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1. Introduction

This paper is a discussion of the structure of the Dirac equation, primarily in the case of one
dimension of space and one dimension of time (1 + 1 spacetime). We reformulate the Dirac operator 𝒟
so that there is a nilpotent element 𝑈, with 𝑈2 = 0, in the Clifford algebra such that for a plane wave
𝜓, 𝒟𝜓 = 𝑈𝜓. This means that 𝑈𝜓 is a solution to the Dirac equation since 𝒟(𝑈𝜓) = 𝑈2𝜓 = 0×𝜓 = 0.

We explain this formulation in Section 2 of the paper, and use it in Section 3 to reformulate a nilpotent
version of the Dirac equation for (1+1) spacetime in light cone coordinates. We can then give a solution
to the Dirac equation by the method just indicated and we can compare this solution with the solutions
already understood in relation to the Feynman checkerboard model. In the course of this reformulation
we see that the transition to light cone coordinates corresponds to a rewriting of the Clifford algebra
for the Dirac equation to a Fermionic algebra linked with a Clifford algebra. We obtain the following
result (in summary).
We have the (1+1) Dirac equation in light cone coordinates (𝑙, 𝑟), using the light cone Dirac operator

𝒟 = 𝐴𝜕/𝜕𝑙 +𝐵𝜕/𝜕𝑟 − 𝛼𝑚.

The elements 𝐴,𝐵, 𝛼 satisfy the algebra relations:

𝐴𝐵 +𝐵𝐴 = 1, 𝐴𝐵 −𝐵𝐴 = 𝛼,𝐴2 = 𝐵2 = 0, 𝛼2 = 1,

𝐴𝛼 = −𝐴,𝛼𝐴 = 𝐴,𝐵𝛼 = 𝐵,𝛼𝐵 = −𝐵.

Note that in this algebra the elements A and B form a Fermion algebra, each squaring to 0 and satisfying
𝐴𝐵 + 𝐵𝐴 = 1. The element 𝛼 has square one, and can be regarded as a Clifford algebra element
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interacting with 𝐴 and 𝐵. This special Fermion algebra is the key to the calculations in this paper and
we will study it further in subsequent work.

The rest of section 3 is a discussion of the relationship of our results in the paper with the Feynman
checkerboard model and with our previous work on that model [1, 2].

The appendix discusses how the nilpotent and Majorana operators arise in three dimensions of
space and one dimension of time. This appendix provides a link between our work and the work of Peter
Rowlands [10]. The Majorana Dirac equation can be written as follows:

(𝜕/𝜕𝑡+ 𝜂𝜂𝜕/𝜕𝑥+ 𝜖𝜕/𝜕𝑦 + 𝜖𝜂𝜕/𝜕𝑧 − 𝜖𝜂𝜂𝑚)𝜓 = 0

where 𝜂 and 𝜖 are the generators of a Clifford algebra with 𝜂2 = 𝜖2 = 1 and 𝜂𝜖+ 𝜖𝜂 = 0, and 𝜖, 𝜂 form
a copy of this algebra that commutes with it. This combination of a Clifford algebra with itself is the
underlying structure of Majorana Fermions. In the appendix we apply our methods to the Majorana
Dirac Equation and give actual real solutions to the equation. These solutions make direct use of the
Majorana Fermion Clifford algebra. This shows explicitly that Fermions and Majorana Fermions are
related by the algebraic transformation between Fermion and Clifford algebra.
Remark. The more intricate algebra in this paper such as the special Fermion algebra described above
can be regarded as coming from the patterns of the split quaternions seen as the Clifford algebra with
generators 𝛼, 𝛽 and relations 𝛼2 = 𝛽2 = 1, 𝛼𝛽+𝛽𝛼 = 0. From these relations it follows that (𝛼𝛽)2 = −1

and if we write
𝑈 = 𝛼𝛽𝐸 + 𝛼𝑝+ 𝛽𝑚

where 𝐸, 𝑝,𝑚 are scalars commuting with the algebra elements, then

𝑈2 = −𝐸2 + 𝑝2 +𝑚2

since the cross terms all vanish in the product. Thus when 𝐸2 = 𝑝2+𝑚2 we have a non-trivial nilpotent
element 𝑈 in the Clifford algebra with 𝑈2 = 0. This is the beginning of the key relationship of nilpotent
algebra elements and Fermions as it occurs in the work of Peter Rowlands [10] and it is the keystone of
the work in this paper as well.

2. The Dirac Equation

We begin by recalling how Dirac constructed his equation. By convention we take the speed of light
to be equal to 1. Then energy 𝐸, momentum 𝑝 and mass 𝑚 are related through special relativity by the
equation

𝐸2 = 𝑝2 +𝑚2.

Dirac looked for an algebraic square root of 𝑝2+𝑚2 so that he could have a linear operator corresponding
to 𝐸 that would take the same role as the Hamiltonian in the Schrödinger equation.

We first take the case of one dimension of space and one dimension of time so that 𝑝 is a scalar.
The quantum operator for momentum is

𝑝 = −𝑖𝜕/𝜕𝑥,

the operator for energy is
�̂� = 𝑖𝜕/𝜕𝑡,

and the operator for mass is
�̂� = 𝑚.

