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Для решения проблем, связанных с присутствием разрывов вдоль совпадающих гиперповерхностей, в
данной работе мы представляем обобщение процедуры совпадения 𝐶3, рассмотренной в предыдущих
работах. Они требуют, чтобы решение уравнений Эйнштейна также описывало совпадающую
гиперповерхность.
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To handle the case in which discontinuities are present along the matching hypersurface, in this work, we present a
generalization of the 𝐶3 matching procedure discussed in previous works. It demands that a solution of Einstein’s
equations also describe the matching hypersurface.
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Introduction

General relativity is a theory of the gravitational interaction and, in particular, should describe
the gravitational field of relativistic compact objects. In this case, the spacetime can be split into two
different parts, namely, the interior region described by an exact solution of Einstein’s equations with a
physically reasonable energy-momentum tensor and the exterior region, which corresponds to an exact
vacuum solution. This implies that the spacetime can be considered as split into two regions with certain
hypersurface Σ at which the two regions should be matched.

This problem has been investigated for a long time [1]. In 1927, Darmois [2, 3] proposed that a
physically meaningful matching can be obtained by demanding that the first and second fundamental
forms (induced metric and extrinsic curvature, respectively) be continuous across Σ. Later on, in 1955,
Lichnerowicz [4] proposed an alternative approach that turned out to be equivalent to the Darmois
approach by choosing the underlying coordinates appropriately. If the fundamental forms are not
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continuous across the matching surface, Israel proposed in [5] to “cover” Σ with a shell, whose energy-
momentum tensor takes care of the discontinuities. In the case of compact objects, Σ should be identified
with the surface of the object, i.e., it is a time-like hypersurface. It then follows that at Σ, certain
matching conditions should be imposed in order for the spacetime to be well defined.

Recently [6], we propose to use a 𝐶3 criterion to find information about the location of the
hypersurface Σ. It is defined in terms of the eigenvalues of the Riemann curvature tensor, which are
invariant quantities. The idea is simple. Since the curvature tensor is a measure of the gravitational
interaction, the curvature eigenvalues provide us with an invariant measure of the gravitational
interaction. Since, for a compact object, one expects the spacetime to be asymptotically flat, the
curvature eigenvalues should vanish at spatial infinite, and the behavior of the eigenvalues approaching
the gravitational source could give some information about its borders.

In this work, we continue the investigation of the 𝐶3 procedure. Based on Israel’s formalism [5], we
propose a general approach considering cases in which discontinuities are present along the matching
surface Σ. It consists of demanding that a solution of Einstein equations also describe the 3-dimensional
hypersurface Σ. In Section 1, we review in detail the main aspects of the 𝐶3 matching procedure, whereas
Section 2 is devoted to proposing a generalization of the 𝐶3 matching procedure. Finally, in Section 3,
we sum up our results.

1. 𝐶3 matching procedure

The 𝐶3 matching procedure is based on the analysis of the behavior of the Riemann curvature
eigenvalues. This method was applied to study asymptotically flat spacetimes in [6]. Here, we employ
the Cartan formalism of differential forms and local orthonormal tetrads to determine these eigenvalues.
A local orthonormal tetrad is the simplest and most natural choice for an observer in order to perform
local measurements of time, space, and gravity. So, let us choose the local ortho-normal tetrad 𝜗𝑎,
𝑎 = 0, ..., 3 such that

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇 ⊗ 𝑑𝑥𝜈 = 𝜂𝑎𝑏𝜗

𝑎 ⊗ 𝜗𝑏 , (1.1)

with 𝜂𝑎𝑏 = diag(−1, 1, 1, 1), and 𝜗𝑎 = 𝑒𝑎𝜇𝑑𝑥
𝜇. The first and second Cartan equations

𝑑𝜗𝑎 = −𝜔𝑎𝑏 ∧ 𝜗𝑏 , (1.2)

Ω𝑎𝑏 = 𝑑𝜔𝑎𝑏 + 𝜔𝑎𝑐 ∧ 𝜔𝑐𝑏 =
1

2
𝑅𝑎𝑏𝑐𝑑𝜗

𝑐 ∧ 𝜗𝑑 (1.3)

allow us to compute the components of the Riemann curvature tensor 𝑅𝑎𝑏𝑐𝑑 in the local orthonormal
frame 𝜗𝑎. Moreover, we define the Ricci tensor and the scalar curvature as 𝑅𝑎𝑏 = 𝑅𝑐𝑎𝑐𝑏 and 𝑅 =

𝑅𝑎𝑎, respectively. Furthermore, we introduce the bivector representation that consists in defining the
curvature components 𝑅𝑎𝑏𝑐𝑑 as the components of a 6 × 6 matrix R𝐴𝐵 according to the convention
proposed in [7] (Chapter 14, Section 14.1, pp. 333-334), which establishes the following correspondence
between tetrad 𝑎𝑏 and bivector indices 𝐴:

01 → 1 , 02 → 2 , 03 → 3 , 23 → 4 , 31 → 5 , 12 → 6 . (1.4)

Hence, the Riemann tensor can be represented as a symmetric matrix R𝐴𝐵 with 21 independent
components. The algebraic Bianchi identity 𝑅𝑎[𝑏𝑐𝑑] = 0, which in bivector representation reads

R14 +R25 +R36 = 0 (1.5)

reduces the number of independent components to 20. Furthermore, Einstein’s equations, in geometric
units such that 𝑘 = 8𝜋𝐺𝑐−4, 𝐺 = 𝑐 = 1,

𝑅𝑎𝑏 −
1

2
𝑅𝜂𝑎𝑏 = 𝑘 𝑇𝑎𝑏 , (1.6)
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can be written explicitly in terms of the curvature components R𝐴𝐵 , resulting in a set of ten algebraic
equations that relate the components of R𝐴𝐵 and 𝑇𝑎𝑏. Consequently, only ten components R𝐴𝐵 are
algebraic independent and can be arranged in the 6× 6 curvature matrix in the following way

R𝐴𝐵 =

(︃
M1 L

L M2

)︃
, (1.7)

where

L =

⎛⎜⎝ R14 R15 R16

R15 − 𝑘𝑇03 R25 R26

R16 + 𝑘𝑇02 R26 − 𝑘𝑇01 −R14 −R25

⎞⎟⎠ ,

and M1 and M2 are 3× 3 symmetric matrices

M1 =

⎛⎜⎝ R11 R12 R13

R12 R22 R23

R13 R23 −R11 −R22+𝑘
(︀
𝑇
2 + 𝑇00

)︀
⎞⎟⎠ ,

M2 =

⎛⎜⎝ −R11 + 𝑘
(︀
𝑇
2 + 𝑇00 − 𝑇11

)︀
−R12 − 𝑘𝑇12 −R13 − 𝑘𝑇13

−R12 − 𝑘𝑇12 −R22 + 𝑘
(︀
𝑇
2 + 𝑇00 − 𝑇22

)︀
−R23 − 𝑘𝑇23

−R13 − 𝑘𝑇13 −R23 − 𝑘𝑇23 R11 +R22−𝑘𝑇33

⎞⎟⎠,
with 𝑇 = 𝜂𝑎𝑏𝑇𝑎𝑏. This is the most general form of a curvature tensor that satisfies Einstein’s equations
with an arbitrary energy-momentum tensor. The eigenvalues 𝜆𝑛 (𝑛 = 1, · · · , 6) of the matrix R𝐴𝐵 are
known as the curvature eigenvalues.

The invariant character of the curvature eigenvalues allows us to apply them in many different
physical situations and configurations. In particular, we here use the eigenvalues to match asymptotically
flat solutions of the Einstein equation to its interior counterpart describing a material source of the
gravitational field. In the 𝐶3 matching approach, the matching surface Σ is determined by the matching
radius, 𝑟𝑚𝑎𝑡𝑐ℎ, defined as

𝑟𝑚𝑎𝑡𝑐ℎ ∈ [𝑟𝑟𝑒𝑝,∞) , 𝑟𝑟𝑒𝑝 = max{𝑟𝑙} , (1.8)

where 𝑟𝑙 (𝑙 = 1, 2, ...), with 0 < 𝑟𝑙 <∞, represents the set of solutions of the equation

𝜕𝜆+𝑛
𝜕𝑟

⃒⃒⃒
𝑟=𝑟𝑙

= 0 , (1.9)

with 𝜆+𝑛 being the curvature eigenvalues of the manifold (ℳ+,g+), which is assumed to be
asymptotically flat, i.e., there exists a spatial coordinate 𝑟 such that

lim
𝑟→∞

g+ = 𝜂 (1.10)

where 𝜂 represents the Minkowski metric.

Theorem 1.1. Let (ℳ−,g−) and (ℳ+,g+) be an arbitrary and an asymptotically flat spacetime,
which satisfy Einstein equations, and let 𝜆−𝑛 and 𝜆+𝑛 be the curvature eigenvalues of (ℳ−,g−) and
(ℳ+,g+), respectively. Then, we say that ℳ− and ℳ+ can be matched at the surface Σ, determined
by the matching radius 𝑟𝑚𝑎𝑡𝑐ℎ as defined in Eq.(1.8), if the necessary and sufficient condition

[𝜆𝑛] ≡ 𝜆−𝑛 − 𝜆+𝑛 = 0, 𝑛 = 1, · · · , 6 (1.11)

is satisfied.

