]) gave Kaluza’s classical five-dimensional
theory a quantum interpretation. He assumed that the fifth dimension was compact and microscopic, to
explain the cylinder condition. Klein suggested that the geometry of the extra fifth dimension could take
the form of a circle, with the radius of 10−30 cm. More precisely, the radius of the circular dimension is
23 times the Planck length, which in turn is of the order of 10−33 cm.

Kaluza’s and Klein’s ideas seemed attractive enough to Einstein, who published his comment on
five-dimensional theories in 1927 ([4]).

Classical theory was completed in the 40-ties and the full field equations including the scalar field
were obtained almost simultaneously Yves Thiry ([5], [6]), Pasqual Jordan ([7]) and W. Scherrer ([8].

Jordan’s work led to the scalar-tensor theory of Brans-Dicke ([9]), who were apparently unaware
of Thiry’s or Scherrer’s papers.

The full expressions for the curvature tensors in the complete Kaluza equations were given by
Coquereaux and Esposito-Farese ([16]).

What seems really amazing is that although the Gauss-Bonnet invariant of second order was known
since a long time, the fact that it can be used as a non-trivial integrand for variational principle in
mora than four dimensions, in particular in the Kaluza-Klein theory. The second-order Gauss-Bonnet
invariant is the unique quadratic combination of Riemann tensor’s components that under variation
yields only second-order differential equations. It is a pure divergence in 4 dimensions, but starting from
fivr dimensions its variation contributes to the second-order Einstein differential equations, although in
a very non-linear way.

The general definition of Gauss-Bonnet invariant of order 𝑝 is given in the followoing formula:

𝐼𝑝 =
1

2𝑝
𝛿
𝜇1𝜇2...𝜇𝑝𝜈1𝜈2...𝜈𝑝
𝜌1𝜌2...𝜌𝑝𝜎1𝜎2...𝜎𝑝 𝑅

𝜌1𝜎1
𝜇1𝜈1

𝑅 𝜌2𝜎2
𝜇2𝜈2

...𝑅
𝜌𝑝𝜎𝑝

𝜇𝑝𝜈𝑝 (1.10)

where the totally antisymmetric tensor of order 𝑛 is defined as the anti-symmetrized prodict of 𝑛
Kronecker’s deltas:

𝛿𝜇1𝜇2...𝜇𝑛
𝜌1𝜌2...𝜌𝑛

= 𝛿𝜇1 [𝜌1𝛿
𝜇2
𝜌2
...𝛿𝜇𝑛

[𝜌𝑛] (1.11)

An important feature of these invariants is that an invariant of order 𝑝, 𝐼𝑝, reduces to a pure divergence
and do not contribute to the equations of motion under variation in dimensions lower than 2𝑝. Thus the
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first invariant, which is the Riemann scalar𝑅, does not produce any equations in 2 dimensions: its integral
over the entire manifold is constant and equal to 2𝜋𝜒, where 𝜒 is the Euler-Poincaré characteristic (equal
to 2 for a sphere, and 0 for a torus). The invariant 𝐼2 is a pure divergence up to 4 dimensions, and 𝐼3 is
not a pure divergence only for manifolds whose dimension is higher than 6.

In 1971 Lovelock ([10]) presented an extension of Einstein’s gravity to higher dimensions, with an
enlarged lagrangian containing Gauss-Bonnet invariants. But to our knowledge, no one noticed that even
in its original version the Kaluza-Klein five-dimensional theory can - and should - incorporate not only
the usual Riemann curvature scalar, but also a non-trivial second order Gauss-Bonnet invariant. This
possibility was never mentioned in modern expositions of the Kaluza-Klein theory that were written in
early eighties by E. Witten ([11]), M. Duff ([13]), Th. Appelquist et al. ([12]) or by J. M. Overduin and
P. S. Wesson ([14], [15]). The first extension of the Kaluza-Klein model incorporating the Gauss-Bonnet
invariant of second order appeared in 1987 ([19])

2. Kaluza-Klein theory revisited

In the language of modern differential geometry, such a structure is called a principal fibre bundle,
denoted by 𝑃 (𝑀,𝐺), where 𝑀 denotes a differential manifold (in this case a pseudo-Riemannian space-
time), and 𝐺 is a compact and semi-simple Lie group (in this case the one-dimensional group 𝑈(1),
topologically equivalent to a circle. The canonical projection 𝜋 : 𝑃 (𝑀,𝐺) → 𝑀 maps the points of
𝑃 (𝑀,𝐺) onto the points in 𝑀 , 𝜋(𝑝) = 𝑥 ∈ 𝑀 . The set of points in 𝑃 (𝑀,𝐺) that project on the same
point 𝑥 ∈ 𝑀 is called a fibre, and is isomorphic with the structure group 𝐺 (here it is the 𝑈(1) group:
𝜋−1(𝑥) ∼ 𝑈(1).

Рис. 1. Kaluza-Klein scheme.

The five-dimensional Kaluza-Klein space. The local coordinates are 𝑥𝐴 = (𝑥𝜇, 𝑥5); 𝐴 =

1, 2, ..5, 𝜇, 𝜈, .. = (0, 𝑖) = 0, 1, 2, 3, which under the projection 𝜋 reduce to points in the Minkowski
space-time: 𝜋(𝑥𝐴) = 𝜋(𝑥𝜇, 𝑥5) = (𝑥𝜇) ∈𝑀4.

In its first version proposed by Th. Kaluza, the fifth dimension was just an extra space coordinate,
the entire space being isomorphic with 𝑀4 × 𝑅1 ∼ [𝑐𝑡, 𝑥, 𝑦, 𝑧, 𝑥5] ∼ 𝑀5, a five-dimensional Minkowski
space. the five-dimensional metric can be regarded upon as the composition of two independent metrics,
the 4-dimensional Minkowskian one and the “vertical” one defining an invariant scalar product in fibres,
which in this case can be taken as 𝑔55 = 1.

If one assumes, as Oskar Klein proposed, that the fifth dimension is topologically closed, then it can
be considered as a circle with a very small radius. The dependence on the fifth dimension of functions
defined on the “compactified” space must be then periodic, admitting a Fourier-like decomposition:

𝑓(𝑥𝜇, 𝑥5) =
∞∑︁
𝑘=0

𝑎𝑘(𝑥
𝜇)𝑒𝑖𝑘𝑚𝑥

5

. (2.1)

with dim (m) =𝑐𝑚−1. Then the eigenvalues of the fifth component of quantum momentum operator,
𝑝5 = −𝑖ℏ𝜕5 are integer multiples of mass 𝑚.
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Let us recall the form of the Kaluza-Klein metric tensor in the absence of scalar field, 𝑔55 = −1:

𝑔𝐴𝐵 =

(︃
𝑔𝜇𝜈 +𝐴𝜇𝐴𝜈 𝐴𝜇

𝐴𝜈 −1

)︃
(2.2)

or more explicitly,
𝑔𝜇𝜈 = 𝑔𝜇𝜈 +𝐴𝜇𝐴𝜈 , 𝑔5𝜇 = 𝑔𝜇5 = 𝐴𝜇, 𝑔55 = −1. (2.3)

with 𝐴𝜇 functions of space-time variables, identified as the 4-vector potential.
The inverse metric tensor 𝑔𝐴𝐵 has the following components in 5-dimensional space-time:

𝑔𝐴𝐵 =

(︃
𝑔𝜇𝜈 −𝐴𝜇

−𝐴𝜈 −1 + 𝑔𝜆𝜌𝐴
𝜆𝐴𝜌

)︃
(2.4)

or more explicitly,
𝑔𝜇𝜈 = 𝑔𝜇𝜈 , 𝑔5𝜇 = 𝑔𝜇5 = −𝐴𝜇, 𝑔55 = −1 + 𝑔𝜆𝜌𝐴

𝜆𝐴𝜌. (2.5)

Nevertheless it turned out that this particular ansatz is still a solution to the full set of 15 equations,
because in this case the last equation 𝑅55 − 𝑔55𝑅 = 0 reduces to tautology 0 = 0. This circumstance is
often referred to as the “Kaluza-Klein miracle”

The explicit form of the remaining 14 equations in the 5-dimensional Einstein’s general relativity
theory is then:

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 =

1

2
𝜂𝜆𝜌𝐹𝜇𝜆𝐹𝜈𝜌 −

1

8
𝜂𝜇𝜈𝜂

𝜎𝜆𝜂𝜅𝜌 𝐹𝜎𝜅𝐹𝜆𝜌 = −𝑇𝜇𝜈 (2.6)

𝑅𝑚𝑢5 = 𝜕𝜈𝐹𝜇𝜈 = 0, where 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇. (2.7)

2.1. Adding the scalar field Φ

The full version of the Kaluza-Klein model englobes the gravitational field given 4-dimensional
metric 𝑔𝜇𝜈(𝑥), the electromagnetic field given by its 4-potential 𝐴𝜇(𝑥) and the scalar field Φ(𝑥).