We can write an operator equation
�̂� = 𝛼𝑝+ 𝛽�̂�,

where 𝛼 and 𝛽 are elements of a a possibly non-commutative, associative algebra.
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Then
�̂�2 = 𝛼2𝑝2 + 𝛽2�̂�2 + 𝑝�̂�(𝛼𝛽 + 𝛽𝛼).

Hence we have �̂�2 = 𝑝2 + �̂�2 if we take
𝛼2 = 𝛽2 = 1,

𝛼𝛽 + 𝛽𝛼 = 0.

The algebra so generated by 𝛼 and 𝛽 is a simplest Clifford algebra.
Remark. Note that the Clifford algebra with generators 𝛼, 𝛽 with relations as given above is often called
the split quaternions. If we introduce a commuting (with 𝛼 and 𝛽) square root of minus one, denoted 𝑖
with 𝑖2 = −1, and let 𝐼 = 𝑖𝛼, 𝐽 = 𝑖𝛽,𝐾 = 𝛽𝛼, then it is the case that 𝐼2 = 𝐽2 = 𝐾2 = 𝐼𝐽𝐾 = −1 and
thus we obtain the quaternions from the split quaternions.
Remark. In general we take a Clifford algebra to be an associative algebra with abstract generators
𝑒1, 𝑒2, · · · , 𝑒𝑛 so that 𝑒2𝑘 = 1 for all 𝑘 and 𝑒𝑟𝑒𝑠 + 𝑒𝑠𝑒𝑟 = 0 whenever 𝑟 ̸= 𝑠. The generators are usually
taken to be an orthonormal basis for a vector space over a field.
Remark. Clifford algebras and Fermion algebras are related to one another by a transformation that
we illustrate here for the split quaternions. Let

𝑈 = (𝛼+ 𝑖𝛽)/2,

𝑉 = (𝛼− 𝑖𝛽)/2.

then
𝑈2 = 𝑉 2 = (𝛼2 − 𝛽2 ± 𝑖(𝛼𝛽 + 𝛽𝛼))/4 = 0,

𝑈𝑉 + 𝑉 𝑈 = (𝑈 + 𝑉 )2 = 𝛼2 = 1.

The relations 𝑈2 = 𝑉 2 = 0 and 𝑈𝑉 + 𝑉 𝑈 = 1 are characteristic of Fermion algebra and correspond to
properties of creation and annihilation operators for Fermions. We will see that Fermion algebras arise
naturally in relation to Clifford algebra formulations for the Dirac equation.
The Dirac equation is the operator equation

�̂�𝜓 = 𝛼𝑝𝜓 + 𝛽�̂�𝜓.

Thus the Dirac equation is the differential equation below.

𝑖𝜕𝜓/𝜕𝑡 = −𝑖𝛼𝜕𝜓/𝜕𝑥+ 𝛽𝑚𝜓.

We begin by discussing this version of the Dirac equation in 1+ 1 spacetime, constructing solutions via
light cone reformulaiton and we discuss the Feynman checkerboard model. In the Appendix, we explain
how to extend these formulations to (3 + 1) spacetime.

2.1. The Nilpotent Reformulation of the Dirac Equation

We can define the Dirac operator 𝒪 as follows: Let 𝒪 = 𝑖𝜕/𝜕𝑡 + 𝑖𝛼𝜕/𝜕𝑥 − 𝛽𝑚. Then the Dirac
equation takes the form 𝒪𝜓(𝑥, 𝑡) = 0.

Note that 𝒪𝑒𝑖(𝑝𝑥−𝐸𝑡) = (𝐸 − 𝛼𝑝− 𝛽𝑚)𝑒𝑖(𝑝𝑥−𝐸𝑡).

We let Δ = (𝐸 − 𝛼𝑝− 𝛽𝑚) and let

𝑈 = 𝛼𝛽Δ = 𝛼𝛽𝐸 + 𝛽𝑝− 𝛼𝑚,

so that
𝑈2 = −𝐸2 + 𝑝2 +𝑚2 = 0.

(Note that (𝛼𝛽)2 = 𝛼𝛽𝛼𝛽 = −𝛼𝛼𝛽𝛽 = −1 and that the cross terms cancel.)
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Remark. It is of interest to note that in the split quaternions we have elements of the form

𝑈 = 𝛼𝛽𝐸 + 𝛽𝑝− 𝛼𝑚

such that 𝑈2 = −𝐸2 + 𝑝2 +𝑚2 so that 𝑈 is nilpotent of order two exactly when 𝐸2 = 𝑝2 +𝑚2.

We now multiply the operator 𝒪 by 𝛼𝛽 on the left, obtaining the operator

𝒟 = 𝛼𝛽𝒪 = 𝑖𝛼𝛽𝜕/𝜕𝑡+ 𝑖𝛽𝜕/𝜕𝑥− 𝛼𝑚.

