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1. Introduction

This paper is a discussion of the structure of the Dirac equation, primarily in the case of one
dimension of space and one dimension of time (1 + 1 spacetime). We reformulate the Dirac operator D
so that there is a nilpotent element U, with U? = 0, in the Clifford algebra such that for a plane wave
1, D1 = Utp. This means that Ut is a solution to the Dirac equation since D(Uw)) = U?1) = 0 x ¢ = 0.
We explain this formulation in Section 2 of the paper, and use it in Section 3 to reformulate a nilpotent
version of the Dirac equation for (141) spacetime in light cone coordinates. We can then give a solution
to the Dirac equation by the method just indicated and we can compare this solution with the solutions
already understood in relation to the Feynman checkerboard model. In the course of this reformulation
we see that the transition to light cone coordinates corresponds to a rewriting of the Clifford algebra
for the Dirac equation to a Fermionic algebra linked with a Clifford algebra. We obtain the following
result (in summary).

We have the (1+1) Dirac equation in light cone coordinates (I, r), using the light cone Dirac operator
D = Ad/Ol + BO/IOr — am.
The elements A, B, « satisfy the algebra relations:
AB+BA=1,AB-BA=0a,A>=B*=0,0%=1,

Aa=—-A,aA=A,Ba=B,aB=—-B.

Note that in this algebra the elements A and B form a Fermion algebra, each squaring to 0 and satisfying
AB + BA = 1. The element «a has square one, and can be regarded as a Clifford algebra element
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interacting with A and B. This special Fermion algebra is the key to the calculations in this paper and
we will study it further in subsequent work.

The rest of section 3 is a discussion of the relationship of our results in the paper with the Feynman
checkerboard model and with our previous work on that model [1, 2].

The appendix discusses how the nilpotent and Majorana operators arise in three dimensions of
space and one dimension of time. This appendix provides a link between our work and the work of Peter
Rowlands [10]. The Majorana Dirac equation can be written as follows:

(0/0t + 1md/0x + €0y + end/0z — énmm)y =0

where 7 and e are the generators of a Clifford algebra with 7?2 = €2 = 1 and ne + en = 0, and ¢, 7 form
a copy of this algebra that commutes with it. This combination of a Clifford algebra with itself is the
underlying structure of Majorana Fermions. In the appendix we apply our methods to the Majorana
Dirac Equation and give actual real solutions to the equation. These solutions make direct use of the
Majorana Fermion Clifford algebra. This shows explicitly that Fermions and Majorana Fermions are
related by the algebraic transformation between Fermion and Clifford algebra.

Remark. The more intricate algebra in this paper such as the special Fermion algebra described above
can be regarded as coming from the patterns of the split quaternions seen as the Clifford algebra with
generators a, 3 and relations a? = 32 = 1, a8+ Ba = 0. From these relations it follows that (af8)? = —1
and if we write

U=apE + ap+ Bm

where E, p, m are scalars commuting with the algebra elements, then
U?=—-E?+p*+m?

since the cross terms all vanish in the product. Thus when E? = p? +m? we have a non-trivial nilpotent
element U in the Clifford algebra with U? = 0. This is the beginning of the key relationship of nilpotent
algebra elements and Fermions as it occurs in the work of Peter Rowlands [10] and it is the keystone of
the work in this paper as well.

2. The Dirac Equation

We begin by recalling how Dirac constructed his equation. By convention we take the speed of light
to be equal to 1. Then energy E, momentum p and mass m are related through special relativity by the
equation

E? =p* +m>.

Dirac looked for an algebraic square root of p>+m? so that he could have a linear operator corresponding
to E that would take the same role as the Hamiltonian in the Schrédinger equation.
We first take the case of one dimension of space and one dimension of time so that p is a scalar.

The quantum operator for momentum is

p=—id/0x,
the operator for energy is
E =id/ot,
and the operator for mass is
m=m.
We can write an operator equation
E = ap + piin,

where a and ( are elements of a a possibly non-commutative, associative algebra.
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Then
E? = o%p% + B2 + pin(af + Ba).