𝑔𝜇𝜈 = 𝜂𝜇𝜈 = diag(+1,−1,−1,−1), 𝜇, 𝜈, .. = 0, 1, 2, 3.

In this way we get the full set of 15 degrees of freedom present in the 5-dimensional Kaluza-Klein
symmetric metric tensor 𝑔𝐴𝐵 , 𝐴,𝐵, .. = 1, 2, ...5.

In order to keep the fifth dimension spatial, 𝑔55 should be strictly negative; this is why we shall
give it the form 𝑔55 = −Φ2.

Several particular situations can be chosen for study now. We can consider a case with scalar
field only, without the electromagnetic one. This will lead to a variant of the tensor-scalar theory of
gravitation, similar to the one proposed by Brans and Dicke. Another choice is the classical Kaluza-Klein
model uniting gravitation and electromagnetism, but without scalar field. This amounts to suppressing
one degree of freedom out of 15, leaving only 14 degrees of freedom, the 4-dimensional space-time metric
𝑔𝜇𝜈 and the 4-vector potential encoded in the components 𝑔𝜇5 = 𝑔5𝜇 of the 5-dimensional metric.

Finally, we may consider the electromagnetic and scalar fields interacting in a flat Minkowskian
space-time, the gravitation field considered as being negligible.

The five-dimensional metric with scalar field Φ(𝑥) as the single degree of freedom remains diagonal:

𝑔𝐴𝐵 = diag
(︀
+1,−1,−1,−1,−Φ2(𝑥)

)︀
. (2.8)

In principle, the notation Φ(𝑥) can mean the dependence of the scalar field not only on the space-time
coordinates (𝑥0 = 𝑐𝑡, 𝑥1, 𝑥2, 𝑥3) but also on the fifth coordinate 𝑥5, so that in principle we may have not
only 𝜕𝜇Φ ̸== 0, but also 𝜕5Φ ̸== 0.

However, supposing that the fifth dimension is the structural group 𝑈(1) homeomorphic to a circle
𝑆1, the dependence of Φ on 𝑥5 can be only a periodic one:

Φ(𝑥𝜇, 𝑥5) = cos(𝑛 𝑒 𝑥5 + 𝛿) · 𝜑(𝑥𝜇), so that 𝜕25Φ = −𝑛2𝑒2Φ. (2.9)
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Let us derive the set of general formulas for metrics, connections and curvature in 5 dimensions, with
all the 15 degrees of freesom present. The calculus in coordinates turns out to be quite complicated, but
introduucing non-holonomic local frames simplifies the computations considerably.

The non-holonomic local frame is defined by means of the following set of 1-forms and vector fields:
The 1-forms are:

𝜃𝜇 = 𝑑𝑥𝜇, 𝜃5 = 𝑑𝑥5 + 𝑘 𝐴𝜇𝑑𝑥
𝜇, (2.10)

The dual vector fields, satisfying 𝜃𝐴(𝒟𝐵) = 𝛿𝐴𝐵 are:

𝒟𝜇 = 𝜕𝜇 − 𝑘 𝐴𝜇𝜕5, 𝒟5 = 𝜕5. (2.11)

Let us introduce the following transition matrices 𝑈𝐴𝐵 and
−1

𝑈𝐵𝐶 such that 𝜃𝐴 = 𝑈𝐴𝐵 𝑑𝑥
𝐵 , 𝒟𝐶 =

−1

𝑈𝐷𝐶 𝜕𝐷,
so that we can write:

𝑈𝜇𝜈 = 𝛿𝜇𝜈 , 𝑈𝜇5 = 0, 𝑈5
𝜇 = 𝑘𝐴𝜇, 𝑈5

5 = 1;

−1

𝑈𝜇𝜈 = 𝛿𝜇𝜈 ,
−1

𝑈5
𝜈 = −𝑘𝐴𝜈 ,

−1

𝑈𝜇5 = 0
−1

𝑈5
5 = 1. (2.12)

The metric tensor expressed in the non-holonomic frame can be deduced from the 5-dimensional length
element squared, and becomes thus as follows

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 − Φ2

[︀
𝑑𝑥5 + 𝑘 𝐴𝜇𝑑𝑥

𝜇
]︀ [︀
𝑑𝑥5 + 𝑘 𝐴𝜈𝑑𝑥

𝜈
]︀

(2.13)

leading to the following 5× 5 matrix representation:

𝑔𝐴𝐵 =

(︃
𝑔𝜇𝜈 + 𝑘2Φ2𝐴𝜇𝐴𝜈 −𝑘Φ2𝐴𝜈

−𝑘Φ2𝐴𝜇 −Φ2

)︃
(2.14)

The inverse matrix becomes then:

𝑔𝐵𝐶 =

(︃
𝑔𝜈𝜆 𝑘𝐴𝜆
𝑘𝐴𝜈 −Φ−2 + 𝑘2𝐴𝜈𝐴𝜆

)︃
(2.15)

One easily checks that
𝑔𝐴𝐵𝑔

𝐵𝐶 = 𝛿𝐴𝐶 .

The simplest and most elegant way to evaluate the connection coefficients and the components of the
Riemann tensor is to use the non-holonomic frame 𝜃𝐴 and its dual basis of derivations (vector fields)
𝒟𝐵 , 𝐴,𝐵 = 1, 2...5.We need to know the commutators of non-holonomic derivations. We have:

[𝒟𝐴,𝒟𝐵 ] = 𝐶𝐸𝐴𝐵 𝒟𝐸 , (2.16)

where
𝐶5
𝜇𝜈 = 𝐶𝜇𝜈5 = −𝑘 𝐹𝜇𝜈 = −𝑘 (𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇). (2.17)

We have then the connection coefficients in the non-holonomic basis:

Γ̂𝐶𝐴𝐵 =
1

2
𝑔𝐶𝐸 [𝒟𝐴𝑔𝐵𝐸 +𝒟𝐵𝑔𝐴𝐸 −𝒟𝐸𝑔𝐴𝐵 ] + 𝑔𝐶𝐸 [𝐶𝐸𝐴𝐵 + 𝐶𝐸𝐵𝐴 − 𝐶𝐵𝐴𝐸 ] (2.18)

where “hat” refers to the components with respect to the anholonomic frame.
The only non vanishing connection coefficients are then the following:

Γ̂𝜇𝜈𝜆 = Γ𝜇𝜈𝜆, Γ̂𝜇𝜈5 = Γ̂𝜇5𝜈 = −1

2
𝑘𝐹𝜇𝜈 , Γ̂5

𝜈𝜆 = −Γ̂5
𝜆𝜈 =

1

2
𝑘𝐹𝜆𝜈 , (2.19)

The Riemann tensor expressed in a non-holonomic frame is:

�̂�𝐶𝐴𝐵 𝐷 = 𝒟𝐴Γ̂𝐶𝐵𝐷 −𝒟𝐵Γ̂𝐶𝐴𝐷 + Γ̂𝐶𝐴𝐹 Γ̂
𝐹
𝐵𝐷 − Γ̂𝐶𝐵𝐹 Γ̂

𝐹
𝐴𝐷 − 𝐶𝐹𝐴𝐵Γ̂

𝐶
𝐹𝐷 (2.20)
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The Ricci tensor and the curvature scalar in 5 dimensions are calculated as usual,

�̂�𝐴𝐷 = �̂�𝐶𝐴𝐶 𝐷, �̂� = 𝑔𝐴𝐵�̂�𝐴𝐵 . (2.21)

The resulting expression for the five-dimensional curvature is quite simple indeed:

�̂� =
4

𝑅− 1

4
Φ2 𝐹𝜇𝜈𝐹

𝜇𝜈 − 2

3Φ2
𝑔𝜇𝜈𝜕𝜇Φ𝜕𝜈Φ. (2.22)

Considered as the integrand of a 5-dimensional variational principle, this Lagrangian density will lead
to the following Einstein’s equations when varying with respect to the metric only:

�̂�𝐴𝐵 − 1

2
𝑔𝐴𝐵�̂� = 8𝜋𝐺

[︂
𝑇

(Φ)
𝐴𝐵 +

𝑘2

16𝜋𝐺
𝑇

(𝐹 )
𝐴𝐵

]︂
(2.23)

where formally

𝑇
(Φ)
𝐴𝐵 = 𝜕𝐴Φ𝜕𝐵Φ− 1

2
𝑔𝐴𝐵(𝑔

𝐶𝐷𝜕𝐶Φ𝜕𝐷Φ), (2.24)

and
𝑇

(𝐹 )
𝐴𝐵 = 𝐹𝐴𝐶𝐹

𝐶
𝐵 − 1

4
𝑔𝐴𝐵(𝐹𝐶𝐷𝐹

𝐶𝐷), (2.25)

which in the case of the “n-th mode”, i. e. the dependence Φ on 𝑥5 in a periodic way, only to the
space-time components different from zero:

𝑇 (Φ)
𝜇𝜈 = 𝜕𝜇Φ𝜕𝜈Φ− 1

2
𝑔𝜇𝜈

[︀
𝑔𝜆𝜌𝜕𝜆Φ𝜕𝜌Φ− 𝑛2𝑒2Φ2

]︀
, (2.26)

(where we neglected the mixed terms with 𝐹𝜇𝜈 ) and where

𝑇 (𝐹 )
𝜇𝜈 = 𝐹𝜇𝜆𝐹

𝜆
𝜈 −

1

4
𝑔𝜇𝜈(𝐹𝜆𝜌𝐹

𝜆𝜌), (2.27)

Variation with respect to the scalar field Φ and the 4-vector potential 𝐴𝜇 lead to the following
equations of motion:

1

Φ
𝜕𝜇 [Φ 𝐹𝜇𝜈 ] = 0, (2.28)

and
(2Φ+ 𝑛2𝑒2)Φ = 0. (2.29)

where the term 𝑛2𝑒2 comes from the second derivative of Φ with respect to the circular coordinate 𝑥5

and plays the role of a mass term for the Klein-Gordon scalar field equation.

3. Non-abelian generalization

An immediate and trivial generalization of the Kaluza-Klein model consists in adding more
“external” dimensions, all of them repeating the same unit circle 𝑆1 topology. In other words, instead
of one cyclic dimension which can be also interpreted as a 1-dimensional Lie group 𝑈(1), introduce a
𝐾-dimensional torus 𝑇𝐾 = 𝑆1 × 𝑆1 × ...× 𝑆1.

The symmetry group of 𝑇𝐾 is [𝑈(1)]
𝐾 , the Cartesian product of 𝐾 one-dimensional unitary groups

𝑈(1). The corresponding Kaluza-Klein metric will be extended in a trivial way: let us label the extra
dimensiona by 𝑦1, 𝑦2, ...𝑦𝐾 , and the set of all the coordinates by 𝑥𝐵 = (𝑥𝜇, 𝑦𝑎), 𝐴,𝐵, .. = 1, 2, ..., 4 +

𝐾, 𝜇, 𝜈 = 0, 1, 2, 3, 𝑎, 𝑏 = 1, 2, ...,𝐾.
As a result, we shall get 𝐾 distinct scalar fields Φ𝑎(𝑥, 𝑦) and 𝐾 distinct 4-potentials 𝐴𝑏𝜇(𝑥𝜆), which

will contribute separately to the action principle without any mutual interaction. In the absence of gauge
fields and with the Minkowskian space-time the Kaluza-Klein multidimensional metric tensor would take
on the Kasner metric form:
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𝑔𝐴𝐵 = diag [+1,−1,−1,−1,−Φ2
1(𝑥, 𝑦),−Φ2

2(𝑥, 𝑦), ...− Φ2
𝐾(𝑥, 𝑦)] (3.1)

Let us suppose that the extra dimensions form a compact manifold of dimension 𝑁 , endowed with a
positive defined metric tensor 𝑔𝑎𝑏 When incorporated as a part of the global Kaluza-Klein metric, it
will be taken with minus sign i order to comply with spatial nature of the extra dimensions. The extra
dimensions can be thought of as a maximally symmetric manifold (an 𝑁 -dimensional sphere) with its
natural metric, or as a Lie symmetry group acting on it. The number of Killing vectors on the maximally
symmetric space of dimension 𝑁 is 𝐾 = 𝑁(𝑁 + 1)/2

Let us denote the 𝐾 Killing vectors - left-invariant vector fields on the structural group - by
𝑋𝑎, 𝑎 = 1, 2, ...𝐾:

𝑋𝑎 = 𝑋𝑎
𝜕

𝜕𝑦𝑏
(3.2)

They satisfy the following commutation relations:

𝑋𝑑
𝑎𝜕𝑑𝑋

𝑐
𝑏 −𝑋𝑑

𝑏 𝜕𝑑𝑋
𝑐
𝑎 = 𝐶𝑓𝑎𝑏𝑋

𝑐
𝑓 (3.3)

where the coefficients 𝐶𝑓𝑎𝑏 = −𝐶𝑓𝑏𝑎 are the structure constants of the Lie group generating the gauge
symmetry. In what follows, we shall assume that the internal space is the group manifold itself.

The set of 𝐾 1-forms 𝜔𝑏 = 𝜔𝑏𝑐𝑑𝑦
𝑐 dual to the invariant vector fields is defined as follows:

𝜔𝑏(𝑋𝑎) = 𝜔𝑏𝑒𝑋
𝑒
𝑎 = 𝛿𝑏𝑎, also 𝑋𝑎

𝑒𝜔
𝑒
𝑏 = 𝛿𝑎𝑏 . (3.4)

The 𝜔𝑎 are called the Maurer-Cartan forms. They satisfy the Maurer-Cartan equation:

𝜕𝑎𝜔
𝑓
𝑏 − 𝜕𝑏𝜔

𝑓
𝑎 + 𝐶𝑓𝑐𝑑𝜔

𝑐
𝑎𝜔

𝑑
𝑏 = 0. (3.5)

The invariant metric of the extra space is given by the Cartan-Killing symmetric tensor

𝑔𝑎𝑏 = 𝐶𝑑𝑎𝑐𝐶
𝑐
𝑏𝑑. (3.6)

The overall metric tensor 𝑔𝐴𝐵 , 𝐴,𝐵.. = (𝜇, 𝑏) = 1, 2, ..(𝐾 + 4) in the non-abelian case is then:(︃
𝑔𝜇𝜈 + 𝑔𝑎𝑏𝐴

𝑎
𝜇𝐴

𝑏𝜈 𝑔𝑎𝑏𝜔
𝑎
𝑑𝐴

𝑏
𝜈

𝑔𝑎𝑏𝜔
𝑎
𝑐𝐴

𝑏
𝜇 𝑔𝑎𝑏𝜔

𝑎
𝑐𝜔

𝑏
𝑑

)︃
, (3.7)

(︃
𝑔𝜈𝜆 −𝑔𝜈𝜌𝑋𝑏

𝑑𝐴
𝑑
𝜌

−𝑔𝜌𝜆𝑋𝑎
𝑐𝐴

𝑐
𝜌 𝑔𝑎𝑏 + 𝑔𝜇𝜌𝑋𝑎

𝑐𝑋
𝑏
𝑑𝐴

𝑐
𝜇𝐴

𝑑
𝜌

)︃
, (3.8)

As in the 5-dimensional case, the calculus of the Riemann and Ricci tensors is made best in the non-
holonomic frame.

The full set of expressions can be found in an article published in 1981 (R.K., Ann. Inst. H.