The Dirac equation is equivalent to the equation 𝒟𝜓 = 0. Furthermore, we have have 𝒟(𝑒𝑖(𝑝𝑥−𝐸𝑡)) =

𝑈𝑒𝑖(𝑝𝑥−𝐸𝑡). Thus for 𝜓 = 𝑒𝑖(𝑝𝑥−𝐸𝑡), we have 𝒟(𝜓) = 𝑈𝜓 and 𝒟(𝑈𝜓) = 𝑈2𝜓 = 0. Thus 𝑈 acts as a
creation operator producing a solution to the Dirac equation.

This idea for reconfiguring the Dirac equation in relation to nilpotent algebra elements 𝑈 is due to
Peter Rowlands [10]. Rowlands does this in the context of quaternion algebra. The solution to the Dirac
equation that we have found is expressed in Clifford algebra. It can be articulated into specific vector
solutions by using a matrix representation of the algebra.

2.2. Fermion Operators

We see that 𝑈 = 𝛼𝛽𝐸 + 𝛽𝑝 − 𝛼𝑚 with 𝑈2 = 0 is the essence of this plane wave solution to the
Dirac equation. It is natural to compare this algebra structure with algebra of creation and annihilation
operators that occur in quantum field theory.
If we let 𝜓 = 𝑒𝑖(𝑝𝑥+𝐸𝑡) (reversing time), then we have 𝒟𝜓 = (𝛽𝛼𝐸 + 𝛽𝑝 − 𝛼𝑚)𝜓 = 𝑈†𝜓, giving a
definition of 𝑈† corresponding to the anti-particle for 𝑈𝜓.
We have 𝑈 = 𝛼𝛽𝐸 + 𝛽𝑝− 𝛼𝑚 and 𝑈† = 𝛽𝛼𝐸 + 𝛽𝑝− 𝛼𝑚.

Note that here we have

(𝑈 + 𝑈†)2 = (2𝛽𝑝+ 𝛼𝑚)2 = 4(𝑝2 +𝑚2) = 4𝐸2,

and
(𝑈 − 𝑈†)2 = −(2𝛼𝛽𝐸)2 = −4𝐸2.

We have that 𝑈2 = (𝑈†)2 = 0 and 𝑈𝑈†+𝑈†𝑈 = 4𝐸2. Thus we have a direct appearance of the Fermion
algebra corresponding to the Fermion plane wave solutions to the Dirac equation.

Normalizing by dividing by 2𝐸 we have 𝐴 = (𝛽𝑝 − 𝛼𝑚)/𝐸 and 𝐵 = 𝑖𝛽𝛼. so that 𝐴2 = 𝐵2 = 1

and 𝐴𝐵 +𝐵𝐴 = 0. then 𝑈 = (𝐴+𝐵𝑖)𝐸 and 𝑈† = (𝐴−𝐵𝑖)𝐸, showing how the Fermion operators are
expressed in terms of the simpler Clifford algebra of Majorana operators (𝐴 and 𝐵 generating the split
quaternions).

The decomposition of 𝑈and 𝑈† into the corresponding Majorana Fermion operators with 𝐴2 = 1

is exactly equivalent to 𝐸2 = 𝑝2 +𝑚2.

3. Spacetime in 1+1 Dimensions

We begin this section by discussing an algebra that is directly related to Clifford algebra. As we
shall see, this algebra is also inherent in the Dirac equation when we use light cone coordinates.

3.1. Clifford algebra and Fermion algebra.

Suppose that we have a Clifford algebra generated by elements 𝜖 and 𝜂 with 𝜖2 = 𝜂2 = 1 and
𝜖𝜂 + 𝜂𝜖 = 0. Then we can define new elements 𝑎 and 𝑏 by the equations

𝜂 = 𝑎+ 𝑏,

𝜖𝜂 = 𝑎− 𝑏.
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This means that
𝑎 =

1

2
(1 + 𝜖)𝜂,

𝑏 =
1

2
(1− 𝜖)𝜂,

from which it follows that
𝑎2 = 𝑏2 = 0, 𝑎𝑏+ 𝑏𝑎 = 1.

Note that we are given that the starting Clifford algebra is associative and so further identities such as

𝑎𝑏𝑎 = 𝑎, 𝑏𝑎𝑏 = 𝑏, 𝑎𝑏𝑎𝑏 = 𝑎𝑏, 𝑏𝑎𝑏𝑎 = 𝑏𝑎

follow easily from the given identities. We call an associative algebra generated by 𝑎, 𝑏 with

𝑎2 = 𝑏2 = 0, 𝑎𝑏+ 𝑏𝑎 = 1

a Fermion algebra since the annihilation, creation algebra for Fermions in quantum theory satisfies
these identities. We see here that Clifford algebras (with an even number of generators) and Fermion
algebras are interchangeable via the above transformations. This fact has been used by writers on Clifford
algebras, [11] since it is useful to have projector properties such as (𝑎𝑏)(𝑎𝑏) = 𝑎𝑏.

Example. In two by two matrix algebra, we can take

𝜖 =

(︃
−1 0

0 1

)︃
, 𝜂 =

(︃
0 1

1 0

)︃
= 𝑎+ 𝑏.

Here

𝑎 =

(︃
0 0

1 0

)︃
, 𝑏 =

(︃
0 1

0 0

)︃
.