Hence we have E2 = p? + m? if we take

af + Ba = 0.

The algebra so generated by « and g is a simplest Clifford algebra.

Remark. Note that the Clifford algebra with generators a, 8 with relations as given above is often called
the split quaternions. If we introduce a commuting (with o and ) square root of minus one, denoted i
with 42 = —1, and let I = i, J = i3, K = Ba, then it is the case that I? = J?> = K2 = JJK = —1 and
thus we obtain the quaternions from the split quaternions.

Remark. In general we take a Clifford algebra to be an associative algebra with abstract generators
e1, €, -+ , €, SO that ei =1 for all £ and e,es + ese,. = 0 whenever r # s. The generators are usually
taken to be an orthonormal basis for a vector space over a field.

Remark. Clifford algebras and Fermion algebras are related to one another by a transformation that
we illustrate here for the split quaternions. Let

U= (a+1iB)/2,

V= (a—if)/2.

then
U?=V?=(a? - p*+i(af + Ba))/4 =0,

UV+VU=U+V)?=a?=1.

The relations U? = V2 = 0 and UV 4 VU = 1 are characteristic of Fermion algebra and correspond to
properties of creation and annihilation operators for Fermions. We will see that Fermion algebras arise
naturally in relation to Clifford algebra formulations for the Dirac equation.

The Dirac equation is the operator equation
Ey = apip + Bring.
Thus the Dirac equation is the differential equation below.
10 /0t = —iadyp [0z + Bmad.

We begin by discussing this version of the Dirac equation in 1 + 1 spacetime, constructing solutions via
light cone reformulaiton and we discuss the Feynman checkerboard model. In the Appendix, we explain
how to extend these formulations to (3 + 1) spacetime.

2.1. The Nilpotent Reformulation of the Dirac Equation

We can define the Dirac operator O as follows: Let O = i9/0t + iad/0x — fm. Then the Dirac
equation takes the form Oy (z,t) = 0.
Note that Oe!P*=Ft) = (E — ap — fm)e!Pr—EY),
We let A = (E — ap — fm) and let

U=afA=abE+ fp—am,

so that
U?=—-E>+p>+m?=0.

(Note that (a8)? = afaf = —aaBB = —1 and that the cross terms cancel.)
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Remark. It is of interest to note that in the split quaternions we have elements of the form
U=aBE+ fBp—am

such that U? = —E? + p? 4+ m? so that U is nilpotent of order two exactly when E? = p? + m?2.
We now multiply the operator O by af on the left, obtaining the operator

D = afO =iafd/ot +iB0/0x — am.

The Dirac equation is equivalent to the equation Dy = 0. Furthermore, we have have D(ei(”‘”_Et)) =
Ue'Pr=EY Thus for ¢ = eP*=F% we have D(v)) = Uy and D(Uy) = U%*p = 0. Thus U acts as a
creation operator producing a solution to the Dirac equation.

This idea for reconfiguring the Dirac equation in relation to nilpotent algebra elements U is due to
Peter Rowlands [10]. Rowlands does this in the context of quaternion algebra. The solution to the Dirac
equation that we have found is expressed in Clifford algebra. It can be articulated into specific vector
solutions by using a matrix representation of the algebra.

2.2. Fermion Operators

We see that U = a3E + Bp — am with U? = 0 is the essence of this plane wave solution to the
Dirac equation. It is natural to compare this algebra structure with algebra of creation and annihilation
operators that occur in quantum field theory.

If we let ¢ = e/(P*+5Y) (reversing time), then we have Dy = (BaE + Bp — am)yp = Ui, giving a
definition of U corresponding to the anti-particle for U.

We have U = afSE + p — am and Ut = BaE + Bp — am.

Note that here we have

(U +U")? = (28p + am)® = 4(p” + m?) = 4E?,
and
(U—-UN? = —(208E)? = —4E?.

We have that U? = (U")? = 0 and UUT 4+ U'U = 4E2. Thus we have a direct appearance of the Fermion
algebra corresponding to the Fermion plane wave solutions to the Dirac equation.