From a pragmatical point of view, the interior region of compact objects corresponds to the
spacetime (ℳ−,g−) whereas the exterior region is described by (ℳ+,g+). Then, 𝑟𝑙 represent the
extrema of the exterior eigenvalues 𝜆+𝑛 and the repulsion radius 𝑟𝑟𝑒𝑝 corresponds to the extremum 𝑟𝑙
with the maximum value. In other words, 𝑟𝑟𝑒𝑝 is the value of 𝑟, where the first extremum of 𝜆+𝑛 is
encountered when approaching the origin of coordinates 𝑟 = 0 coming from infinity. The spacetimes
(ℳ+,g+) and (ℳ−,g−) can be matched at the matching radius 𝑟𝑚𝑎𝑡𝑐ℎ, which can be chosen at any
value of 𝑟 located between the repulsion radius 𝑟𝑟𝑒𝑝 and infinity.
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2. 𝐶3 matching across spherically symmetric thin shells

In general relativity, the interior of spacetimes corresponding to a spherically symmetric perfect
fluid can be described by the energy-momentum tensor

T𝛼𝛽 = (𝜌+ 𝑝)V𝛼V𝛽 + 𝑝g𝛼𝛽 (2.1)

where 𝜌 and 𝑝 are the energy density and the pressure of the fluid, respectively, and V is the velocity
of the fluid, which we choose as the comoving velocity V𝛼 = (−1, 0, 0, 0).

According to Birkhoff’s theorem, the exterior spacetime must be described by the Schwarzschild
metric

g+ = −
(︂
1− 2𝑚

𝑟

)︂
d 𝑡⊗ d 𝑡+

(︂
1− 2𝑚

𝑟

)︂−1

d 𝑟 ⊗ d 𝑟 + 𝑟2(d 𝜃 ⊗ d 𝜃 + sin2 𝜃 d𝜑⊗ d𝜑). (2.2)

Furthermore, we choose the matching hypersurface as a sphere of constant radius. For the 𝐶3 approach
we only need to calculate the curvature eigenvalues. We choose the orthonormal tetrad 𝜗𝑎 as

𝜗0 =

(︂
1− 2𝑚

𝑟

)︂1/2

d 𝑡 , 𝜗1 =

(︂
1− 2𝑚

𝑟

)︂−1/2

d 𝑟 , 𝜗2 = 𝑟 d 𝜃 , 𝜗3 = 𝑟 sin 𝜃 d𝜑 . (2.3)

A straightforward computation shows that the curvature matrix R𝐴𝐵 is diagonal and the eigeinvalues
are

𝜆+2 = 𝜆+3 = −𝜆+5 = −𝜆+6 = 𝑚/𝑟3, 𝜆+1 = −𝜆+4 = −2𝑚/𝑟3. (2.4)

To perform the 𝐶3 procedure, we first find the extrema of the exterior eigenvalues. As we can see,
none of the Schwarzchild eigenvalues has an extremum. This means that there is no repulsion radius
𝑟𝑟𝑒𝑝, which indicates in the approach the smallest sphere at which the matching can be carried out.
Consequently, there is no repulsion region in the Schwarzschild spacetime that should be covered by an
interior solution, which is the conceptual background of the 𝐶3 approach. Then, the matching radius
can be located anywhere outside the central singularity, i.e., 𝑟𝑚𝑎𝑡𝑐ℎ ∈ (0,∞).

In previous references (See [6, 8]), it was shown that in the case of spherically symmetric perfect
fluids, the vanishing of the energy-momentum tensor on the matching surface is a necessary condition
to perform the matching procedure; this suggests that the jump of the curvature eigenvalues across
the matching surface vanishes. Recently, we have glimpsed particular solutions corresponding to perfect
fluids in which this does not occur. In this work, we construct a formalism that allows the 𝐶3 matching
in the case of discontinuities across the matching surface, i.e., 𝜆+𝑛 ̸= 𝜆−𝑛 on Σ for at least one value of 𝑛.

We will use Israel’s formalism [5] as a conceptual guide that allows the existence of discontinuities
of the first and second fundamental forms by introducing an effective energy-momentum tensor on the
matching surface Σ so that it can be intepreted as a infinitesimal matter shell that join the interior and
exterior spacetimes. To this end, let us consider the jump of the eigenvalues across Σ as

[𝜆𝑛] = 𝜆−𝑛 − 𝜆+𝑛 . (2.5)

In the case of a matching between an interior perfect fluid solution and the exterior Schwarzschild
vacuum solution, we have shown that the 𝐶3 procedure implies that 𝜌 and 𝑝 should be zero on Σ. When
these conditions are not satisfied, let us define the surface density 𝜎 and pressure 𝜋 as

𝜎 = 𝜌|Σ , 𝑃 = 𝑝|Σ . (2.6)

