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Обзор основные результаты в рамках парадигмы масштабно-инвариантного вакуума (SIV), что касает-
ся интегрируемой геометрии Вейля как расширение Общей теории относительности Эйнштейна. После
краткого очерка математической основы, основные результаты до 2023 года [1] выделяются по отношению
к: инфляция внутри SIV [2], рост флуктуаций плотности [3], применение SIV к масштабно-инвариантной
динамике галактик, MOND, темная материя и карликовые сфероиды [4], и самые последние результаты
по содержанию легких элементов BBNS в SIV [5].
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A. Motivation

The paper is a summary of the current main results within the Scale Invariant Vacuum (SIV)
paradigm as related to the Weyl Integrable Geometry (WIG) as an extension to the standard Einstein
General Relativity (EGR) as of Summer 2023. As such, it is a reflection of the corresponding online
conference presentation during the XXIII International Meeting Physical Interpretations of Relativity
Theory at the Bauman Moscow State Technical University, Moscow, 2023 (PIRT’23).

Our main goal is to present a condensed overview of the key results of the theory so far, along
with the latest progress in applying the SIV paradigm to variety of physics phenomenon, and in doing
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so to help the intellectually curious reader gain some understanding as to where the paradigm has been
tested and what is the success level of the inquiry. As such, the paper follows closely our previous 2022
paper [6] that was based on a talk presented at the conference Alternative Gravities and Fundamental
Cosmology, at the University of Szczecin, Poland in September 2021. Our initial presentation and its
conference contribution were covering, back then, only four main results: comparing the scale factor 𝑎(𝑡)
within ΛCDM and SIV [13], the growth of the density fluctuations within the SIV [3], the application
to scale-invariant dynamics of galaxies [4], and inflation of the early-universe within the SIV theory [2].
Back then, our article layout was aiming for focusing on each of these four main results via highlighting
its most relevant figure or equation. As a result each topic was covered via one to two pages text preceded
by short and concise description of the mathematical framework.

Here, we add one more sections related to the recent developments in the application of SIV
paradigm since our previous summary paper in 2022 [6], it is our latest study of the Big-Bang
Nucleosynthesis (BBNS) within the SIV Paradigm [5] that has been reported for a first time during
PRIT’23 conference [7].

After a general introduction on the problem of scale invariance and physical reality, along with
the similarities and differences of Einstein General Relativity and Weyl Integrable Geometry, we only
highlight the mathematical framework as pertained to Weyl Integrable Geometry, Dirac Co-Calculus,
and reparametrization invariance|. Rather than re-deriving the weak-field SIV results for the equations of
motion, we have decided to use the idea of reparametrization invariance [8] to illustrate the corresponding
equations of motion. The relevant discussion on reparametrization invariance is in the section on the
Consequences of Going beyond Einstein’s General Relativity. This section precedes the brief review of
the necessary results about the Scale Invariant Cosmology idea needed in the section on Comparisons
and Applications, where we highlight the main results related to inflation within the SIV [2], the growth
of the density fluctuations [3], and the application of the SIV to scale-invariant dynamics of galaxies,
MOND, dark matter, and the dwarf spheroidals [4]. The results section of the paper concludes with the
most recent results on the BBNS light-elements’ abundances within the SIV [5]. We end the paper with
a section containing the Conclusions and Outlook for future research directions.

A.1. Scale Invariance and Physical Reality

The presence of a scale is related to the existence of physical connection and causality. The
corresponding relationships are formulated as physical laws dressed in mathematical expressions. The
laws of physics (numerical factors in the formulae) change upon change of scale, but maintain a form-
invariance. As a result, using consistent units is paramount in physics and leads to powerful dimensional
estimates of the order of magnitude of physical quantities based on a simple dimensional analysis. The
underlined scale is closely related to the presence of material content, which reflects the energy scale
involved.

However, in the absence of matter, a scale is not easy to define. Therefore, an empty universe would
be expected to be scale invariant! Absence of scale is confirmed by the scale invariance of the Maxwell
equations in vacuum (no charges and no currents—the sources of the electromagnetic fields). The field
equations of general relativity are scale invariant for empty space with zero cosmological constant.
What amount of matter is sufficient to kill scale invariance is still an open question. Such a question is
particularly relevant to cosmology and the evolution of the universe.

A.2. Einstein General Relativity (EGR) and Weyl Integrable Geometry (WIG)

Einstein’s General Relativity (EGR) is based on the premise of a torsion-free covariant connection
that is metric-compatible and guarantees the preservation of the length of vectors along geodesics
(𝛿 ‖−→𝑣 ‖ = 0). The theory has been successfully tested at various scales, starting from local Earth
laboratories, the Solar system, on galactic scales via light-bending effects, and even on an extragalactic
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level via the observation of gravitational waves. The EGR is also the foundation for modern cosmology
and astrophysics. However, at galactic and cosmic scales, some new and mysterious phenomena have
appeared. The explanations for these phenomena are often attributed to unknown matter particles or
fields that are yet to be detected in our laboratories—dark matter and dark energy.

As no new particles or fields have been detected in the Earth labs for more than twenty years, it
seems reasonable to revisit some old ideas that have been proposed as a modification of the EGR. In
1918, Weyl proposed and extension by adding local gauge (scale) invariance [9]. Other approaches were
more radical by adding extra dimensions, such as Kaluza?Klein unification theory. Then, via Jordan
conformal equivalence, one comes back to the usual 4D spacetime as projective relativity theory, but
with at least one additional scalar field. Such theories are also known as Jordan?Brans?Dicke scalar-
tensor gravitation theories [10, 11]. In most such theories, there is a major drawback—a varying Newton
constant 𝐺. As no such variations have been observed, we prefer to view Newton’s gravitational constant
𝐺 as constant despite the experimental issues on its measurements [12].