Normalizing by dividing by 2E we have A = (8p — am)/E and B = ifla. so that A? = B? =1
and AB+ BA =0. then U = (A+ Bi)E and U = (A — Bi)E, showing how the Fermion operators are
expressed in terms of the simpler Clifford algebra of Majorana operators (A and B generating the split
quaternions).

The decomposition of Uand UT into the corresponding Majorana Fermion operators with A2 = 1
is exactly equivalent to E? = p? + m?2.

3. Spacetime in 1+1 Dimensions

We begin this section by discussing an algebra that is directly related to Clifford algebra. As we
shall see, this algebra is also inherent in the Dirac equation when we use light cone coordinates.

3.1. Clifford algebra and Fermion algebra.

Suppose that we have a Clifford algebra generated by elements € and 7 with €2 = n?> = 1 and
en + ne = 0. Then we can define new elements a and b by the equations

n=a+b,

en=a—>b.
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This means that

a=(1+¢€)n,

N = o=

b= (1 - 6)777

from which it follows that
a?=v>=0,ab+ba = 1.

Note that we are given that the starting Clifford algebra is associative and so further identities such as
aba = a,bab = b, abab = ab, baba = ba
follow easily from the given identities. We call an associative algebra generated by a, b with
a?=02=0,ab+ba=1

a Fermion algebra since the annihilation, creation algebra for Fermions in quantum theory satisfies
these identities. We see here that Clifford algebras (with an even number of generators) and Fermion
algebras are interchangeable via the above transformations. This fact has been used by writers on Clifford
algebras, [11] since it is useful to have projector properties such as (ab)(ab) = ab.

Example. In two by two matrix algebra, we can take

10 0 1 )
€ = = =a .
o 1 )" 10

Here
0 0
a= b= 01 .
1 0 0 0
Thus
b — 00 o= 1 0
0 1 0 0
so that
a2 =012 =0,
a+b=mn,
a—b=en,
ab+ba =1,

ab — ba = e.

Remark. The above construction of Fermion algebra from Clifford algebra occurs without invoking an
extra commuting square root of negative unity. It is common in physical applications to use a parallel
construction involving i where i> = —1 and i commutes with all elements of the algebra. One can then
define ¢ = 3(n + i€) and ¢! = 1(n — ie). It follows that ¢* = (¢7)? = 0 and ¢! + )Ty = 1, and one
has a Fermion algebra with complex conjugation constructed in relation to a Clifford algebra. Another
relation with a commuting ¢ occurs if we take

a=(i/2)(af + B)

b= (i/2)(af - B)

where a and 3 form a Clifford algebra with a? = 82 = 1 and a8 + Sa = 0. Then a and b satisfy the
Fermion relations and
ab+ba =1,
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ab —ba = «a,

but
a+b=1iaf,
a—b=1i0.
Notice that (ia3)? = +1 while (i3)*> = —1. Thus we can regard this as a re-writing of the previous
pattern with
iaf =1
and
i3 =en
so that

a = fBfa=—PBaf =iflaf =em = e.

This means that this Fermion algebra can occur with or without the explicit commuting square root of
negative unity, <.

3.2. The Dirac Equation in Light Cone Coordinates
Light cone coordinates r and [ are defined by
r=(x+t)/2

and
l=(x—1)/2.

Note that 4r] = 22 —¢2. Thus the light cone in (z,t) Minkowski space (light speed ¢ = 1) is descibed by
the equations » =0 or [ = 0.
Recall the translation of operators to light cone coordinate operators.

E=id/ot = (i/2)(8/0r + 8/dl)
p=(1/i)0/0x = (1/24)(0/0r — 0/0l)
Here is the nilpotent version of the Dirac operator as we have formulated it.
D = afE + Bp — ann
We translate this operator into light cone coordinates.
D = ap((i/2)(0/0r +0/0l)) + B((1/2i)(0/0r — 0/0l)) — am

D = i[(af + B)/2]0/0l +i[(aB — B)/2]0/0r — am

Thus
D = Ad/0l + BO/IOr — am

A= (i/2)(ap +B)
B =(i/2)(af = p)

As the reader can see, we arrive at algebraic coefficients that we have described above as the Fermion
algebra associated with the Clifford algebra generated by « and .