Thus

𝑎𝑏 =

(︃
0 0

0 1

)︃
, 𝑏𝑎 =

(︃
1 0

0 0

)︃
so that

𝑎2 = 𝑏2 = 0,

𝑎+ 𝑏 = 𝜂,

𝑎− 𝑏 = 𝜖𝜂,

𝑎𝑏+ 𝑏𝑎 = 1,

𝑎𝑏− 𝑏𝑎 = 𝜖.

Remark. The above construction of Fermion algebra from Clifford algebra occurs without invoking an
extra commuting square root of negative unity. It is common in physical applications to use a parallel
construction involving 𝑖 where 𝑖2 = −1 and 𝑖 commutes with all elements of the algebra. One can then
define 𝜓 = 1

2 (𝜂 + 𝑖𝜖) and 𝜓† = 1
2 (𝜂 − 𝑖𝜖). It follows that 𝜓2 = (𝜓†)2 = 0 and 𝜓𝜓† + 𝜓†𝜓 = 1, and one

has a Fermion algebra with complex conjugation constructed in relation to a Clifford algebra. Another
relation with a commuting 𝑖 occurs if we take

𝑎 = (𝑖/2)(𝛼𝛽 + 𝛽)

𝑏 = (𝑖/2)(𝛼𝛽 − 𝛽)

where 𝛼 and 𝛽 form a Clifford algebra with 𝛼2 = 𝛽2 = 1 and 𝛼𝛽 + 𝛽𝛼 = 0. Then 𝑎 and 𝑏 satisfy the
Fermion relations and

𝑎𝑏+ 𝑏𝑎 = 1,
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𝑎𝑏− 𝑏𝑎 = 𝛼,

but
𝑎+ 𝑏 = 𝑖𝛼𝛽,

𝑎− 𝑏 = 𝑖𝛽.

Notice that (𝑖𝛼𝛽)2 = +1 while (𝑖𝛽)2 = −1. Thus we can regard this as a re-writing of the previous
pattern with

𝑖𝛼𝛽 = 𝜂

and
𝑖𝛽 = 𝜖𝜂

so that
𝛼 = 𝛽𝛽𝛼 = −𝛽𝛼𝛽 = 𝑖𝛽[𝛼𝛽 = 𝜖𝜂𝜂 = 𝜖.

This means that this Fermion algebra can occur with or without the explicit commuting square root of
negative unity, 𝑖.

3.2. The Dirac Equation in Light Cone Coordinates

Light cone coordinates 𝑟 and 𝑙 are defined by

𝑟 = (𝑥+ 𝑡)/2

and
𝑙 = (𝑥− 𝑡)/2.

Note that 4𝑟𝑙 = 𝑥2 − 𝑡2. Thus the light cone in (𝑥, 𝑡) Minkowski space (light speed 𝑐 = 1) is descibed by
the equations 𝑟 = 0 or 𝑙 = 0.

Recall the translation of operators to light cone coordinate operators.

�̂� = 𝑖𝜕/𝜕𝑡 = (𝑖/2)(𝜕/𝜕𝑟 + 𝜕/𝜕𝑙)

𝑝 = (1/𝑖)𝜕/𝜕𝑥 = (1/2𝑖)(𝜕/𝜕𝑟 − 𝜕/𝜕𝑙)

Here is the nilpotent version of the Dirac operator as we have formulated it.

𝒟 = 𝛼𝛽�̂� + 𝛽𝑝− 𝛼�̂�

We translate this operator into light cone coordinates.

𝒟 = 𝛼𝛽((𝑖/2)(𝜕/𝜕𝑟 + 𝜕/𝜕𝑙)) + 𝛽((1/2𝑖)(𝜕/𝜕𝑟 − 𝜕/𝜕𝑙))− 𝛼𝑚

𝒟 = 𝑖[(𝛼𝛽 + 𝛽)/2]𝜕/𝜕𝑙 + 𝑖[(𝛼𝛽 − 𝛽)/2]𝜕/𝜕𝑟 − 𝛼𝑚

Thus
𝒟 = 𝐴𝜕/𝜕𝑙 +𝐵𝜕/𝜕𝑟 − 𝛼𝑚

𝐴 = (𝑖/2)(𝛼𝛽 + 𝛽)

𝐵 = (𝑖/2)(𝛼𝛽 − 𝛽)

As the reader can see, we arrive at algebraic coefficients that we have described above as the Fermion
algebra associated with the Clifford algebra generated by 𝛼 and 𝛽.

𝐴+𝐵 = 𝑖𝛼𝛽

𝐴−𝐵 = 𝑖𝛽



160 Л.Х. Кауффман

Further relations take the form:

𝐴𝐵 +𝐵𝐴 = 1, 𝐴𝐵 −𝐵𝐴 = 𝛼,𝐴2 = 𝐵2 = 0, 𝛼2 = 1

𝐴𝛼 = −𝐴,𝛼𝐴 = 𝐴,𝐵𝛼 = 𝐵,𝛼𝐵 = −𝐵.

Thus
𝐴𝛼+ 𝛼𝐴 = 0, 𝐵𝛼+ 𝛼𝐵 = 0

𝐴𝛽 + 𝛽𝐴 = 𝑖, 𝐵𝛽 + 𝛽𝐵 = −𝑖

3.3. Plane waves in light cone coordinates.

Let
𝜓 = 𝑒𝑖(𝑟𝑋−𝑙𝑌 )

where
𝑋 = 𝑝− 𝐸

and
𝑌 = 𝑝+ 𝐸.