In the light of the above discussion one may naturally ask: could the mysterious (dark) phenomena
be artifacts of non-zero 𝛿 ‖−→𝑣 ‖, but often negligible; thus, almost zero value (𝛿 ‖−→𝑣 ‖ ≈ 0), which could
accumulate over cosmic distances and fool us that the observed phenomena may be due to dark matter
and/or dark energy? An idea of extension of EGR was proposed by Weyl as soon as the General
Relativity (GR) was proposed by Einstein. Weyl proposed an extension to GR by adding local gauge
(scale) invariance that has the consequence that lengths may not be preserved upon parallel transport.
However, it was quickly argued that such a model will result in a path dependent phenomenon and, thus,
contradicting observations. A remedy was later found to this objection by introducing Weyl Integrable
Geometry (WIG), where the lengths of vectors are conserved only along closed paths (

u
𝛿 ‖−→𝑣 ‖ = 0).

Such formulation of the Weyl’s original idea defeats the Einstein objection! Furthermore, given that
all we observe about the distant universe are waves that reach us, the condition for Weyl Integrable
Geometry is basically saying that the information that arrives to us via different paths is interfering
constructively to build a consistent picture of the source.

One way to build a WIG model is to consider conformal transformation of the metric field 𝑔′𝜇𝜈 =

𝜆2𝑔𝜇𝜈 and to apply it to various observational phenomena. As shown previously [1], the demand for
homogeneous and isotropic space restricts the field 𝜆 to depend only on the cosmic time and not on
the space coordinates. The weak field limit of such a WIG model results in an extra acceleration in
the equation of motion that is proportional to the velocity. This behavior is somewhat similar to the
Jordan?Brans?Dicke scalar-tensor gravitation; however, the conformal factor 𝜆 does not seems to be a
typical scalar field as in the Jordan?Brans?Dicke theory [10, 11]. The Scale Invariant Vacuum (SIV)
idea provides a way of finding out the specific functional form of 𝜆(𝑡) as applicable to LFRW cosmology
and its WIG extension [1, 13].

We also find it important to point out that extra acceleration in the equations of motion, which
is proportional to the velocity of a particle, could also be justified by requiring re-parametrization
symmetry. Not implementing re-parametrization invariance in a model could lead to un-proper time
parametrization [8] that seems to induce “fictitious forces” in the equations of motion similar to the
forces derived in the weak field SIV regime. It is a puzzling observation that may help us understand
nature better.

B. Mathematical Framework

The framework for the Scale Invariant Vacuum paradigm is based on the Weyl Integrable Geometry
and Dirac co-calculus as mathematical tools for description of nature [9, 14].

The original Weyl Geometry uses a metric tensor field 𝑔𝜇𝜈 , along with a “connexion” vector field
𝜅𝜇, and a scalar field 𝜆. In the Weyl Integrable Geometry, the “connexion” vector field 𝜅𝜇 is not an
independent, but it is derivable from the scalar field 𝜆 via the defining expression: 𝜅𝜇 = −𝜕𝜇 ln(𝜆). This
form of the “connexion” vector field 𝜅𝜇 guarantees its irrelevance, in the covariant derivatives, upon
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integration over closed paths. That is,
u
𝜅𝜇𝑑𝑥

𝜇 = 0. In other words, 𝜅𝜇𝑑𝑥𝜇 represents a closed 1-form;
furthermore, it is an exact form since its definition implies 𝜅𝜇𝑑𝑥𝜇 = −𝑑 ln𝜆. Thus, the scalar function
𝜆 plays a key role in the Weyl Integrable Geometry. Its physical meaning is related to the freedom of a
local scale gauge, which provides a description upon scale change via local re-scaling 𝑙′ → 𝜆(𝑥)𝑙.

The covariant derivatives use the rules of the Dirac co-calculus [14] where tensors also have co-tensor
powers based on the way they transform upon change of scale. For the metric tensor 𝑔𝜇𝜈 this power is
𝑛 = 2. This follows from the way the length of a line segment 𝑑𝑠 with coordinates 𝑑𝑥𝜇 is defined via
the usual expression 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 . That is, one has: 𝑙′ → 𝜆(𝑥)𝑙 ⇔ 𝑑𝑠′ = 𝜆𝑑𝑠 ⇒ 𝑔′𝜇𝜈 = 𝜆2𝑔𝜇𝜈 . This
leads to 𝑔𝜇𝜈 having the co-tensor power of 𝑛 = −2 in order to have the Kronecker 𝛿 as scale invariant
object (𝑔𝜇𝜈𝑔𝜈𝜌 = 𝛿𝜌𝜇). That is, a co-tensor is of power 𝑛 when, upon local scale change, it satisfies:
𝑙′ → 𝜆(𝑥)𝑙 : 𝑌 ′

𝜇𝜈 → 𝜆𝑛𝑌𝜇𝜈 , That is a scale-invariant EGR quantity denoted by primed quantity can be
obtained from a WIG co-tensor of power 𝑛 upon its multiplication by the 𝜆𝑛 factor.