A+ B =iaf

A-B=iB
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Further relations take the form:
AB+BA=1,AB—BA=a,A>=B*>=0,a’=1
Aa=—-A,aA=A,Ba=B,aB=—B.

Thus
Aa+aA=0,Ba+aB =0

A+ A =1i,BB+ B =—i

3.3. Plane waves in light cone coordinates.

Let
P = T X=1Y)

where

X=p—F
and

Y=p+ L.
Note that XY = —m?2. This is the plane wave rewritten in light cone coordinates. Then with

D = Ad/0l + BO/Or — am,

Dy =Uy

where
U=—-iAX +iBY —am.

Thus

U? = ABXY 4+ BAXY +m?> = XY +m? =p> — E> +m? =0.
Note that with
Ut = —iAY +iBX — am
we have
Uh?=0
and
UUt + UTU = 4E?

Summary. We have the (141) Dirac equation in light cone coordinates, using the light cone Dirac
operator
D = Ad/0l + BO/Ir — am.

The elements A, B, « satisfy the Fermionic algebra relations:
AB+BA=1,AB-BA=a,A>=B>=0,0%=1,
Aa=—-A,aA=A,Ba=B,aB=—B.

We can directly see the action of the light cone Dirac operator on a plane wave expressed in light
cone coordinates. The plane wave is given by the formula

P = T X=1Y)

where X =p—F and Y = p+ E. Thus XY = —m?. Then Dy = Ut where U = —iAX + iBY — am,
and U? = 0.

Note that with UT = —iAY +iBX —am we have (UT)? = 0 and UUT +UTU = 4E2. Thus we have
rewritten the nilpotent Dirac operator and its equation directly in light cone coordinates, with the help
of the Fermionic algebra.
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3.4. Solving the 1+1 Dirac Equation
The (real valued) Majorana version of the Dirac operator
D = A9/0l + Bd/Or — am

that we have discussed above can be taken with the representation

A= (00 g (O L) (L0
10 00 0 0
ap=(" ") pa=( ) ap-pa={ ' V) =a
0 1 00 0 1

Letting © = rX — Y, and S = Sin(0),C = Cos(0©), we have

Then

Uy =U(C+1iS)=(AXS — BYS —am(C) +i(—AXC + BYC — am?).

In the matrix representation we find

AXS - BYS—amc = "¢ Y5 ).
XS —-mC
And from this, letting

Y1 =mC Py = XS

we have
o1 /0r = —mX S = —mas
and
N /Ol = — XY C = m?C = ma
Thus
8w1/8r = —m’(/JQ
8@[12/81 = m?l)l

Note that these equations are satisfied by
Y1 = —mSin(—(E —p)r — (E+p)l),

Yy = (B + p)Cos(—(E —p)r — (E +p)l)

exactly when E? = p?+m? as we have assumed. It is quite interesting to see these direct solutions to the
Dirac equation emerge in this 1 + 1 case. The solutions are fundamental and they are distinct from the
usual solutions that emerge from the Feynman checkerboard model [1, 2]. It is the above equations that
form the basis for the Feynman checkerboard model that is obtained by examining paths in a discrete
Minkowski plane generating a path integral for the Dirac equation.