Note that 𝑋𝑌 = −𝑚2. This is the plane wave rewritten in light cone coordinates. Then with

𝒟 = 𝐴𝜕/𝜕𝑙 +𝐵𝜕/𝜕𝑟 − 𝛼𝑚,

𝒟𝜓 = 𝑈𝜓

where
𝑈 = −𝑖𝐴𝑋 + 𝑖𝐵𝑌 − 𝛼𝑚.

Thus
𝑈2 = 𝐴𝐵𝑋𝑌 +𝐵𝐴𝑋𝑌 +𝑚2 = 𝑋𝑌 +𝑚2 = 𝑝2 − 𝐸2 +𝑚2 = 0.

Note that with
𝑈† = −𝑖𝐴𝑌 + 𝑖𝐵𝑋 − 𝛼𝑚

we have
(𝑈†)2 = 0

and
𝑈𝑈† + 𝑈†𝑈 = 4𝐸2

Summary. We have the (1+1) Dirac equation in light cone coordinates, using the light cone Dirac
operator

𝒟 = 𝐴𝜕/𝜕𝑙 +𝐵𝜕/𝜕𝑟 − 𝛼𝑚.

The elements 𝐴,𝐵, 𝛼 satisfy the Fermionic algebra relations:

𝐴𝐵 +𝐵𝐴 = 1, 𝐴𝐵 −𝐵𝐴 = 𝛼,𝐴2 = 𝐵2 = 0, 𝛼2 = 1,

𝐴𝛼 = −𝐴,𝛼𝐴 = 𝐴,𝐵𝛼 = 𝐵,𝛼𝐵 = −𝐵.

We can directly see the action of the light cone Dirac operator on a plane wave expressed in light
cone coordinates. The plane wave is given by the formula

𝜓 = 𝑒𝑖(𝑟𝑋−𝑙𝑌 )

where 𝑋 = 𝑝− 𝐸 and 𝑌 = 𝑝+ 𝐸. Thus 𝑋𝑌 = −𝑚2. Then 𝒟𝜓 = 𝑈𝜓 where 𝑈 = −𝑖𝐴𝑋 + 𝑖𝐵𝑌 − 𝛼𝑚,

and 𝑈2 = 0.

Note that with 𝑈† = −𝑖𝐴𝑌 + 𝑖𝐵𝑋−𝛼𝑚 we have (𝑈†)2 = 0 and 𝑈𝑈†+𝑈†𝑈 = 4𝐸2. Thus we have
rewritten the nilpotent Dirac operator and its equation directly in light cone coordinates, with the help
of the Fermionic algebra.
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3.4. Solving the 1+1 Dirac Equation

The (real valued) Majorana version of the Dirac operator

𝒟 = 𝐴𝜕/𝜕𝑙 +𝐵𝜕/𝜕𝑟 − 𝛼𝑚

that we have discussed above can be taken with the representation

𝐴 =

(︃
0 0

1 0

)︃
, 𝐵 =

(︃
0 1

0 0

)︃
, 𝛼 =

(︃
−1 0

0 0

)︃
.

Then

𝐴𝐵 =

(︃
0 0

0 1

)︃
, 𝐵𝐴 =

(︃
1 0

0 0

)︃
, 𝐴𝐵 −𝐵𝐴 =

(︃
−1 0

0 1

)︃
= 𝛼.

Letting Θ = 𝑟𝑋 − 𝑙𝑌, and 𝑆 = 𝑆𝑖𝑛(Θ), 𝐶 = 𝐶𝑜𝑠(Θ), we have

𝑈𝜓 = 𝑈(𝐶 + 𝑖𝑆) = (𝐴𝑋𝑆 −𝐵𝑌 𝑆 − 𝛼𝑚𝐶) + 𝑖(−𝐴𝑋𝐶 +𝐵𝑌 𝐶 − 𝛼𝑚𝑆).

In the matrix representation we find

𝐴𝑋𝑆 −𝐵𝑌 𝑆 − 𝛼𝑚𝐶 =

(︃
𝑚𝐶 −𝑌 𝑆
𝑋𝑆 −𝑚𝐶

)︃
.

And from this, letting
𝜓1 = 𝑚𝐶,𝜓2 = 𝑋𝑆

we have
𝜕𝜓1/𝜕𝑟 = −𝑚𝑋𝑆 = −𝑚𝜓2

and
𝜕𝜓2/𝜕𝑙 = −𝑋𝑌 𝐶 = 𝑚2𝐶 = 𝑚𝜓1

Thus
𝜕𝜓1/𝜕𝑟 = −𝑚𝜓2

𝜕𝜓2/𝜕𝑙 = 𝑚𝜓1

Note that these equations are satisfied by

𝜓1 = −𝑚𝑆𝑖𝑛(−(𝐸 − 𝑝)𝑟 − (𝐸 + 𝑝)𝑙),

𝜓2 = (𝐸 + 𝑝)𝐶𝑜𝑠(−(𝐸 − 𝑝)𝑟 − (𝐸 + 𝑝)𝑙)

exactly when 𝐸2 = 𝑝2+𝑚2 as we have assumed. It is quite interesting to see these direct solutions to the
Dirac equation emerge in this 1 + 1 case. The solutions are fundamental and they are distinct from the
usual solutions that emerge from the Feynman checkerboard model [1, 2]. It is the above equations that
form the basis for the Feynman checkerboard model that is obtained by examining paths in a discrete
Minkowski plane generating a path integral for the Dirac equation.
Remark. Note that a simplest instance of the above form of solution is obtained by writing