In the Dirac co-calculus, this results in the appearance of the “connexion” vector field 𝜅𝜇 in the
covariant derivatives of scalars, vectors, and tensors (see Table 1); where the usual Christoffel symbol
Γ𝜈𝜇𝛼 is replaced by

*Γ𝜈𝜇𝛼 = Γ𝜈𝜇𝛼 + 𝑔𝜇𝛼𝑘
𝜈 − 𝑔𝜈𝜇𝜅𝛼 − 𝑔𝜈𝛼𝜅𝜇. (B.1)

The corresponding equation of the geodesics within the WIG was first introduced in 1973 by [14] and
in the weak-field limit of Weyl gauge change redivided in 1979 by [15] (𝑢𝜇 = 𝑑𝑥𝜇/𝑑𝑠 is the four-velocity):

𝑢𝜇*𝜈 = 0 ⇒ 𝑑𝑢𝜇

𝑑𝑠
+* 𝛤𝜇𝜈𝜌𝑢

𝜈𝑢𝜌 + 𝜅𝜈𝑢
𝜈𝑢𝜇 = 0 . (B.2)

This geodesic equation has also been derived from reparametrization-invariant action in 1978 by [16]
given by 𝛿𝒜 =

∫︀ 𝑃1

𝑃0
𝛿 (𝑑̃︀𝑠) = ∫︀ 𝛿 (𝛽𝑑𝑠) = ∫︀ 𝛿 (︀𝛽 𝑑𝑠𝑑𝜏 )︀ 𝑑𝜏 = 0.

Таблица 1. Derivatives for co-tensors of power 𝑛 defined via 𝑌 ′
𝜇𝜈 → 𝜆𝑛𝑌𝜇𝜈 when 𝑙′ → 𝜆(𝑥)𝑙.

Co-Tensor Type Mathematical Expression
co-scalar 𝑆*𝜇 = 𝜕𝜇𝑆 − 𝑛𝜅𝜇𝑆,
co-vector 𝐴𝜈*𝜇 = 𝜕𝜇𝐴𝜈 − *Γ𝛼𝜈𝜇𝐴𝛼 − 𝑛𝜅𝜈𝐴𝜇,
co-covector 𝐴𝜈*𝜇 = 𝜕𝜇𝐴

𝜈 + *Γ𝜈𝜇𝛼𝐴
𝛼 − 𝑛𝑘𝜈𝐴𝜇.

B.1. Consequences of Going beyond the EGR

Before we go into a specific examples, such as FLRW cosmology and weak-field limit, we would
like to make few remarks. By using (B.1) in (B.2), one can see that the usual EGR equations of motion
receive extra terms proportional to the four-velocity and its normalization:

𝑑𝑢𝜇

𝑑𝑠
+ 𝛤𝜇𝜈𝜌𝑢

𝜈𝑢𝜌 = (𝜅 · 𝑢)𝑢𝜇 − (𝑢 · 𝑢)𝜅𝜇 (B.3)

In the weak-field approximation within the SIV, one assumes an isotropic and homogeneous space
for the derivation of the terms beyond the usual Newtonian equations [16]. As seen from (B.3), the result
is a velocity dependent extra term 𝜅0𝑣⃗ with 𝜅0 = −𝜆̇/𝜆 and 𝜅⃗ = 0 due to the assumption of isotropic
and homogeneous space. At this point, it is important to stress that the usual normalization for the
four-velocity, 𝑢 · 𝑢 = ±1 with sign related to the signature of the metric tensor 𝑔𝜇𝜈 , is a special choice
of 𝑠-parametrization—the proper-time parametrization 𝜏 .

Recently, similar 𝜅0𝑣⃗ term was derived as a consequence of non-reparametrization invariant
mathematical modeling but without the need for a weak-field approximation. The effect is due to un-
proper time parametrization manifested as velocity dependent fictitious acceleration [8]. In this respect,
the term 𝜅0𝑣⃗ is necessary for the restoration of the broken symmetry - the re-parametrization invariance
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of a process under study. To demonstrate this, one can apply an arbitrary time re-parametrization
𝜆 = 𝑑𝑡/𝑑𝜏 ; then, the first term on the LHS of (B.3) becomes:

𝜆
𝑑

𝑑𝑡

(︂
𝜆
𝑑𝑟⃗

𝑑𝑡

)︂
= 𝜆2

𝑑2𝑟⃗

𝑑𝑡2
+ 𝜆𝜆̇

𝑑𝑟⃗

𝑑𝑡
. (B.4)

By moving the term linear in the velocity to the RHS, dividing by 𝜆2, and by using 𝜅(𝑡) = −𝜆̇/𝜆,
one obtains a 𝜅0𝑣⃗-like term on the RHS. If we were to do such manipulation in the absence of 𝜅0𝑣⃗ on
the RHS of (B.3), then the term will be generated, while if 𝜅̃ was present then it will be transformed
𝜅̃→ 𝜅+ 𝜅̃.

Furthermore, unlike in SIV, where one can justify 𝜆(𝑡) = 𝑡0/𝑡 [13], for re-parametrization symmetry
the time dependence of 𝜆(𝑡) could be arbitrary. Finally, as discussed in [8], the extra term 𝜅0𝑣⃗ is not
expected to be present when the time parametrization of the process is the proper time of the system.
Thus, a term of the form 𝜅𝑣⃗ can be viewed as restoration of the re-parametrization symmetry and an
indication of un-proper time parametrization of a process under consideration.