Remark. Note that a simplest instance of the above form of solution is obtained by writing

oo

D = cos(r 4+1) + isin(r +1) = Z(\/jl)” Z

ri i

il gl

Then with ¢y = cos(r +1) and 11 = sin(r +1) we have 91 /0l = 1o, O /dr = —1q, solving the Dirac
equation in the case where m = 1.
k okt gk Erk ikt rk ik

P1 = Yo + Y1 and P = Yy — YR give a solution to the Dirac equation in light cone coordinates as we
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have written it above with m = 1 : 91 /Ol = b, 0o /Or = —1h1. These series are shown in [2] to be
a natural limit of evaluations of sums of discrete paths on the Feynman checkerboard. The key to our
earlier approach is that if one defines

clarg = DTNz =28)-- (2= (- 1)

Then C[A]} takes the role of % for discrete different derivatives with step length A and it can be
interpreted as a choice coefficient. A Feynman path on a rectangle in Minkowski space can be interpreted

as two choice of k or k + 1 points along the r and [ edges of the rectangle. Thus the products in the
limit expressions of the form %% or Z—Ijlk—k, correspond to paths on the checkerboard with k corners
in a limit where there are infinitely many such paths. The details are in our paper [2]|. The solutions we
have given above, motivated by the Majorana algebra, are related in form to these path sum solutions.
Our solutions contain more information, related to the factorization (E — p)(E + p) = E? — p? = m?.
In the usual checkerboard solution the propagators only know about the mass and not its factorization
relative to energy and momentum. More work needs to be done to fully understand the relationship of
solutions to the Dirac equation and path summations.

Path Sum Derivation.

(a,b+1)

(a,b)

Puc. 1. Path Summation

Here we describe the Feynman checkerboard model where light-speed paths p with corners, in
Minkowski space, are each evaluated by i¢?) where ¢(p) denotes the number of corners in the path.
Let (a,b) denote a point in discrete Minkowski spacetime in light cone coordinates. Thus a denotes the
number of steps taken to the left and b denotes the number of steps taken to the right. We let ¢, (a,b)
denote the sum over the paths that enter the point (a,b) from the left and ¥ g(a,b) the sum over the
paths that enter (a,b) from the right. View Figure 1.

It is clear from the diagram in the figure that

Yr(a,b+1) =vYr(a,b) +ivr(a,b).

Thus we have a discrete version of the Dirac equation in light cone coordinates that is satisfied by the
Feynman path summation. If we adjust the step sizes and take a limit we find

81/1[/87“ = i’lﬁR

and similarly
OYr/0l =iy
This pair of equations is the the Dirac Equation in light cone coordinates. When we take the the
evalutation of a path to be (—1)C(p), we obtain the real version of the Dirac equation, as discussed
above.
It remains to be seen how our plane wave solutions of the (1+1) Dirac equation in light cone
coordinates are related to the Feynman path summation.
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4. Appendix - Writing in the Full Dirac Algebra

We have written the Dirac equation in one dimension of space and one dimension of time. We
now boost the formalism directly to three dimensions of space. We take an independent Clifford algebra
generated by o1,02,03 with 02 = 1 for ¢ = 1,2,3 and 0;0; = —0j0; for i # j. Now assume that «
and [ as we have used them above generate an independent Clifford algebra that commutes with the
algebra of the ;. Replace the scalar momentum p by a 3-vector momentum p = (p1, ps,ps) and let
pe o = pio1 + paoa + p3os. We replace 9/0x with V = (9/0x1,0/0x4,0/0x2) and Op/dx with V e p.
We then have the following form of the Dirac equation.

10Y /0t = —iaV e g + fma).

Let O =i0/0t +iaV e 0 — m so that the Dirac equation takes the form Ou(x,t) = 0.

In analogy to our previous discussion we let ¢ (z,t) = e'(P*r—=E1) and construct solutions by first applying
the Dirac operator to this . The two Clifford algebras interact to generalize directly the nilpotent
solutions and Fermion algebra,that we have detailed for one spatial dimension, to this three dimensional
case. To this purpose the modified Dirac operator is

D =iafd/0t + BV e o — am.

And we have that Dy = Ut where U = aSE + Bpe o — am. We have that U? = 0 and U1 is a solution
to the modified Dirac Equation, just as before. And just as before, we can articulate the structure of
the Fermion operators and locate the corresponding Majorana Fermion operators.