Poincaré, 34, p. 437-463) Here we give the resulting 4 +𝐾 dimensional scalar curvature
(4+𝐾)

𝑅 serving
as integrand in the variational principle:

(4+𝐾)

𝑅 =
(4)

𝑅 − 1

4
𝑔𝑎𝑏𝑔

𝑎𝑏 − 1

4
𝑔𝜇𝜆𝑎𝑏 𝑔

𝜈𝜌𝐹 𝑎𝑚𝑢𝜈𝐹
𝑏
𝜈𝜌, (3.9)

where 𝐹 𝑎𝜇𝜈 is the gauge field tensor given by:

𝐹 𝑎𝜇𝜈 = 𝜕𝜇𝐴
𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝐶𝑎𝑏𝑑𝐴

𝑏
𝜇𝐴

𝑑
𝜈 . (3.10)

The resulting equations are similar as in the 5-dimensional case, with Einstein’s equations given by
(4)

𝑅𝜇𝜈 −
1

2

(4)
𝑔 𝜇𝜈

(4)

𝑅 = −8𝜋𝐺

𝑐4
𝑇𝜇𝜈 (3.11)

with the energy-momentum tensor given by:

𝑇𝜇𝜈 = 𝑔𝑎𝑏𝑔
𝜆𝜎𝐹 𝑎𝜇𝜆𝐹

𝑏
𝜈𝜎 − 1

4
𝑔𝑎𝑏𝑔

𝜇𝜈𝑔𝜆𝜌𝐹 𝑎𝜇𝜆𝐹
𝑏
𝜈𝜌. (3.12)

and the gauge field equations are:

𝑔𝜇𝜈 𝐷𝜇𝐹
𝑎
𝜈𝜆 = 𝑔𝜇𝜈

[︀
𝜕𝜇𝐹

𝑎
𝜈𝜆 + 𝐶𝑎𝑏𝑑𝐴

𝑐
𝜇𝐹

𝑑
𝜈𝜆

]︀
= 0 (3.13)
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4. Kaluza-Klein cosmology

A Generalized FRW metric can be easily introduced on the Kaluza-Klein manifold. In 1980 Chodos
and Detwiler ([25]) proposed a Kasner-type cosmological solution in the 5-dimensional Kaluza-Klein
space. The metric element for this model was

𝑑𝑠2 = 𝑑𝑡2 −
√
𝑡
[︀
𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

]︀
− 1√

𝑡
𝜌2𝑑𝜒2. (4.1)

where the last angular variable 𝜒 comes from the fifth cyclic dimension.
This metric can be generalized to more extra dimensions 𝐷; to be more precise:

𝑑𝑠2 = 𝑑𝑡2 −
3∑︁
𝑖=1

𝑡2𝑘𝑖(𝑑𝑥𝑖)2 −
3+𝐷∑︁
𝑎=4

𝑡2𝑘𝑎(𝑑𝑦𝑎)2 (4.2)

satisfying the following conditions:
3∑︁
𝑖=1

𝑘𝑖 +
3+𝐷∑︁
𝑎=4

𝑘𝑎 = 1, (4.3)

3∑︁
𝑖=1

𝑘2𝑖 +
3+𝐷∑︁
𝑏=4

𝑘2𝑏 = 1 (4.4)

The Friedmann-Robertson-Walker metric can be naturally generalized if we assume that the extra space
dimensions form a compact spherically symmetric manifold. Then the overall metric can be derived from
the following line element squared:

𝑑𝑠2 = 𝑑𝑡2 −𝑅2
𝑑(𝑡) 𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 −𝑅2
𝐷(𝑡)𝑔𝑎𝑏𝑑𝑦

𝑎𝑑𝑦𝑏, (4.5)

with two time-dependent scale factors, 𝑅𝑑(𝑡) for the space dimensions of our space-time, 𝑑 = 3, and
𝑅𝐷(𝑡) for the 𝐷-dimensional internal 𝐷-dimensional compact space - most usually, a 𝐷-dimensional
sphere.

This ansatz yields the following Ricci tensor:

𝑅00 = −

[︃
3
�̈�𝑑
𝑅𝑑

+𝐷
�̈�𝐷
𝑅𝐷

)︃
,

𝑅𝑖𝑗 =

[︃
2𝑘𝑑
𝑅2
𝑑

+
𝑑

𝑑𝑡

(︃
�̇�𝑑
𝑅𝑑

)︃
+
�̇�𝑑
𝑅𝑑

(︃
3
�̇�𝑑
𝑅𝑑

+𝐷
𝑅𝐷
𝑅𝐷

)︃]︃
𝑔𝑖𝑗 ,

𝑅𝑎𝑏 =

[︃
2𝑘𝐷
𝑅2
𝐷

+
𝑑

𝑑𝑡

(︃
�̇�𝐷
𝑅𝐷

)︃
+
𝑅𝐷
𝑅𝐷

(︃
3
�̇�𝑑
𝑅𝑑

+𝐷
𝑅𝐷
𝑅𝐷

)︃]︃
𝑔𝑎𝑏,

In 1985 D. Sahdev ([26]) obtained solutions of this system with several perfect fluids added on the
right-hand side. The nice feature was that 𝑅𝑑 was increasing with time, and 𝑅𝐷 decreasing. However,
instead of stabilizing at some small but finite value, as any reasonable physics would require, the internal
radius 𝑅𝐷 tended to zero.

Other models attempting to stabilize asymptotically the internal radius 𝑅𝐷 were proposed by
Matzner and Mezzacappa (see [23], by Copeland and Toms ([24]) and in six dimensions by Gleisser and
Taylor (1985).

All those models were using the Einstein-Hilbert variational principle, with the integrand of the
form

𝛿

∫︁ √︂
(4+𝐷)

𝑔 𝐴𝐵

(4+𝐷)

𝑅 𝑑4𝑥𝑑𝐷𝑦 = 0
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In 1988 we proposed a generalized non-abelian Kaluza-Klein model in 10 dimensions, with two
gauge symmetry groups (B. Giorgini and R.Kerner, Classical and Quantum Gravity, 5 (1988), pp. 339-
351) , which can be described as a double fibre bundle space, ([18])

𝑃 (𝑃 (𝑉4, 𝑆𝑈(2)), 𝑆𝑈(2)).

The lagrangian contained not only the usual Riemann scalar, but also the second-order and third-order
Gauss-Bonnet invariants.

This situation gives place to three gauge fields, 𝐴𝐴𝑏 , 𝐴
𝐴
𝜇 and 𝐴𝑎𝜈 , with indices 𝐴,𝐵 = 1, 2, 3 relating

to the upper gauge geoup 𝑆𝑈(2), indices 𝑎, 𝑏 = 1, 2, 3 relating to the lower gauge group 𝑆𝑈(2),and
𝜇, 𝜈.. = 0, 1, 2, 3 the space-time indices on 𝑉4. The three field tensors become then:

𝐹𝐵𝜇𝜈 = 𝜕𝜇𝐴
𝐵
𝜈 − 𝜕𝜈𝐴

𝐵
𝜇 + 𝐶𝐵𝐶𝐷𝐴

𝐶
𝜇𝐴

𝐷
𝜈 ,

𝐹𝐵𝑐𝑑 = 𝜕𝑐𝐴
𝐵
𝑑 − 𝜕𝑑𝐴

𝐵
𝑐 + 𝐶𝐵𝐷𝐸𝐴

𝐷
𝑐 𝐴

𝐸
𝑑 ,

𝐹 𝑏𝜇𝜈 = 𝜕𝜇𝐴
𝑏
𝜈 − 𝜕𝜈𝐴

𝑏
𝜇 + 𝐶𝑏𝑐𝑑𝐴

𝑐
𝜇𝐴

𝑑
𝜈 .

Looking for cosmological solutions, only the scalar multiplet 𝐴𝐵𝑐 (𝑥, 𝑦) is of interest, the two vector
potentials put to zero.

Decomposing 𝐴𝐵𝑐 that is defined on the lower group space along the Maurer-Cartan forms:

𝐴𝐵𝑐 = Φ𝐵𝑑 (𝑥
𝜇)𝜔𝑑𝑐 , (4.6)

the corresponding field tensor becomes:

𝐹𝐸𝑎𝑏 =
(︀
𝐶𝐸𝐵𝐷Φ

𝐵
𝑔 Φ

𝐷
𝑓 − 𝐶𝑑𝑔𝑓Φ

𝐸
𝑑

)︀
𝜔𝑔𝑎𝜔

𝑓
𝑏 . (4.7)

due to the Maurer-Cartan identity fulfilled by 𝜔𝑏𝑐.
The generalized FRW metric in 10 dimensions was as follows:

10
𝑔 𝛼𝛽 = diag

(︀
1,−𝑅2(𝑡)𝛿𝑖𝑗 ,−𝑎2(𝑡)𝛿𝑎𝑏,−𝑏2(𝑡)𝛿𝐴𝐵

)︀
, (4.8)

with 𝛼, 𝛽 = 1, 2, ..., 10, 𝑖, 𝑗 = 1, 2, 3, 𝑎, 𝑏 = 1, 2, 3 and 𝐴,𝐵 = 1, 2, 3.