B.2. Scale Invariant Cosmology

The scale invariant cosmology equations were first introduced in 1973 by [14] and then re-derived
in 1977 by [17]. The equations are based on the corresponding expressions of the Ricci tensor and the
relevant extension of the Einstein equations. The conformal transformation (𝑔′𝜇𝜈 = 𝜆2𝑔𝜇𝜈) of the metric
tensor 𝑔𝜇𝜈 in the more general Weyl’s framework into Einstein’s framework, where the metric tensor is
𝑔′𝜇𝜈 , induces a simple relation between the Ricci tensor and scalar in the Weyl’s Integrable Geometry
and the Einstein GR framework (using prime to denote Einstein GR framework objects):

𝑅𝜇𝜈 = 𝑅′
𝜇𝜈 − 𝜅𝜇;𝜈 − 𝜅𝜈;𝜇 − 2𝜅𝜇𝜅𝜈 + 2𝑔𝜇𝜈𝜅

𝛼𝜅𝛼 − 𝑔𝜇𝜈𝜅
𝛼
;𝛼 and 𝑅 = 𝑅′ + 6𝜅𝛼𝜅𝛼 − 6𝜅𝛼;𝛼 .

By considering the Einstein equation 𝑅𝜇𝜈− 1
2 𝑔𝜇𝜈𝑅 = −8𝜋𝐺𝑇𝜇𝜈−Λ 𝑔𝜇𝜈 along with the above expressions,

one gets:

𝑅′
𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅

′ − 𝜅𝜇;𝜈 − 𝜅𝜈;𝜇 − 2𝜅𝜇𝜅𝜈 + 2𝑔𝜇𝜈𝜅
𝛼
;𝛼 − 𝑔𝜇𝜈𝜅

𝛼𝜅𝛼 = −8𝜋𝐺𝑇𝜇𝜈 − Λ 𝑔𝜇𝜈 . (B.5)

The relationship Λ = 𝜆2ΛE of Λ in WIG to the Einstein cosmological constant ΛE in the EGR was
present in the original form of the equations to provide explicit scale invariance. This relationship makes
explicit the appearance of ΛE as invariant scalar (in-scalar), as then one has Λ 𝑔𝜇𝜈 = 𝜆2ΛE 𝑔𝜇𝜈 = ΛE 𝑔

′
𝜇𝜈 .

The above equation (B.5) ia a generalization of the original Einstein GR equation. Thus, they have
an even larger class of local gauge symmetries that need to be fixed by a gauge choice. In Dirac’s work,
the gauge choice was based on the large numbers hypothesis. Here, we will discuss a different gauge
choice - the SIV gauge.

The corresponding scale-invariant FLRW based cosmology equations within the WIG framework
were first introduced in 1977 by [17]:

8𝜋𝐺𝜚

3
=

𝑘

𝑎2
+
𝑎̇2

𝑎2
+2

𝜆̇ 𝑎̇

𝜆 𝑎
+
𝜆̇2

𝜆2
−ΛE𝜆

2

3
, and −8𝜋𝐺𝑝 =

𝑘

𝑎2
+2

𝑎̈

𝑎
+2

𝜆̈

𝜆
+
𝑎̇2

𝑎2
+4

𝑎̇ 𝜆̇

𝑎 𝜆
− 𝜆2

𝜆2
−ΛE 𝜆

2 . (B.6)

These equations clearly reproduce the standard FLRW equations in the limit 𝜆 = 𝑐𝑜𝑛𝑠𝑡 = 1. The
scaling of Λ was recently used to revisit the Cosmological Constant Problem within quantum cosmology
[18]. The conclusion of [18] is that our universe is unusually large, given that the expected mean size of all
universes, where Einstein GR holds, is expected to be of a Plank scale. In the study, 𝜆 = 𝑐𝑜𝑛𝑠𝑡 was a key
assumption as the universes were expected to obey the Einstein GR equations. What the expected mean
size of all universes would be if the condition 𝜆 = 𝑐𝑜𝑛𝑠𝑡 is relaxed, as for a WIG-universes ensemble,
remains an open question.
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B.3. The Scale Invariant Vacuum Gauge (𝑇 = 0 and 𝑅′ = 0)

The idea of the Scale Invariant Vacuum was introduced first in 2017 by [13]. It is based on the
fact that, for Ricci flat (𝑅′

𝜇𝜈 = 0) Einstein GR vacuum (𝑇𝜇𝜈 = 0), one obtains from (B.5) the following
equation for the vacuum:

𝜅𝜇;𝜈 + 𝜅𝜈;𝜇 + 2𝜅𝜇𝜅𝜈 − 2𝑔𝜇𝜈𝜅
𝛼
;𝛼 + 𝑔𝜇𝜈𝜅

𝛼𝜅𝛼 = Λ 𝑔𝜇𝜈 . (B.7)

For homogeneous and isotropic WIG-space 𝜕𝑖𝜆 = 0; therefore, only 𝜅0 = −𝜆̇/𝜆 and its time
derivative 𝜅̇0 = −𝜅20 can be non-zero. As a corollary of (B.7), one can derive the following set of
equations [13]:

3
𝜆̇2

𝜆2
= Λ , and 2

𝜆̈

𝜆
− 𝜆̇2

𝜆2
= Λ , or

𝜆̈

𝜆
= 2

𝜆̇2

𝜆2
, and

𝜆̈

𝜆
− 𝜆̇2

𝜆2
=

Λ

3
. (B.8)

One could derive these equations by using the time and space components of the equations (B.7)
or by looking at the relevant trace invariant along with the relationship 𝜅̇0 = −𝜅20. Any pair of these
equations is sufficient to prove the other pair of equations.