𝑒𝑖(𝑟+𝑙) = 𝑐𝑜𝑠(𝑟 + 𝑙) + 𝑖𝑠𝑖𝑛(𝑟 + 𝑙) =
∞∑︁
𝑛=0

(
√
−1)𝑛

∑︁
𝑖+𝑗=𝑛

𝑟𝑖

𝑖!

𝑙𝑗

𝑗!
.

Then with 𝜓2 = 𝑐𝑜𝑠(𝑟+ 𝑙) and 𝜓1 = 𝑠𝑖𝑛(𝑟+ 𝑙) we have 𝜕𝜓1/𝜕𝑙 = 𝜓2, 𝜕𝜓2/𝜕𝑟 = −𝜓1, solving the Dirac
equation in the case where 𝑚 = 1.

Remark. Let 𝜓𝑅 =
∑︀∞
𝑘=0(−1)𝑘 𝑟𝑘+1

(𝑘+1)!
𝑙𝑘

𝑘! , 𝜓𝐿 =
∑︀∞
𝑘=0(−1)𝑘 𝑟

𝑘

𝑘!
𝑙𝑘+1

(𝑘+1)! , 𝜓0 =
∑︀∞
𝑘=0(−1)𝑘 𝑟

𝑘

𝑘!
𝑙𝑘

𝑘! . Then
𝜓1 = 𝜓0 + 𝜓𝐿 and 𝜓2 = 𝜓0 − 𝜓𝑅 give a solution to the Dirac equation in light cone coordinates as we
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have written it above with 𝑚 = 1 : 𝜕𝜓1/𝜕𝑙 = 𝜓2, 𝜕𝜓2/𝜕𝑟 = −𝜓1. These series are shown in [2] to be
a natural limit of evaluations of sums of discrete paths on the Feynman checkerboard. The key to our
earlier approach is that if one defines

𝐶[Δ]𝑥𝑘 =
(𝑥)(𝑥−Δ)(𝑥− 2Δ) · · · (𝑥− (𝑘 − 1)Δ)

𝑘!
,

Then 𝐶[Δ]𝑥𝑘 takes the role of 𝑥𝑘

𝑘! for discrete different derivatives with step length Δ and it can be
interpreted as a choice coefficient. A Feynman path on a rectangle in Minkowski space can be interpreted
as two choice of 𝑘 or 𝑘 + 1 points along the 𝑟 and 𝑙 edges of the rectangle. Thus the products in the
limit expressions of the form 𝑟𝑘

𝑘!
𝑙𝑘+1

(𝑘+1)! or 𝑟𝑘

𝑘!
𝑙𝑘

𝑘! correspond to paths on the checkerboard with 𝑘 corners
in a limit where there are infinitely many such paths. The details are in our paper [2]. The solutions we
have given above, motivated by the Majorana algebra, are related in form to these path sum solutions.
Our solutions contain more information, related to the factorization (𝐸 − 𝑝)(𝐸 + 𝑝) = 𝐸2 − 𝑝2 = 𝑚2.

In the usual checkerboard solution the propagators only know about the mass and not its factorization
relative to energy and momentum. More work needs to be done to fully understand the relationship of
solutions to the Dirac equation and path summations.
Path Sum Derivation.

Рис. 1. Path Summation

Here we describe the Feynman checkerboard model where light-speed paths 𝑝 with corners, in
Minkowski space, are each evaluated by 𝑖𝑐(𝑝) where 𝑐(𝑝) denotes the number of corners in the path.
Let (𝑎, 𝑏) denote a point in discrete Minkowski spacetime in light cone coordinates. Thus 𝑎 denotes the
number of steps taken to the left and 𝑏 denotes the number of steps taken to the right. We let 𝜓𝐿(𝑎, 𝑏)
denote the sum over the paths that enter the point (𝑎, 𝑏) from the left and 𝜓𝑅(𝑎, 𝑏) the sum over the
paths that enter (𝑎, 𝑏) from the right. View Figure 1.

It is clear from the diagram in the figure that

𝜓𝐿(𝑎, 𝑏+ 1) = 𝜓𝐿(𝑎, 𝑏) + 𝑖𝜓𝑅(𝑎, 𝑏).

Thus we have a discrete version of the Dirac equation in light cone coordinates that is satisfied by the
Feynman path summation. If we adjust the step sizes and take a limit we find

𝜕𝜓𝐿/𝜕𝑟 = 𝑖𝜓𝑅

and similarly
𝜕𝜓𝑅/𝜕𝑙 = 𝑖𝜓𝐿.