The variational principle contained a linear combination of cosmological constant
10

Λ, the scalar

curvature
10

𝑅 and the 10-dimensional Gauss-Bonnet invariant
10

𝐺𝐵.
The resulting differential equations determine the temporal behavior of three scale factors, the

observable 3-dimensional space, and the two separate scale factors for two 𝑆𝑂(2) structural groups.∫︁
√
𝑔

[︂
10

Λ +
10

𝑅 +
10

𝐺𝐵

]︂
𝑑4𝑥𝑑3𝜉𝑑3𝜒. (4.9)

The equations are highly non-linear, but display several fixed points. Qualitative solutions were
found with finite initial conditions for all three scale factors, leading asymptotically to Friedmann’s
solution for 𝑅(𝑡), while the internal scale factors behave differently: while 𝑎(𝑡) grows, 𝑏(𝑡) decreases, the
exchange providing energy needed for the expansion of 𝑅(𝑡)

5. Classical electrodynamics

Let us start by recalling the standard Maxwell’s electromagnetism and fixing the notations. The
simplest and the most elegant form of Maxwell’s system is written in modern system of units as follows:

𝜕B

𝜕𝑡
= −∇×E, ∇ ·B = 0, (5.1)
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𝜕D

𝜕𝑡
+ j = ∇×H, ∇ ·D = 𝜌, (5.2)

It should be underlined that the pairs of fields (E, H) and (D, B) represent different geometrical objects.
This can be better understood if we look at the integral form of Maxwell’s equations:

− 𝜕

𝜕𝑡

∮︁
𝑆

B · d𝜎 =

∮︁
𝜕𝑆

E · dl,
∮︁
𝜕𝑉

B · 𝜎 = 0. (5.3)

∮︁
𝑆

[︂
𝜕

𝜕𝑡
D+ j

]︂
· d𝜎 =

∮︁
𝜕𝑆

H · dl,
∮︁
𝜕𝑉

D · 𝜎 = 𝑄. (5.4)

Here 𝑆 is a surface and 𝜕𝑆 its boundary, which is a closed line; 𝑉 is a volume and 𝜕𝑉 is its boundary
which is a closed surface. Correspondingly, we have vector fields and streams (2-forms). In the integral
form of Maxwell’s equations, the entities E and H are genuine vector fields which can be integrated
along curves, whereas B and D are in fact 2-forms, defining streams.

The rate of change of fluxes of D and B through a surface is determined by the circulation of their
conjugate fields H and E along the boundary, and vice versa.

A problem arises with number of equations versus number of functions: 8 equations for 4× 3 = 12

components. The constitutive relations E = E(D, B) and H = H(D, B) reduce the number of
variables to 6, thus making the system seemingly overdetermined.

Things become straightened up in a four-dimensional notation, with 4-vector potential defined as a
vector in 4-dimensional space-time endowed wth Minkowskian metric 𝜂𝜇𝜈 = diag(+,−,−,−), 𝜇, 𝜈, .. =

0, 1, 2, 3

We assume that the 6 variables corresponding to the fields E and B are the 6 independent
components of an antisymmetric 2-covariant tensor (a 2-form) 𝐹𝜇𝜈 = −𝐹𝜈𝜇, with 𝐹0𝑘 = 𝐸𝑘, 𝐹𝑖𝑘 =

𝜖𝑖𝑘𝑚𝐵𝑚, 𝑖, 𝑘,𝑚 = 1, 2, 3.

The Poincaré’s Lemma states that if a 2-form - e.g. 𝐹 = 1
2𝐹𝜇𝜈𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈 - is defined on an open
subset of Minkowskian space-time 𝑀4, then it is an exterior differential of some 1-form, then 𝐴 = 𝐴𝜇𝑑𝑥

𝜇:

𝐹 = 𝑑𝐴 → 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇. (5.5)

We have two independent relativistic invariant functions of Faraday’s 2-form 𝐹𝜇𝜈 :

𝑆 = −1

4
𝜂𝜇𝜆𝜂𝜈𝜌𝐹𝜇𝜈𝐹𝜆𝜌 =

1

2

(︀
E2 −B2

)︀
, (5.6)

𝑃 = −1

8
𝜖𝜇𝜈𝜆𝜌𝐹𝜇𝜈𝐹𝜆𝜌 = 𝐹𝜇𝜈𝐹

𝜇𝜈 = E ·B, (5.7)

with
𝐹𝜇𝜈 =

1

2
𝜖𝜇𝜈𝜆𝜌𝐹𝜆𝜌

The choice of symbols is not accidental: 𝑆 stands for “scalar”, and 𝑃 stands for “pseudo-scalar”.
To ensure relativistic invariance, the variational principle should be derived from a Lagrangian

depending on these two invariants, ℒ(𝑆, 𝑃 ). The equations of motion of the electromagnetic field form
two groups: the homogeneous ones,

𝜕𝜇𝐹𝜈𝜆 + 𝜕𝜈𝐹𝜆𝜇 + 𝜕𝜆𝐹𝜇𝜈 = 0, (5.8)

which are the consequence of the fact that 𝐹 = 𝑑𝐴 → 𝑑𝐹 = 𝑑2𝐴 = 0, and the equations resulting from
variational principle applied to ℒ,

𝜕𝜇𝐺
𝜇𝜈 = 0, with 𝐺𝜇𝜈 =

𝜕ℒ
𝜕𝐹𝜇𝜈

(5.9)

𝐺𝜇𝜈 =
𝜕ℒ
𝜕𝑆

𝐹𝜇𝜈 +
𝜕ℒ
𝜕𝑃

𝐹𝜇𝜈 (5.10)
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The dual Faraday tensor is given by definition:

𝐺0𝑖 = −𝐺𝑖0 = 𝐷𝑖, 𝐺𝑖𝑘 = −𝐺𝑘𝑖 = 𝜖𝑖𝑘𝑙𝐻
𝑙 (5.11)

so the equations of motion become:

𝜕D

𝜕𝑡
= ∇×H, ∇ ·D = 0, (5.12)

which coincide with Maxwell’s second set of equations when the sources (the current density j and the
charge density 𝜌) are put to zero.

The dynamical properties of the electromagnetic field are described by the energy-momentum tensor
𝑇𝜇𝜈 :

𝑇𝜇𝜈 = 𝐹𝜇𝜆𝐺
𝜆𝜈 − 𝜂𝜇𝜈 ℒ, (5.13)

𝑇 00 = E ·D− ℒ, (5.14)

𝑇 0𝑖 = (E×H)𝑖, 𝑇 𝑖0 = (D×B)𝑖, (5.15)

𝑇 𝑖𝑘 = −𝐸𝑖𝐷𝑘 −𝐻𝑖𝐵𝑘 + 𝛿𝑖𝑘(ℒ+H ·B). (5.16)

The energy-momentum tensor is symmetric and conserved:

𝑇𝜇𝜈 = 𝑇 𝜈𝜇, 𝜕𝜇𝑇
𝜇𝜈 = 0, (5.17)

The proof uses the following identity:
𝐹𝜇𝜆𝐹

𝜆𝜈 = 𝛿𝜈𝜇𝑃, (5.18)

The relations (5.17) result in the following conserved quantities

𝑃𝜇 =

∫︁
𝑇𝜇0dr3, 𝑀𝜇𝜈 =

∫︁
(𝑥𝜇𝑇 𝜈0 − 𝑥𝜈𝑇𝜇0)dr3 (5.19)

Let us also note that the energy-momentum tensor could be obtained directly as

𝑇𝜇𝜈 =
𝜕(
√︀
| 𝑔 |ℒ

𝜕𝑔𝜇𝜈
(5.20)

yielding the same expressions for the Hamiltonian 𝑇00 and the Poynting vector 𝑃𝑘 = 𝑇0𝑘.

6. Kaluza-Klein Electrodynamics

Countless theories based on lagrangians depending on 𝐹𝜇𝜈𝐹
𝜇𝜈 and (𝐹𝜇𝜈

*𝐹𝜇𝜈)2 (the square is
needed to keep the invariance under space reflections) can be produced if we lack a guiding principle to
fix the form of the lagrangian. In the Kaluza-Klein theory, as well as in its improvements by P. Jordan
and Y. Thiry was based on the Einstein-Hilbert variational principle in five-dimensional space, with
lagrangian equal to 𝑅, the scalar curvature of the metric. This lagrangian is unique in four dimensions,
because already the second invariant of the Riemann tensor,

𝐼2 = 𝑅𝐴𝐵𝐶𝐷𝑅
𝐴𝐵𝐶𝐷 − 4 𝑅𝐴𝐵𝑅

𝐴𝐵 +𝑅2 (6.1)

turns out to be a pure divergence and does not modify the equations of motion.
The invariant (6.1) is the unique quadratic combination of the Riemann tensor leading under

variation to the second-order equations. In five dimensions this invariant is no more a divergence,
therefore there is no reason to exclude it in the full theory. This fixes the lagrangian in five dimensions,
leaving the place for the arbitrariness only in the choice of one dimensional parameter.
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This is the starting point for non-linear modification of the electrodynamics. In our calculations
we shall discard the gravitational and scalar fields, both too weak to influence the behaviour of the
electromagnetic field at short distances.