Theorem 1. Using any one pair of two SIV Equations (B.8) along with Λ = 𝜆2Λ𝐸 one has:

Λ𝐸 = 3
𝜆2

𝜆4
, with

𝑑Λ𝐸
𝑑𝑡

= 0. (B.9)

Corollary. The solution of the SIV equations is: 𝜆 = 𝑡0/𝑡, with 𝑡0 =
√︀

3/Λ𝐸 and 𝑐 = 1 for the speed of
light.

Upon the use of the SIV gauge, first in 2017 by [13], one observes that the cosmological constant
disappears from Equations (B.6):

8𝜋𝐺𝜚

3
=

𝑘

𝑎2
+
𝑎̇2

𝑎2
+ 2

𝑎̇𝜆̇

𝑎𝜆
, and − 8𝜋𝐺𝑝 =

𝑘

𝑎2
+ 2

𝑎̈

𝑎
+
𝑎2

𝑎2
+ 4

𝑎̇𝜆̇

𝑎𝜆
. (B.10)

C. Comparisons and Applications

The predictions and outcomes of the SIV paradigm were confronted with observations in a series
of papers by the current authors. Highlighting the main results and outcomes is the subject of current
section.

C.1. Comparing the Scale Factor 𝑎(𝑡) within ΛCDM and SIV

Upon arriving at the SIV cosmology Equations (B.10), along with the gauge fixing (B.9), which
implies 𝜆 = 𝑡0/𝑡 with 𝑡0 indicating the current age of the universe since the Big-Bang (𝑎 = 0 at 𝑡in < 𝑡0),
the implications for cosmology were first discussed by [13] and later reviewed by [19]. The most important
point in comparing ΛCDM and SIV cosmology models is the existence of SIV cosmology with slightly
different parameters but almost the same curve for the standard scale parameter 𝑎(𝑡) when the time
scale is set so that 𝑡0 = 1 now [13, 19]. As seen in Figure 1, the difference between the ΛCDM and SIV
models declines for increasing matter densities. Furthermore, for any ΛCDM curve at some Ω′

𝑚 there
is a matching SIV curve at some Ω𝑚 < Ω′

𝑚. Thus, SIV needs less total matter to produce the same
scale-factor evolution.

C.2. Application to Scale-Invariant Dynamics of Galaxies

The next important application of the scale-invariance at cosmic scales is the derivation of a
universal expression for the Radial Acceleration Relation (RAR) of 𝑔obs and 𝑔bar. That is, the relation
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Рис. 1. Expansion rates 𝑎(𝑡) as a function of time 𝑡 in the flat (𝑘 = 0) ΛCDM and SIV models in the matter
dominated era. The curves are labeled by the values of Ωm.

between the observed gravitational acceleration 𝑔obs = 𝑣2/𝑟 and the baryonic matter acceleration due
to the standard Newtonian gravity 𝑔N by [4]:

𝑔 = 𝑔N +
𝑘2

2
+

1

2

√︀
4𝑔N𝑘2 + 𝑘4 , (C.1)

where 𝑔 = 𝑔obs, 𝑔𝑁 = 𝑔bar. For 𝑔N ≫ 𝑘2 : 𝑔 → 𝑔N but for 𝑔N → 0 ⇒ 𝑔 → 𝑘2 is a constant.

As seen in Figure 2, MOND deviates significantly for the data on the Dwarf Spheroidals. This is
well-known problem in MOND due to the need of two different interpolating functions, one in galaxies
and one at cosmic scales. The SIV expression (C.1) resolves this issue via one universal parameter 𝑘2

related to the gravity at large distances [4]. Even more, one can actually show that MOND is a peculiar
case of the SIV theory [20].
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Рис. 2. Radial Acceleration Relation (RAR) for the galaxies studied by Lelli et al. (2017). Dwarf Spheroidals
as binned data (big green hexagons), along with MOND (red curve), and SIV (blue curve) model predictions.
The orange curve shows the 1:1-line for 𝑔obs and 𝑔bar. Due to to the smallness of 𝑔obs and 𝑔bar the application
of the log function results in negative numbers; thus, the corresponding axes’ values are all negative.

The expression (C.1) follows from the Weak Field Approximation (WFA) of the SIV upon utilization
of the Dirac co-calculus in the derivation of the geodesic equation within the relevant WIG (B.2) (see
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[4] for more details, as well as the original derivation in [15]):

𝑔𝑖𝑖 = −1, 𝑔00 = 1 + 2Φ/𝑐2 ⇒ 𝛤 𝑖00 =
1

2

𝜕𝑔00
𝜕𝑥𝑖

=
1

𝑐2
𝜕Φ

𝜕𝑥𝑖
⇒ 𝑑2−→𝑟

𝑑𝑡2
= −𝐺𝑀

𝑟2

−→𝑟
𝑟

+ 𝜅0(𝑡)
𝑑−→𝑟
𝑑𝑡

. (C.2)

where 𝑖 ∈ 1, 2, 3, while the potential Φ = 𝐺𝑀/𝑟 is scale invariant.
By considering the scale-invariant ratio of the correction term 𝜅0(𝑡) 𝑣⃗ to the usual Newtonian term

in (C.2), one has: 𝑥 = 𝜅0𝑣𝑟
2

𝐺𝑀 = 𝐻0
𝜉
𝑣 𝑟2

𝐺𝑀 = 𝐻0
𝜉

(𝑟 𝑔obs)
1/2

𝑔bar
∼ 𝑔obs−𝑔bar

𝑔bar
. Then, by utilizing an explicit scale

invariance for canceling the proportionality factor:
(︁
𝑔obs−𝑔bar

𝑔bar

)︁
2
÷
(︁
𝑔obs−𝑔bar

𝑔bar

)︁
1
=
(︁
𝑔obs,2
𝑔obs,1

)︁1/2 (︁ 𝑔bar,1
𝑔bar,2

)︁
,

by setting 𝑔 = 𝑔obs,2, 𝑔𝑁 = 𝑔bar,2, and by collecting all the system-1 terms in 𝑘 = 𝑘(1), then one arrives

at (C.1) by solving for 𝑔 in 𝑔
𝑔N

− 1 = 𝑘(1)
𝑔1/2

𝑔N
and keeping the bigger root (the positive sign in ±√

. . .

factor).