This pair of equations is the the Dirac Equation in light cone coordinates. When we take the the
evalutation of a path to be (−1)𝑐(𝑝), we obtain the real version of the Dirac equation, as discussed
above.

It remains to be seen how our plane wave solutions of the (1+1) Dirac equation in light cone
coordinates are related to the Feynman path summation.
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4. Appendix - Writing in the Full Dirac Algebra

We have written the Dirac equation in one dimension of space and one dimension of time. We
now boost the formalism directly to three dimensions of space. We take an independent Clifford algebra
generated by 𝜎1, 𝜎2, 𝜎3 with 𝜎2

𝑖 = 1 for 𝑖 = 1, 2, 3 and 𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖 for 𝑖 ̸= 𝑗. Now assume that 𝛼
and 𝛽 as we have used them above generate an independent Clifford algebra that commutes with the
algebra of the 𝜎𝑖. Replace the scalar momentum 𝑝 by a 3-vector momentum 𝑝 = (𝑝1, 𝑝2, 𝑝3) and let
𝑝 ∙ 𝜎 = 𝑝1𝜎1 + 𝑝2𝜎2 + 𝑝3𝜎3. We replace 𝜕/𝜕𝑥 with ∇ = (𝜕/𝜕𝑥1, 𝜕/𝜕𝑥2, 𝜕/𝜕𝑥2) and 𝜕𝑝/𝜕𝑥 with ∇ ∙ 𝑝.
We then have the following form of the Dirac equation.

𝑖𝜕𝜓/𝜕𝑡 = −𝑖𝛼∇ ∙ 𝜎𝜓 + 𝛽𝑚𝜓.

Let 𝒪 = 𝑖𝜕/𝜕𝑡+ 𝑖𝛼∇ ∙ 𝜎 − 𝛽𝑚 so that the Dirac equation takes the form 𝒪𝜓(𝑥, 𝑡) = 0.

In analogy to our previous discussion we let 𝜓(𝑥, 𝑡) = 𝑒𝑖(𝑝∙𝑥−𝐸𝑡) and construct solutions by first applying
the Dirac operator to this 𝜓. The two Clifford algebras interact to generalize directly the nilpotent
solutions and Fermion algebra,that we have detailed for one spatial dimension, to this three dimensional
case. To this purpose the modified Dirac operator is

𝒟 = 𝑖𝛼𝛽𝜕/𝜕𝑡+ 𝛽∇ ∙ 𝜎 − 𝛼𝑚.

And we have that 𝒟𝜓 = 𝑈𝜓 where 𝑈 = 𝛼𝛽𝐸+𝛽𝑝 ∙𝜎−𝛼𝑚. We have that 𝑈2 = 0 and 𝑈𝜓 is a solution
to the modified Dirac Equation, just as before. And just as before, we can articulate the structure of
the Fermion operators and locate the corresponding Majorana Fermion operators.

4.1. Majorana Fermions

There is more to do. We now discuss making Dirac algebra distinct from the one generated by
𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎3 to obtain an equation that can have real solutions. This was the strategy that Majorana
[3] followed to construct his Majorana Fermions. A real equation can have solutions that are invariant
under complex conjugation and so can correspond to particles that are their own anti-particles. We will
describe this Majorana algebra in terms of the split quaternions 𝜖 and 𝜂. For convenience we use the
matrix representation given below.

𝜖 =

(︃
−1 0

0 1

)︃
, 𝜂 =

(︃
0 1

1 0

)︃
.

Let 𝜖 and 𝜂 generate another, independent algebra of split quaternions, commuting with the first algebra
generated by 𝜖 and 𝜂. Then a totally real Majorana Dirac equation can be written as follows:

(𝜕/𝜕𝑡+ 𝜂𝜂𝜕/𝜕𝑥+ 𝜖𝜕/𝜕𝑦 + 𝜖𝜂𝜕/𝜕𝑧 − 𝜖𝜂𝜂𝑚)𝜓 = 0.

To see that this is a correct Dirac equation, note that

�̂� = 𝛼𝑥𝑝𝑥 + 𝛼𝑦𝑝𝑦 + 𝛼𝑧𝑝𝑧 + 𝛽𝑚

(Here the “hats” denote the quantum differential operators corresponding to the energy and momentum.)
will satisfy

�̂�2 = 𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2 +𝑚2

if the algebra generated by 𝛼𝑥, 𝛼𝑦, 𝛼𝑧, 𝛽 has each generator of square one and each distinct pair of
generators anti-commuting. From there we obtain the general Dirac equation by replacing �̂� by 𝑖𝜕/𝜕𝑡,
and 𝑝𝑥 with −𝑖𝜕/𝜕𝑥 (and same for 𝑦, 𝑧).

(𝑖𝜕/𝜕𝑡+ 𝑖𝛼𝑥𝜕/𝜕𝑥+ 𝑖𝛼𝑦𝜕/𝜕𝑦 + 𝑖𝛼𝑧𝜕/𝜕𝑦 − 𝛽𝑚)𝜓 = 0.
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This is equivalent to
(𝜕/𝜕𝑡+ 𝛼𝑥𝜕/𝜕𝑥+ 𝛼𝑦𝜕/𝜕𝑦 + 𝛼𝑧𝜕/𝜕𝑦 + 𝑖𝛽𝑚)𝜓 = 0.