Then, since in the case of discontinuities we have that [𝜆𝑛] ̸= 0, it follows that 𝜎 ̸= 0 and 𝑃 ̸= 0, in
general. This is equivalent to saying that the explicit values of [𝜆𝑛] should contain information about
the physical quantities 𝜎 and 𝑃 . For this reason, we assume that [𝜆𝑛] is arbitrary in value but finite.
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The question is now whether 𝜎 and 𝑃 can be used to construct a realistic matter shell on Σ. To this
end, consider the jump of the Einstein tensor on Σ, i. e.,

[𝐺𝑖𝑗 ] = 𝐺−
𝑖𝑗 −𝐺+

𝑖𝑗 , 𝐺±
𝑖𝑗 =

𝜕𝑥𝜇±
𝜕𝜉𝑖

𝜕𝑥𝜈±
𝜕𝜉𝑗

𝐺±
𝜇𝜈 , (2.7)

where 𝜉𝑖 are the coordinates of the surface Σ and 𝑥𝜇± are the coordinates of the interior and exterior
spacetimes, respectively. Then, 𝐺±

𝑖𝑗 is the Einstein tensor induced on Σ. Furthermore, we introduce an
energy-momentum tensor 𝑆𝑖𝑗 on Σ as

[𝐺𝑖𝑗 ] = 𝑘𝑆𝑖𝑗 . (2.8)

Certainly, it is always possible to introduce algebraically an energy-momentum tensor in this way.
However, the essential point is whether 𝑆𝑖𝑗 is physically meaningful. To guarantee the fulfillment of this
condition, we demand that 𝑆𝑖𝑗 be induced by the energy-momentum tensors of the interior and exterior
spacetimes and be in agreement with their physical significance. Then, in the case of the perfect fluid
we are considering here, we demand that

𝑆𝑖𝑗 = [𝑇𝑖𝑗 ] = 𝑇−
𝑖𝑗 − 𝑇+

𝑖𝑗 = (𝜎 + 𝑃 )𝑢𝑖𝑢𝑗 + 𝑃𝛾𝑖𝑗 , (2.9)

where 𝑇±
𝑖𝑗 are the energy-momentum tensors and 𝛾𝑖𝑗 = 𝛾±𝑖𝑗 is the metric tensor induced on Σ, respectively.

In summary, in the case of discontinuities, we will say that an interior spacetime can be matched
with an exterior one along a boundary shell located on Σ, if there exist a density 𝜎 and a pressure 𝑃 ,
satisfying the induced Einstein equations (2.8) and (2.9) and the boundary condition (2.6).

In the case of spherical symmetry the coordinates on both sides of the boundary can be chosen as
𝑥𝜇± = (𝑡, 𝑟, 𝜃, 𝜑) and on the matching surface as 𝜉𝑖 = (𝑡, 𝜃, 𝜑). Then, all the components of the quantities
𝜕𝑥𝜇/𝜕𝜉𝑖 are constant and the induced tensors can be calculated in a straightforward way. We obtain for
the jump of the eigenvalues along the matching surface 𝑟 = 𝑟match the following expressions

[𝜆2] = [𝜆3] = [𝜆4] = 0 , [𝜆1] = [𝜆5] = [𝜆6] = 4𝜋𝜎 , (2.10)

which agrees with the result that on the matching surface the pressure vanishes. Furthermore, the jump
of components of the induced Einstein tensor can be expressed as

[𝐺𝑖𝑗 ] = 2𝑘[𝜆1]𝑢𝑖𝑢𝑗 = 𝑘𝜎𝑢𝑖𝑢𝑗 , 𝑢𝑖 = (−1, 0, 0) . (2.11)

It is then easy to see that on the matching surface 𝑟 = 𝑟match, the induced Einstein equations
for dust are satisfied, proving that, in fact, a realistic dust shell can be introduced that allows us to
match, in the framework of the 𝐶3 matching procedure, perfect fluids with the exterior Schwarzschild
spacetime.

3. Conclusions

In this work, we have analyzed the problem of matching spherically symmetric solutions of Einstein
equations. n particular, we limit ourselves to the case of interior solutions corresponding to perfect static
fluids. We know that in specific perfect fluid solutions, the energy density shows a discontinuity across
the matching surface; to handle the case in which discontinuities are present along the matching surface
Σ, we propose in this work a generalization of the 𝐶3 matching procedure. It consists of demanding that
a solution of Einstein equations also describe the 3-dimensional hypersurface Σ. In fact, we consider
the induced Einstein tensor on Σ and show that it can be represented as a realistic energy-momentum
tensor that describes the matter inside a boundary shell located on Σ. In the cases considered in this
work, it turned out that the boundary corresponds to a dust shell. For more general interior solutions,
we expect to obtain shells with more intricate internal structures.
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