C.3. Growth of the Density Fluctuations within the SIV

Another interesting result was the possibility of a fast growth of the density fluctuations within the
SIV [3]. This study accordingly modifies the relevant equations such as the continuity equation, Poisson
equation, and Euler equation within the SIV framework. Here, we outline the main equations and the
relevant results.

By using the notation 𝜅 = 𝜅0 = −𝜆̇/𝜆 = 1/𝑡, the corresponding Continuity, Poisson, and Euler
equations are:

𝜕𝜌

𝜕𝑡
+ ∇⃗ · (𝜌𝑣⃗) = 𝜅

[︁
𝜌+ 𝑟⃗ · ∇⃗𝜌

]︁
, ∇⃗2Φ = △Φ = 4𝜋𝐺𝜚,

𝑑𝑣⃗

𝑑𝑡
=
𝜕𝑣⃗

𝜕𝑡
+
(︁
𝑣⃗ · ∇⃗

)︁
𝑣⃗ = −∇⃗Φ− 1

𝜌
∇⃗𝑝+ 𝜅𝑣⃗ .

For a density perturbation 𝜚(𝑥⃗, 𝑡) = 𝜚𝑏(𝑡)(1 + 𝛿(𝑥⃗, 𝑡)) the above equations result in:

𝛿̇ + ∇⃗ · ˙⃗𝑥 = 𝜅𝑥⃗ · ∇⃗𝛿 = 𝑛𝜅(𝑡)𝛿, ∇⃗2Ψ = 4𝜋𝐺𝑎2𝜚𝑏𝛿, ¨⃗𝑥+ 2𝐻 ˙⃗𝑥+ ( ˙⃗𝑥 · ∇⃗) ˙⃗𝑥 = −∇⃗Ψ

𝑎2
+ 𝜅(𝑡) ˙⃗𝑥.(C.3)
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Рис. 3. The growth of density fluctuations for different values of parameter 𝑛 (the gradient of the density
distribution in the nascent cluster), for an initial value 𝛿 = 10−5 at 𝑧 = 1376 and Ωm = 0.10. The initial slopes
are those of the EdS models. The two light broken curves show models with initial (𝑧 + 1) = 3000 and 500,
with same Ωm = 0.10 and 𝑛 = 2. These dashed lines are to be compared to the black continuous line of the
𝑛 = 2 model. All the three lines for 𝑛 = 2 are very similar and nearly parallel. Due to to the smallness of 𝛿 the
application of the log function results in negative numbers; resulting in negative vertical axis.

The final result 𝛿+(2𝐻−(1+𝑛)𝜅)𝛿̇ = 4𝜋𝐺𝜚𝑏𝛿+2𝑛𝜅(𝐻−𝜅)𝛿 recovers the standard equation in the
limit of 𝜅→ 0. The simplifying assumption 𝑥⃗ · ∇⃗𝛿(𝑥) = 𝑛𝛿(𝑥) in (C.3) introduces the parameter 𝑛 that
measures the perturbation type (shape). For example, a spherically symmetric perturbation would have
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𝑛 = 2. As seen in Figure 3, perturbations for various values of 𝑛 are resulting in faster growth of the
density fluctuations within the SIV than in the Einstein–de Sitter model, even at relatively law matter
densities. Furthermore, the overall slope is independent of the choice of recombination epoch 𝑧rec. The
behavior for different Ω𝑚 is also very interesting, and is shown and discussed in detail by [3].

C.4. Big-Bang Nucleosynthesis within the Scale Invariant Vacuum Paradigm

The SIV paradigm has been recently applied to the Big-Bang Nucleosynthesis using the known
analytic expressions for the expansion factor 𝑎 and the plasma temperature 𝑇 as functions of the SIV
time 𝜏 since the Big-Bang when 𝑎(𝜏 = 0) = 0 [5]. The results have been compared to the standard BBNS
as calculated via the PRIMAT code [21]. Potential SIV-guided deviations from the local statistical
equilibrium were also explored in ref. [5]. Overall, it was found that smaller than usual baryon and
non-zero dark matter content, by a factor of three to five times reduction, result in compatible to the
standard light elements abundances (Table 2).