The invariant 𝐼2 for the metric (2.2) is easily calculated and is found to be (discarding the pure
divergence term equal to 𝜕𝜇(𝐹𝜌𝜆𝜕𝜇𝐹 𝜌𝜆)− 2𝜕𝜈(𝐹𝜌𝜆𝜕𝜈𝐹

𝜇𝜆):

𝐼2 =
3

16

[︀
(𝐹𝜇𝜈𝐹

𝜇𝜈)2 − 2𝐹𝜇𝜆𝐹𝜈𝜌𝐹
𝜇𝜈𝐹𝜆𝜌

]︀
. (6.2)

For fixed Minkowskian metric 𝜂𝜇𝜈 we can put
√︀
| 𝑔 | = 1 and write the full lagragian as

ℒ = −1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 +
3𝜀

16𝑒2
[︀
𝐹𝜇𝜈𝐹

𝜇𝜈)2 − 2𝐹𝜇𝜆𝐹𝜈𝜌𝐹
𝜇𝜈𝐹𝜆𝜌

]︀
, (6.3)

with 𝜀 a numerical parameter to be determined.
The equations of motion in vacuo are then

𝜕𝜆

[︂
𝐹𝜆𝜌 − 3𝜀

16𝑒2
(𝐹𝜇𝜈𝐹

𝜇𝜈)𝐹𝜆𝜌 +
3𝜀

𝑒2
𝐹𝜇𝜈𝐹

𝜆𝜇𝐹 𝜌𝜈
]︂
. (6.4)

The identities
𝜕𝜇𝐹𝜆𝜌 + 𝜕𝜆𝐹𝜌𝜇 + 𝜕𝜌𝐹𝜇𝜆 = 0 (6.5)

hold by definition (2.7), too:
𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇.

Both lagrangian and equations of motion are more transparent when expressed by means of the fields
E and B, D and H:

ℒ =
1

2
(E2 −B2) +

3𝜀

2𝑒2
(E ·B)2. (6.6)

The new term contains only the square of the second invariant of the electromagnetic field. The full set
of modified Maxwell’s equations is:

div B = 0, rot E = −𝜕B
𝜕𝑡
, div D = −3𝜀

𝑒2
B · grad(E ·B),

rot H =
𝜕D

𝜕𝑡
+

3𝜀

𝑒2

[︂
H
𝜕(E ·B)

𝜕𝑡
−E× grad(E ·B)

]︂
. (6.7)

In what follows we shall use the units in which 𝑐 = 1, and in which we can put in the vacuum
E = D and H = B. Therefore the equations in vacuum will be

div B = 0, rot E = −𝜕B
𝜕𝑡
, div E = −3𝜀

𝑒2
B · grad(E ·B),

rot B =
𝜕E

𝜕𝑡
+

3𝜀

𝑒2

[︂
B
𝜕(E ·B)

𝜕𝑡
−E× grad(E ·B)

]︂
. (6.8)

When 𝜀 is put equal to zero, the equations recover their usual Maxwellian form. Two other possibilities,
up to a scale that can be incorporated in 𝑒2, are 𝜀 = +1 or −1.

7. General properties

The non-homogeneous couple of equations,

div E = −3𝜀

𝑒2
B · grad(E ·B) (7.1)

and

rot B =
𝜕E

𝜕𝑡
+

3𝜀

𝑒2

[︂
B
𝜕(E ·B)

𝜕𝑡
−E× grad(E ·B)

]︂
(7.2)
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can be implemented by adding the charge density 𝜌 to the right-hand side of (7.1) and the current
density j to the right-hand side of (7.2)

However, even in the absence of these “external sources”, the right-hand sides of the eqs. (7.1) and
(7.2) behave like conserved induced charge and current densities; their conservation is independent of
eventual other non-induced similar objects. As a matter of fact, let us compare:

𝜕

𝜕𝑡
(div E) = −3𝜀

𝑒2
𝜕B

𝜕𝑡
· grad(E ·B)− 3𝜀

𝑒2
B · grad𝜕(E ·B)

𝜕𝑡
=

= −3𝜀

𝑒2
(rotE) · grad(E ·B)− 3𝜀

𝑒2
B · grad𝜕(E ·B)

𝜕𝑡
(7.3)

and
div

𝜕E

𝜕𝑡
= div(rotB)− 3𝜀

𝑒2
div

(︂
B
𝜕(E ·B)

𝜕𝑡

)︂
− 3𝜀

𝑒2
div(E× grad(E ·B)) =

=
3𝜀

𝑒2
(divB)

𝜕(E ·B)

𝜕𝑡
− 3𝜀

𝑒2
B · grad𝜕(E ·B)

𝜕𝑡
+

3𝜀

𝑒2
(rotE) · grad(E2 ·B). (7.4)

because
divB = 0, rot(grad𝑓) = 0, div(a× b) = b · (rota)− a · (rotb),

therefore
𝜕

𝜕𝑡

[︂
−3𝜀

𝑒2
B · grad(E ·B)

]︂
+ div

[︂
3𝜀

𝑒2
B
𝜕(E ·B)

𝜕𝑡
−E× grad(E ·B)

]︂
= 0. (7.5)

We shall denote the induced charge density by 𝜌𝑖𝑛𝑑:

𝜌𝑖𝑛𝑑 = −3𝜀

𝑒2
B · grad(E ·B), (7.6)

and the induced current density by j𝑖𝑛𝑑:

j𝑖𝑛𝑑 =
3𝜀

𝑒2
B
𝜕(E ·B)

𝜕𝑡
−E× grad(E ·B) (7.7)

with
𝜕𝜌𝑖𝑛𝑑
𝜕𝑡

+ div(j𝑖𝑛𝑑) = 0. (7.8)

The theory does not need any non-induced charges if we can prove the existence of charged stable static
solutions, (solitons localized in space). If we form the sum:

B · 𝜕B
𝜕𝑡

+E · 𝜕E
𝜕𝑡

(7.9)

we shall easily find another conservation law:

𝜕

𝜕𝑡

[︂
1

2
(E2 +B2) +

3𝜀

𝑒2
(E ·B)2

]︂
= div (E×B) (7.10)

The Poynting vector in this theory is the same as in the linear electrodynamics, whereas the energy
density contains a new term, as compared with the classical theory:

ℋ =
1

2
(E2 +B2) +

3𝜀

𝑒2
(E ·B)2 (7.11)

Note that the parameter 𝜀 has to be positive, in order to ensure the positivity of the energy. From now
on we shall set 𝜀 = 1, leaving only the coupling constant 𝑒2 to be determined.

Whenever the fields E and B are orthogonal to each other, our system in vacuum (7.1, 7.2) coincides
with Maxwell’s equations. Such is the case of the electromagetic waves, which are also solutions to the
equations (7.1, 7.2). Moreover, these solutions are stable with respect to perturbations. As a matter of
fact, any deviation from the usual solution in which E is everywhere orthogonal to B, leads automatically
to the rise of the energy ℋ, ensuring stability.
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8. Static solutions

Let us rewrite the equations (7.1 and 7.2 in the stationary case, when all the time derivatives
vanish:

div B = 0, rot E = 0,

div E = − 3

𝑒2
B · grad(E ·B), rot B = − 3

𝑒2
E× grad(E ·B). (8.1)

It would be very interesting to obtain a static and non-singular solution of this system, having finite
energy and behaving like a soliton.

This is excluded in the linear case, therefore, if such solution exists, both fields E and B must be
different from zero and non-orthogonal at least in some finite domain of space. We should also impose
the rapid enough vanishing of both fields at infinity. Spherical symmetry for B leads immediately to the
singularity at the origin; so, if the condition div B is to be maintained everywhere, the lines of force of
the field B have to be closed.