4.1. Majorana Fermions

There is more to do. We now discuss making Dirac algebra distinct from the one generated by
a, B,01,09,03 to obtain an equation that can have real solutions. This was the strategy that Majorana
[3] followed to construct his Majorana Fermions. A real equation can have solutions that are invariant
under complex conjugation and so can correspond to particles that are their own anti-particles. We will
describe this Majorana algebra in terms of the split quaternions € and 7. For convenience we use the

matrix representation given below.

(1) (V)

Let € and 1) generate another, independent algebra of split quaternions, commuting with the first algebra
generated by € and 7. Then a totally real Majorana Dirac equation can be written as follows:

(0/0t + 1m0/ 0x + €d/dy + énd/0z — énmm)p = 0.
To see that this is a correct Dirac equation, note that
E = QgPr + O‘ypAy + a.p, + Bm

(Here the “hats” denote the quantum differential operators corresponding to the energy and momentum.)
will satisfy

E2 = pAzQ +pAy2 +pAz2 + m?
if the algebra generated by o, ,, ., 3 has each generator of square one and each distinct pair of

generators anti-commuting. From there we obtain the general Dirac equation by replacing E by i0/0t,
and g, with —i9/0x (and same for y, 2).

(i0/0t + i, 0/0x + ia, 0/ Dy + i, 0/dy — Bm)y = 0.
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This is equivalent to

(0/0t + ;0/0x + ay0/dy + @, 0/y + ifm)y = 0.

Thus, here we take
gy =M,y = €, = €n, B = ién,

and observe that these elements satisfy the requirements for the Dirac algebra. Note how we have a
significant interaction between the commuting square root of minus one (7) and the element €7 of square
minus one in the split quaternions. This brings us back to considerations about the source of the square
root of minus one. Both viewpoints combine in the element § = iénn that makes this Majorana algebra
work. Since the algebra appearing in the Majorana Dirac operator is constructed entirely from two
commuting copies of the split quaternions, there is no appearance of the complex numbers, and when
written out in 2 x 2 matrices we obtain coupled real differential equations to be solved. This is a beginning
of a new study of Majorana Fermions. For more information about this viewpoint, see [9]. In the next
section we rewrite the Majorana Dirac operator, guided by nilpotents, obtaining solutions that directly
use the Majorana Fermion operators.

4.2. Nilpotents, Majorana Fermions and the Majorana-Dirac Equation

Let D = (8/0t + 1md/0x + €0/ Dy + énd/z — éfmm). In the last section we have shown how D can
be taken as the Majorana operator through which we can look for real solutions to the Dirac equation.
Letting ¢ (z,t) = ¢*P*"=FY we have

Dip = (—iE + i(fnps + epy + énp.) — eénnm)ip.

Let

I'= (—iE +i(inps + epy + énp.) — éqmm)
and

U =enl’ = (i(—neE — fepy + npy — €€p.) + eénm).

The element U is nilpotent, U? = 0, and we have that U = A + iB, AB + BA = 0, A = eéym,
B = —neE — fjep; + npy — €ép,, A2 = —m?, and B? = —E% + p? +p§ +p? = -—m?.
Letting V = enD, we have a new Majorana Dirac operator with Vi) = U4 so that V(U) = U%y = 0.
Letting 0 = (p e 7 — Et), we have Ut) = (A + Bi)e? = (A + Bi)(Cos() +iSin(0)) = (ACos(7y) —
BSin(0)) + i(BCos(0) + ASin(0)).
Thus we have found two real solutions to the Majorana Dirac Equation:

® = ACos(0) — BSin(0),

U = BCos(0) + ASin(0)

with 6 = (per — Et) and A and B the Majorana operators
A = eénm,

B = —neE — fiep, + np, — €€p..

Note how the Majorana Fermion algebra generated by A and B comes into play in the construction
of these solutions. This answers a natural question about the Majorana Fermion operators. Should
one take the Majorana operators themselves seriously as representing physical states? Our calculation
suggests that one should take them seriously.

In other work [4, 5, 6, 7] we review the main features of recent applications of the Majorana algebra
and its relationships with representations of the braid group and with topological quantum computing.
The present analysis of the Majorana Dirac equation first appears in our paper [9].
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