Thus, here we take
𝛼𝑥 = 𝜂𝜂, 𝛼𝑦 = 𝜖, 𝛼𝑧 = 𝜖𝜂, 𝛽 = 𝑖𝜖𝜂𝜂,

and observe that these elements satisfy the requirements for the Dirac algebra. Note how we have a
significant interaction between the commuting square root of minus one (𝑖) and the element 𝜖𝜂 of square
minus one in the split quaternions. This brings us back to considerations about the source of the square
root of minus one. Both viewpoints combine in the element 𝛽 = 𝑖𝜖𝜂𝜂 that makes this Majorana algebra
work. Since the algebra appearing in the Majorana Dirac operator is constructed entirely from two
commuting copies of the split quaternions, there is no appearance of the complex numbers, and when
written out in 2×2 matrices we obtain coupled real differential equations to be solved. This is a beginning
of a new study of Majorana Fermions. For more information about this viewpoint, see [9]. In the next
section we rewrite the Majorana Dirac operator, guided by nilpotents, obtaining solutions that directly
use the Majorana Fermion operators.

4.2. Nilpotents, Majorana Fermions and the Majorana-Dirac Equation

Let 𝒟 = (𝜕/𝜕𝑡+ 𝜂𝜂𝜕/𝜕𝑥+ 𝜖𝜕/𝜕𝑦+ 𝜖𝜂𝜕/𝜕𝑧− 𝜖𝜂𝜂𝑚). In the last section we have shown how 𝒟 can
be taken as the Majorana operator through which we can look for real solutions to the Dirac equation.
Letting 𝜓(𝑥, 𝑡) = 𝑒𝑖(𝑝∙𝑟−𝐸𝑡), we have

𝒟𝜓 = (−𝑖𝐸 + 𝑖(𝜂𝜂𝑝𝑥 + 𝜖𝑝𝑦 + 𝜖𝜂𝑝𝑧)− 𝜖𝜂𝜂𝑚)𝜓.

Let
Γ = (−𝑖𝐸 + 𝑖(𝜂𝜂𝑝𝑥 + 𝜖𝑝𝑦 + 𝜖𝜂𝑝𝑧)− 𝜖𝜂𝜂𝑚)

and
𝑈 = 𝜖𝜂Γ = (𝑖(−𝜂𝜖𝐸 − 𝜂𝜖𝑝𝑥 + 𝜂𝑝𝑦 − 𝜖𝜖𝑝𝑧) + 𝜖𝜖𝜂𝑚).

The element 𝑈 is nilpotent, 𝑈2 = 0, and we have that 𝑈 = 𝐴 + 𝑖𝐵, 𝐴𝐵 + 𝐵𝐴 = 0, 𝐴 = 𝜖𝜖𝜂𝑚,

𝐵 = −𝜂𝜖𝐸 − 𝜂𝜖𝑝𝑥 + 𝜂𝑝𝑦 − 𝜖𝜖𝑝𝑧, 𝐴
2 = −𝑚2, and 𝐵2 = −𝐸2 + 𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧 = −𝑚2.

Letting ∇ = 𝜖𝜂𝒟, we have a new Majorana Dirac operator with ∇𝜓 = 𝑈𝜓 so that ∇(𝑈𝜓) = 𝑈2𝜓 = 0.

Letting 𝜃 = (𝑝 ∙ 𝑟 − 𝐸𝑡), we have 𝑈𝜓 = (𝐴 + 𝐵𝑖)𝑒𝑖𝜃 = (𝐴 + 𝐵𝑖)(𝐶𝑜𝑠(𝜃) + 𝑖𝑆𝑖𝑛(𝜃)) = (𝐴𝐶𝑜𝑠(𝛾) −
𝐵𝑆𝑖𝑛(𝜃)) + 𝑖(𝐵𝐶𝑜𝑠(𝜃) +𝐴𝑆𝑖𝑛(𝜃)).

Thus we have found two real solutions to the Majorana Dirac Equation:

Φ = 𝐴𝐶𝑜𝑠(𝜃)−𝐵𝑆𝑖𝑛(𝜃),

Ψ = 𝐵𝐶𝑜𝑠(𝜃) +𝐴𝑆𝑖𝑛(𝜃)

with 𝜃 = (𝑝 ∙ 𝑟 − 𝐸𝑡) and 𝐴 and 𝐵 the Majorana operators

𝐴 = 𝜖𝜖𝜂𝑚,

𝐵 = −𝜂𝜖𝐸 − 𝜂𝜖𝑝𝑥 + 𝜂𝑝𝑦 − 𝜖𝜖𝑝𝑧.

Note how the Majorana Fermion algebra generated by 𝐴 and 𝐵 comes into play in the construction
of these solutions. This answers a natural question about the Majorana Fermion operators. Should
one take the Majorana operators themselves seriously as representing physical states? Our calculation
suggests that one should take them seriously.

In other work [4, 5, 6, 7] we review the main features of recent applications of the Majorana algebra
and its relationships with representations of the braid group and with topological quantum computing.
The present analysis of the Majorana Dirac equation first appears in our paper [9].
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