The lines of the local current

j𝑖𝑛𝑑 = rot B = −3𝜀

𝑒2
E× grad(E ·B)

must be closed, too. This suggests the axial symmetry in which the current would have only the azimuthal
component, and the field B would be everywhere perpendicular to the azimuthal unit vector e𝜙 (in
cylindrical coordinates (𝜌 =

√︀
𝑥2 + 𝑦2), 𝑧, 𝜙), i.e. B having its components along e𝑧 and e𝜌 only. Also

the field E should have only the 𝑧 and 𝜌 components; then the Poynting vector P = E × B will have
only the azimuthal component.

Such a configuration has some remarkable symmetry properties:
The trilinear combinations on the right-hand sides of equations (8.1) produce induced charge and

current densities.
The current having only the azimuthal component will produce magnetic field which at great

distances is similar to that of a circular distribution of currents, i.e. the one of a magnetic dipole. At the
same time, one can expect a non-vanishing charge concentration falling off quite rapidly with distance
from the origin, at large distances E should be then similar to the Coulomb field of an electric point-like
charge.

All these conditions put together lead to the following symmetry properties of the components E

and B:
𝐸𝑧(𝜌, 𝑧) = −𝐸𝑧(𝜌,−𝑧); 𝐸𝜌(𝜌, 𝑧) = 𝐸𝜌(𝜌,−𝑧), (8.2)

and
𝐵𝑧(𝜌, 𝑧) = 𝐵𝑧(𝜌,−𝑧); 𝐵𝜌(𝜌, 𝑧) = −𝐵𝜌(𝜌,−𝑧). (8.3)

Let us evaluate the behaviour of charge and current distributions far away from the origin. We can take
the field of a magnetic dipole and of concentrated charge as zeroth approximation satisfying Maxwell’s
equations, then insert them into the right-hand sides of eqs. (8.1) and compute the first corrections,
supposing that the fields E and B develop as:

E =
(0)

E +
1

𝑒2

(1)

E + ...., B =
(0)

B +
1

𝑒2

(1)

B + .... (8.4)

if we put
(0)

E =
𝑄 𝜌

(𝜌2 + 𝑧2)
3
2

e𝜌 +
𝑄 𝑧

(𝜌2 + 𝑧2)
3
2

e𝑧, (8.5)

and
(0)

B =
3𝜇 𝜌𝑧

4(𝜌2 + 𝑧2)
5
2

e𝜌 +
𝜇 (2𝑧2 − 𝜌2)

4(𝜌2 + 𝑧2)
5
2

e𝑧, (8.6)

where 𝑄 is the total charge, 𝜇 the total magnetic moment.
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As the first correction, we obtain

div
(1)

E =
3𝜇2𝑄

8(𝜌2 + 𝑧2)
11
2

(𝜌2 + 10𝑧2), (8.7)

and

rot
(1)

B =
3𝜇𝑄2 𝜌

2(𝜌2 + 𝑧2)
9
2

e𝜙 (8.8)

which shows that the charge density falls off as 𝑅−9 and the current density as 𝑅−8 (𝑅 =
√︀
𝜌2 + 𝑧2),

i.e. very fast indeed.
The lines of force of the field B form a family of closed curves which can be transformed into a

family of circles by a suitable coordinate transformation; the toroidal coordinates are best adapted to
describe the situation.

Let us introduce toroidal coordinates (𝜇, 𝜂, 𝜑):

𝜌 =
𝑎 sinh𝜇

cosh𝜇− cos 𝜂
, 𝑧 =

𝑎 sin 𝜂

cosh𝜇− cos 𝜂
, 𝜑 = 𝜙, (8.9)

with 0 ≤ 𝜑 ≤ 2𝜋, 0 ≤ 𝜂 ≤ 2𝜋 and 0 ≤ 𝜇 ≤ ∞; 𝑎 is the constant of dimension of length fixing the
scale; 𝜇, 𝜂 and 𝜑 are dimensionless.

Рис. 2. Constant coordinate lines 𝜇 = Const. and 𝜂 = Const. in the (𝜌, 𝑧)-plane.

A surface 𝜇 = 𝜇0 = Const. is a torus with he external radius 𝑎 coth𝜇0 and internal radius 𝑎/ sinh𝜇0.
When 𝜇→ ∞ it reduces to a circle of radius 𝑎 in the (𝑥, 𝑦)-plane. When 𝜇→ 0, the corresponding circle
approaches the 𝑧-axis.

The lines of force of B coincide with circles 𝜇 = Const., i.e. in new coordinates (8.9)

B = 𝐵𝜂(𝜇, 𝜂) e𝜂. (8.10)

while 𝐵𝜇(𝜇, 𝜂) = 0. This determines the dependence of B on 𝜂:

as 𝐵𝜇(𝜇, 𝜂) = (rotA) · e𝜇 with A = 𝐴𝜑(𝜇, 𝜂)e𝜑, (8.11)

we have

𝐵𝜇(𝜇, 𝜂) =
(cosh𝜇− cos 𝜂)2

𝑎 sinh𝜇

𝜕

𝜕𝜂

(︂
sinh𝜇

cosh𝜇− cos 𝜂
𝐴𝜑

)︂
= 0. (8.12)

Therefore
𝐴𝜑(𝜇, 𝜂) = (cosh𝜇− cos 𝜂) 𝐺(𝜇), (8.13)

and

𝐵𝜂(𝜇, 𝜂) = − (cosh𝜇− cos 𝜂)2

𝑎 sinh𝜇

𝜕

𝜕𝜂
(sinh𝜇 𝐺(𝜇)) (8.14)

with a yet unknown function 𝐺(𝜇).
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Putting aside the problem of eventual singularity, we can at this point see quite well what the
induced charge and current distributions look like. Consider one of the lines of force of B, i.e. a circle
𝜇 =𝑚 𝑢0, 𝜑 = 𝜑0 in the (𝜌, 𝑧) plane (Figure 1, left).

The symmetry properties of the field E impose the vanishing of its 𝜂-component for 𝑧 = 0, i.e. for
𝜂 = 0 or 𝜋, because 𝐸𝜂(𝜂) = −𝐸𝜂(2𝜋−𝜂). On the other hand, 𝐵𝜂(𝜂) = 𝐵𝜂(2𝜋−𝜂) >, so that the scalar
product E ·B = 𝐸𝜂𝐵𝜂 on the circle 𝜇 = 𝜇0 is an odd function of 𝜂 (Figure 1, right).

Рис. 3. Illustration for 𝜂

In order to obtain the charge distribution along this circle, we have to compute −B · grad(E ·B),
which reduces to the expression

−𝐵𝜂
(cosh𝜇− cos 𝜂)

𝑎

𝜕

𝜕𝜂
(E ·B) . (8.15)

The corresponding functions are displayed in Figure 3:

Рис. 4. a) The projection of grad(E · B) on the unit vector e𝜂 as a function of 𝜂; b) The charge density
distribution 𝑞(𝜂) as function of 𝜂

The charge density changes its sign between 𝜂1 and 𝜂2 = 2𝜋 − 𝜂1. This phenomenon describes
vacuum polarization: if at the core of the static solution there is an accumulation of charge density of a
given sign, it must be surrounded by a cloud of charge density of opposite sign.

The value of 𝜂1 at which the change of sign occurs depends on the line (i.e. the value of 𝜇).
Reproducing similar reasoning for all circles 𝜇 = Const. we obtain the picture of the overall charge
density (Figure 4):

The strongest vacuum polarization is on the 𝑧-axis and in the symmetry plane (𝑥, 𝑦), around the
axially symmetric charge distribution at the core. If at any point of this distribution we wanted to
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Рис. 5. The cross-section (𝑥, 𝑧, 𝜑 = Const.) of the charge density distribution.

interpret the azimuthal current density obtained from the last equation (8.1) as being produced by a
rotational movement of the charge density around the 𝑧-axis, then it is easy to see, just comparing
the units (remember that we chose the units in which 𝑐 = 1), that the induced charge has to “move”
with the speed of light. In reality, nothing is moving here: there is just a distribution of static fields
E and B which produces this illusion, because the Poynting vector E × B has only the azimuthal
component. Nevertheless, the illusion produced is the same as for the electron as a whole submitted to
the “zitterbewegung” with the speed 𝑐 as it comes out from the relativistic Dirac equation describing the
electron.

There is also another striking similarity between the predictions of this model and those of the
Dirac equation. Both the lagrangian and the equations it led to (8.1) are invariant with respect to the
independent changes of sign, E → −E and B → −B.