The SIV analytic expressions for 𝑎(𝑇 ) and 𝜏(𝑇 ) were utilized to study the BBNS within the SIV
paradigm [5, 22]. The functional behavior is very similar to the standard model within PRIMAT except
during the very early universe where electron-positron annihilation and neutrino processes affect the
𝑎(𝑇 ) function (see Table I and Fig. 2 in ref. [5]). The distortion due to these effects encoded in the
function 𝑆(𝑇 ) could be incorporated by considering the SIV paradigm as a background state of the
universe where these processes could take place. It has been demonstrated that incorporation of the
𝑆(𝑇 ) within the SIV paradigm results in a compatible outcome with the standard BBNS see the last
two columns of Table 2; furthermore, if one is to fit the observational data the result is 𝜆 ≈ 1 for the
SIV parameter 𝜆 (see last column of Table 2 with 𝜆 = FRF ≈ 1). However, a pure SIV treatment (the
middle three columns) results in Ω𝑏 ≈ 1% and less total matter, either around Ω𝑚 ≈ 23% when all the
𝜆-scaling connections are utilized (see Table 2 column 6), or around Ω𝑚 ≈ 6% without any 𝜆-scaling
factors (see column 5 of Table 2). The need to have 𝜆 close to 1 is not an indicator of dark matter
content but indicates the goodness of the standard PRIMAT results that allows only for 𝜆 close to 1
as an augmentation, as such this leads to a light but important improvement in D/H as seen when
comparing columns three with eight and nine.

The SIV paradigm suggests specific modifications to the reaction rates, as well as the functional
temperature dependences of these rates, that need to be implemented to have consistence between the
Einstein GR frame and the WIG (SIV) frame. In particular, the non-in-scalar factor 𝑇 𝛽 in the reverse
reactions rates may be affected the most due to the SIV effects. As shown in [5], the specific dependences
studied, within the assumptions made within the SIV model, resulted in three times less baryon matter,
usually around Ω𝑏 ≈ 1.6% and less total matter - around Ω𝑚 ≈ 6%. The lower baryon matter content
leads to also a lower photon to baryon ratio 𝜂10 ≈ 2 within the SIV, which is three tines less that
the standard value of 𝜂10 = 6.09. The overall results indicated insensitivity to the specific 𝜆-scaling
dependence of the mŤ-factor in the reverse reaction expressions within 𝑇 𝛽 terms. Thus, one may have
to explore further the SIV-guided 𝜆-scaling relations as done for the last column in Table 2, however,
this would require the utilization of the numerical methods used by PRIMAT and as such will take
us away from the SIV-analytic expressions explored that provided a simple model for understanding
the BBNS within the SIV paradigm. Furthermore, it will take us further away from the accepted local
statistical equilibrium and may require the application of the reparametrization paradigm that seems
to result in SIV like equations but does not impose a specific form for 𝜆 [8].

C.5. SIV and the Inflation of the Early Universe

The latest published result within the SIV paradigm is the presence of inflation stage at the very
early universe 𝑡 ≈ 0 with a natural exit from inflation in a later time 𝑡exit with value related to the
parameters of the inflationary potential [2]. The main steps towards these results are outlined below.
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Element Obs. PRMT 𝑎𝑆𝐼𝑉 fit fit* 𝑎̄/𝜆 fit* fit
H 0.755 0.753 0.805 0.755 0.849 0.75 0.753 0.755

𝑌𝑃 = 4𝑌He 0.245 0.247 0.195 0.245 0.151 0.25 0.247 0.245
D/H × 105 2.53 2.43 0.743 2.52 2.52 1.49 2.52 2.53

3He/H × 105 1.1 1.04 0.745 1.05 0.825 0.884 1.05 1.04
7Li/H × 1010 1.58 5.56 11.9 5.24 6.97 9.65 5.31 5.42

𝑁eff 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01
𝜂10 6.09 6.14 6.14 1.99 0.77 1.99 5.57 5.56

FRF 1 1 1 1 1.63 1 1 1.02
mŤ 1 1 1 1 0.78 1 1 0.99
Q/Ť 1 1 1 1 1.28 1 1 1.01

Ω𝑏 [%] 4.9 4.9 4.9 1.6 0.6 1.6 4.4 4.4
Ω𝑚 [%] 31 31 31 5.9 23 5.9 86 95√︀

𝜒2
𝜖 N/A 6.84 34.9 6.11 14.8 21.9 6.2 6.4

Таблица 2. The observational uncertainties are 1.6% for 𝑌𝑃 , 1.2% for D/H, 18% for T/H, and 19% for Li/H.
FRF is the forwards rescale factor for all reactions, while mŤ and Q/Ť are the corresponding rescale factors in
the revers reaction formula based on the local thermodynamical equilibrium. The SIV 𝜆-dependences are used
when these factors are different from 1; that is, in the sixth and ninth columns where FRF=𝜆, mŤ= 𝜆−1/2, and
Q/Ť= 𝜆+1/2. The columns denoted by fit contain the results for perfect fit on Ω𝑏 and Ω𝑚 to 4He and D/H,
while fit* is the best possible fit on Ω𝑏 and Ω𝑚 to the 4He and D/H observations for the model considered as
indicated in the columns four and seven. The last three columns are usual PRIMAT runs with modified 𝑎(𝑇 )

such that 𝑎̄/𝜆 = 𝑎𝑆𝐼𝑉 /𝑆1/3, where 𝑎̄ is the PRIMAT’s 𝑎(𝑇 ) for the decoupled neutrinos case. Column seven is
actually 𝑎𝑆𝐼𝑉 /𝑆1/3, but it is denoted by 𝑎̄/𝜆 to remind us about the relationship 𝑎′ = 𝑎𝜆; the run is based on
Ω𝑏 and Ω𝑚 from column five. The smaller values of 𝜂10 are due to smaller ℎ2Ω𝑏, as seen by noticing that 𝜂10/Ω𝑏

is always ≈ 1.25.

If we go back to the first of the general scale-invariant cosmology Equations (B.6), we can identify
a vacuum energy density expression that relates the Einstein cosmological constant with the energy
density as expressed in terms of 𝜅 = −𝜆̇/𝜆 by using the SIV result (B.9). The corresponding vacuum
energy density 𝜌, with 𝐶 = 3/(4𝜋𝐺), is then:

𝜌 =
Λ

8𝜋𝐺
= 𝜆2𝜌′ = 𝜆2

Λ𝐸
8𝜋𝐺

=
3

8𝜋𝐺

𝜆̇2

𝜆2
=
𝐶

2
𝜓̇2 .

This provides a natural connection to inflation within the SIV via 𝜓̇ = −𝜆̇/𝜆 or 𝜓 ∝ ln(𝑡). The
equations for the energy density, pressure, and Weinberg’s condition for inflation within the standard
inflation [23, 24, 25, 26] are:

𝜌

𝑝

}︃
=

1

2
𝜙̇2 ± 𝑉 (𝜙), | 𝐻̇infl |≪ 𝐻2

infl . (C.4)

If we make the identification between the standard inflation above with the fields within the SIV (using
𝐶 = 3/(4𝜋𝐺)):

𝜓̇ = −𝜆̇/𝜆, 𝜙↔
√
𝐶 𝜓, 𝑉 ↔ 𝐶𝑈(𝜓), 𝑈(𝜓) = 𝑔 𝑒𝜇𝜓 . (C.5)

Here, 𝑈(𝜓) is the inflation potential with strength 𝑔 and field “coupling” 𝜇. One can evaluate the
Weinberg’s condition for inflation (C.4) within the SIV framework [2], and the result is:

| 𝐻̇infl |
𝐻2

infl

=
3 (𝜇+ 1)

𝑔 (𝜇+ 2)
𝑡−𝜇−2 ≪ 1 𝑓𝑜𝑟 𝜇 < −2, 𝑎𝑛𝑑 𝑡≪ 𝑡0 = 1. (C.6)

From this expression, one can see that there is a graceful exit from inflation at the later time:

𝑡exit ≈ 𝑛

√︂
𝑛 𝑔

3(𝑛+ 1)
with 𝑛 = −𝜇− 2 > 0, (C.7)
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when the Weinberg’s condition for inflation (C.4) is not satisfied anymore. For more details, we refer
the reader to the derivation of the equation (C.6) presented in our previous papers [1, 2].

D. Conclusions and Outlook

From the highlighted results in the previous section on various comparisons and potential
applications, we see that the SIV cosmology is a viable alternative to ΛCDM. In particular, within
the SIV gauge (B.10) the cosmological constant disappears. There are diminishing differences in the
values of the scale factor 𝑎(𝑡) within ΛCDM and SIV at higher densities as emphasized in the discussion
of (Figire 1) [13, 19]. Furthermore, the SIV also shows consistency for 𝐻0 and the age of the universe,
and the m-z diagram is well satisfied—see [19] for details.

Furthermore, the SIV provides the correct RAR for dwarf spheroidals (Figure 2) while MOND is
failing, and dark matter cannot account for the phenomenon [4]. Therefore, it seems that within the
SIV, dark matter is not needed to seed the growth of structure in the universe, as there is a fast enough
growth of the density fluctuations as seen in (Figure 3) and discussed in more detail by [3].

As to the BBNS within the SIV, our main conclusion is that the SIV paradigm provides a concurrent
model of the BBNS that is compatible to the description of 4He, D/H, T/H, and 7Li/H achieved in the
standard BBNS. It suffers of the same 7Li problem as in the standard BBNS but also suggests a possible
SIV-guided departure from local statistical equilibrium which could be a fruitful direction to be explored
towards the resolution of the 7Li problem.

In our study on the inflation within the SIV cosmology [2], we have identified a connection of the
scale factor 𝜆, and its rate of change, with the inflation field 𝜓 → 𝜙 , 𝜓̇ = −𝜆̇/𝜆 (C.5). As seen from
(C.6), inflation of the very-very early universe (𝑡 ≈ 0) is natural, and SIV predicts a graceful exit from
inflation (see (C.7))!

Some of the obvious future research directions are related to the primordial nucleosynthesis, where
preliminary results show a satisfactory comparison between SIV and observations [5, 22]. The recent
success of the R-MOND in the description of the CMB [27], after the initial hope and concerns [28], is
very stimulating and demands testing SIV cosmology against the MOND and ΛCDM successes in the
description of the CMB, the Baryonic Acoustic Oscillations, etc.

Another important direction is the need to understand the physical meaning and interpretation
of the conformal factor 𝜆. As we pointed out in the Motivation Section, a general conformal factor
𝜆(𝑥) seems to be linked to Jordan?Brans?Dicke scalar-tensor theory that leads to a varying Newton’s
constant G, which has not been found in nature. Furthermore, a spacial dependence of 𝜆(𝑥) opens the
door to local field excitations that should manifest as some type of fundamental scalar particles. The
Higgs boson is such a particle, but a connection to Jordan?Brans?Dicke theory seems a far fetched idea.
On the other hand, the assumption of isotropy and homogeneity of space forces 𝜆(𝑡) to depend only on
time, which is not in any sense similar to the usual fundamental fields we are familiar with.

In this respect, other less obvious research directions are related to the exploration of SIV within
the solar system due to the high-accuracy data available, or exploring further and in more detail the
possible connection of SIV with the re-parametrization invariance. For example, it is already known by
[8] that un-proper time parametrization can lead to a SIV-like equation of motion (B.3) and the relevant
weak-field version (C.2).
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