This means that any static solution generates automatically three other ones, obtained by the
inversions of E and B. Now, the total charge is linear in E, while the total magnetic moment is linear
in B; the Poynting vector is proportional to E×B, and so will be the total kinetic angular momentum
obtained by the integration of r× (E×B) over the entire space.

The four solutions so obtained can be put together in the following Table 1:

Solution Energy Charge Magnetic 𝜇 Spin

E, B m q 𝜇 S

E, −B m q −𝜇 −S

−E, B m −𝑞 𝜇 −S

−E, −B m −𝑞 −𝜇 S

Any static solution is, as a matter of fact, a quadruplet of solutions with the same rest mass. The
first two solutions describe a particle with electric charge 𝑞 and magnetic moment 𝜇 parallel to spin S,
in states with spin up or down (with respect to the 𝑧-axis).

The second pair of solutions describes a particle with the opposite charge −𝑞 and magnetic moment
antiparallel to the spin S, also in two states with spin up or down. This result is identical with the
predictions of Dirac’s equation for the electron, which leads to the existence of the positron and a
half-integer spin, too.

The bad news is that unfortunately a 𝐶∞-class solution of the system (8.1 does not exist. The
proof is simple and goes as follows: Knowing that div B = 0, we can write

B · grad(E ·B) = div (B (E ·B)) (8.16)

Similarly,
E× grad(E ·B) = rot(E (E ·B)), (8.17)
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because rot E = 0. This leads to

div

(︂
E+

3

𝑒2
B(E ·B)

)︂
= 0, rot

(︂
B− 3

𝑒2
E(E ·B)

)︂
= 0. (8.18)

If the space we are working in has the topology of 𝑅3, and all the functions are supposed to be 𝐶∞-
smooth, then the Poincaré lemma states that

E+
3

𝑒2
B(E ·B) = rot C ; and B− 3

𝑒2
E(E ·B) = grad𝜓. (8.19)

with C(r) and 𝜓(r) supposed to be 𝐶∞ smooth (vector and scalar, respectively) functions of r.
Taking the scalar product of the first equation in (8.19) by E and of the second equation by B we

get (supposing that E = −grad𝑉 ):

E2 +
3

𝑒2
(E ·B)2 = E · rotC = −(grad𝑉 ) · rotC = −div (𝑉 rotC), (8.20)

and
B2 − 3

𝑒2
(E ·B)2 = B · grad𝜓 = div(𝜓 B). (8.21)

Combining equations (8.20) and (8.21) together, we have

E2 +B2 = div(𝜓B− 𝑉 rot C). (8.22)

If we want the total energy, as well as the total charge, to be finite, then both E and B must decrease
at infinity at least as 𝑅−2, so that the right-hand side of (8.22) must be of the order of 𝑅−4, which
means in turn that the vector field 𝜓 B − 𝑉 rot C is decreasing at infinity as 𝑅−3. Applying the
Gauss-Ostrogradsky theorem to a finite 3-volume Ω and its 2-dimensional boundary 𝜕Ω:∫︁

Ω

div(𝜓 B− 𝑉 rot C) 𝑑3r =

∫︁
𝜕Ω

(𝜓 B− 𝑉 rot C) · dΣ, (8.23)

we see that the integral of E2 +B2 over a spherical volume of radius 𝑅 behaves as 𝑅−1, i.e. it vanishes
when taken over the whole space. Both expressions E2 and B2 being positive, this means that E = 0

and B = 0, unless the solution is not 𝐶∞ and the Poincaré lemma does not hold at least on some line
or surface.

The impossibility of obtaining a 𝐶∞ solution with finite energy can be also seen if we try to
construct it by applying the method of successive approximations in toroidal coordinates.

Now the problem can be reduced down to two equations for two unknown functions, the azimuthal
component of the vector potential 𝐴𝜑 and the scalar potential 𝑉 . We can believe that in basic state the
dependence on the azimuthal angle 𝜑 is trivial, therefore we may set

𝐴𝜑 = 𝐴𝜑(𝜇, 𝜂) and 𝑉 = 𝑉 (𝜇, 𝜂) (8.24)

The dependence of both potentials on the toroidal angle 𝜂 must be of the form sin(𝑘𝜂) or cos(𝑘𝜂), 𝑘 =

1, 2, ...; using the substitution

𝐴𝜑 = 𝑢(𝜂)
√︀
cosh𝜇− cos 𝜂 = (cosh𝜇− cos 𝜂) 𝐺(𝜇) (8.25)

we make the 𝜇-component of the magnetic field vanish, 𝐵𝜇 = 0.
Along with another substitution

𝑉 = 𝑣(𝜂)
√︀
cosh𝜇− cos 𝜂 (8.26)

the laplacians appearing on the left-hand side of equations (8.1) will have their variables separated. For
example, the equation

div E = − 3

𝑒2
B · grad(E ·B) (8.27)
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will take on the form:
1

sinh𝜇

𝜕

𝜕𝜇

(︂
sinh𝜇

𝜕𝑣

𝜕𝜇

)︂
+
𝜕2𝑣

𝜕𝜂2
+

1

4
𝑣 =

3

𝑎2𝑒2
(cosh𝜇− cos 𝜂)

sinh2 𝜇

[︂
𝜕

𝜕𝜇
(sinh𝜇 𝐺(𝜇))

]︂2
[𝑊 (𝜇, 𝜂)], (8.28)

with

𝑊 = [cosh𝜇− cos 𝜂)
𝜕2𝑣

𝜕𝜂2
+ 4 sin 𝜂

𝜕𝑣

𝜕𝜂
+

(5 sin2 𝜂 + 2 cosh𝜇 cos 𝜂 − cos2 𝜂)

4(cosh𝜇− cos 𝜂)
. (8.29)

Similarly, the laplacian of the function 𝑢(𝜇, 𝜂) is equal to some non-linear terms mutiplied by
3/(𝑎2𝑒2). Developing functions 𝑢 and 𝑣 as e.g.

∞∑︁
𝑛=1

[
(1)
𝑣 𝑛(𝜇) sin(𝑛𝜂) +

(2)
𝑣 𝑛(𝜇) cos(𝑛𝜂)]

the second derivatives in (8.28) will be replaced by 𝑛2𝑣, and the solutions of the homogeneous
equations,nwhich correspond to the zeroth approximation ( 2

𝑎2𝑒2
= 0) are given as a series in spherical

harmonics of half-integer order (cf. Morse and Feshbach).

𝑃𝑛+ 1
2
(cosh𝜇) and 𝑄𝑛− 1

2
(cosh𝜇) (8.30)

The functions 𝑃𝑛+ 1
2

display a logarithmic singularity for 𝜇 = ∞, i.e. on the circle 𝜌 = 𝑎, whereas the
functions 𝑄𝑛− 1

2
have a logarithmic singularity for 𝜇 = 0 (i.e. 𝜌, 𝑧 → ∞).

In order to avoid singularity we may use the combination of both, but the price to pay is a
discontinuity for some value of 𝜇 (on some toroidal surface). If we feed in such a solution to the right-
hand side and use the Green functions in order to compute the first correction, we shall be faced with
exactly the same problem, because any Green function has at least one singularity of the same kind.

The failure of producing a non-singular soliton is probably due to the fact that we have projected
everything onto three space dimensions, discarding the fifth circular one. It seems possible to obtain
solitons using the fifth dimension in a non-trivial way, like in the case of Kaluza-Klein monopoles of
Sorkin and Gross and Perry.

Рис. 6. The constant energy density surfaces in cartesian coordinates

Another development should include the non-abelian generalization of the Kaluza-Klein theory into
more dimensions, in which also higher order invariants of the Riemann tensor might be included to the
generalized lagrangian.

Recently toroidal solutions for the Higgs-’t Hooft 𝑆𝑈(2)×𝑈(1) monopole were produced numerically
by M.S. Volkov et al..

The constant energy density surfaces are represented in cartesian coordinates Fig. 6.
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2. Kaluza, Th. Zum unitätsproblem der physik. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)
1921.arXiv: 1803.08616 (1921): 966-972.

3. Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik 37.12
(1926): 895-906.

4. Einstein, A. Zu Kaluzas Theorie des Zusammenhanges von Gravitation und Elektrizität: erste-
[zweite] Mitteilung. Verlag der Akademie der Wissenschaften, in Kommission bei Walter de Gruyter
u. Company, 1927.
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