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CIIMHBI CBEPXMACCUBHbBIX YEPHBIX J1BIP
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DopMbl M300pAKEHUH YEPHBIX JbIp, Hab/IIoJaeMble YAAJEHHBIM TEJECKONOM (HabJIIoNATesIeM), 3aBUCAT OT
pacIpesieleHIs] M3JIyYalolero BeleCTBa BOKPYT YePHBIX JbID. BO3MOXKHBI Ba NPUHIMINAIBGHO Pa3IUIHBIX
ciyuast: (1) sipkuii crannoHapHbiii GOH 10331 YepHOR JbIpbl (u3iaydeHne dhoroHOB BHe doToHHBIX cdep). B
9TOM CJIydae HabJII0aeTcsl KJIaCCCUIecKasi TeHb IePHOM JbIPBI, KOTOpasl SIBJISIETCS CEYIEHNEM 3axBaTa (pOTOHOB B
IPABUTAIMOHHOM MOJI€ YEPHOH ABIPbI. (2) ApKMil AKKPEIMOHHBIH MOTOK BOJM3M TOPU30HTA COOBITHI YE€pHOM
abIpbl (n3sydenne GoroHOB BHyTpH (GOTOHHBIX cdep). B sTom ciaydae Habmomaercs TeMHas TEHb YepHOIL
JIBIPBI, KOTOPasl SBJISIETCS I'PABUTAIMOHHO-JIMH3NPOBAHHBIM H300parkeHHeM YacTH IJIo0yca CaMOro rOpHU30HTa
COOBITHI YepHOl abIpbl. Pasmep u dopma 3TOro TeMHOro m300pakeHusi (TEMHOIO HSITHA) 3aBHUCAT OT MAaCChI
u cmmHa dYepHOU JbIpbl. CyIecTBOBaHWE TOpsiUeil AaKKPerupyeMoil MaTepuu WOJU3U TOPU30HTa COOBITHI
Ipe/ICKa3biBaeTCss MexaHu3MoM bisuadopaa-3uaiieka. OCHOBHONW OCOOEHHOCTBIO ITOTO MEXAHU3MA SIBJISIETCS
CYIIIECTBOBAHUE JIEKTPUIECKOIO TOKA, T€HEPUPYEMOro B AKKPEIMOHHO IJ1a3Me U IMPOTEKAIOIIErO Yepe3 YePHYIO0
ABIpY. DTOT TOK OYEHb CHJIbHO HArPEBaeT aKKPEIUPYeMOEe BeleCTBO BOJIM3M TOPU30HTA COOBITHII YepHOI
JIBIPBI, 0DecrieunBasi JTOMUHUPYIOMINIA BKJIAJ B CBETUMOCTb YEPHON JbIPbI. PasMepbl u (popMa TEMHBIX MISITEH
Ha M300pakeHUsX, IOJIyIeHHbIX Kosaboparueil Teseckon I'opuzonta CobbITHIL, CBUAETEIBCTBYIOT O OBICTPOM
BPAIIEHUN CBEPXMACCUBHBIX IepHBIX AbIp SgrA* (crmu 0.65<a<0.9) m M87* (cimm a>0.75).

Karoueswie caosa: ‘{eprIe AbIPBI, O6HL&${ Teopusd OTHOCUTEJIbHOCTHU, I'PaBUTAIIMOHHOE JIMH3UPOBaHUE.
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Shapes of black hole images, viewed by a distant observer, depend on the distribution of emitting matter around
black holes. There are two distinctive astrophysical cases: (1) Luminous stationary background behind the black
hole (emission of photons outside the photon spheres). In this case the dark classical black hole shadow is viewed,
which is a capture photon cross-section in the black hole gravitational field. (2) Luminous accretion inflow near
the black hole event horizon (emission of photons inside the photon spheres). In this case the dark event horizon
shadow is viewed, which is a lensed image of the event horizon globe. The existence of hot accreting matter in
the vicinity of black hole event horizons is predicted by the Blandford-Znajek mechanism. The basic feature of
this mechanism is the existing of electric current embracing the black hole and heating the accretion disk very
near the black hole event horizon providing the main contribution to the black hole luminosity. We used the
numerically calculated sizes of dark spots in the EHT images of supermassive black holes SgrA* and M8&7* for
inferring their spins, 0.65 < a < 0.9 and a > 0.75, respectively.
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Introduction

The blistering technological progress in astronomical and astrophysical experiments provides the
successful opportunity for formulation of the “Standard Astronomical and Astrophysical Model” quite
like the “The Standard Model of Particle Physics”. The supermassive black holes with masses M >
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106M¢, (where My is the Sun mass), reside either in the centers of galaxies or at the intergalactic space,
are the indispensable components of this “Standard Model”. Nowadays we have the clear qualitative
understanding of the astrophysical properties of supermassive black holes owing to the huge amount of
the observational data and theoretical predictions in the framework of the General Relativity [1, 2, 3,
3,4,5,6,7, 8,9, 10, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34,
35, 36, 37, 38, 39, 407 |.

The existence of hot accreting matter in the vicinity of black hole event horizons is predicted by the
Blandford-Znajek mechanism [38], which is confirmed by recent General Relativistic MHD numerical
simulations at the most powerful supercomputers. The basic feature of the Blandford-Znajek mechanism
is the existing of electric current embracing the black hole and heating the accretion disk very near the
black hole event horizon providing the main contribution to the black hole luminosity. This luminosity
exceeds in many orders the corresponding luminosity from the stationary background behind the black
hole. A dark spot at the black hole image in the Blandford-Znajek mechanism is a lensed image of the
event horizon globe. This luminosity exceeds in many orders the corresponding luminosity from the
stationary background behind the black hole.

Puc. 1. The examples of 3D numerically calculated trajectories of massive test particles, infalling into the
fast rotating black hole with spin a = 1. Particles are winding on the event horizon in the direction of the black
rotation by approaching to the black hole. The dark grey sphere is the globe of the black hole event horizon.
Arrow shows the direction of the black hole spin (for details see [41, 42, 43, 44, 45, 46, 47, 48, 49]).

The theoretical framework for understanding the black hole physics is the classical Einstein theory
of gravity (the General Relativity) providing also the quasi-classical description of the amazing Hawking
black hole evaporation. The major discoveries of last decade, related with the black holes are the
direct detection of gravitational waves by the laser interferometers [1] and direct observation of the
supermassive black hole images by the Event Horizon collaboration [2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14].
There are the plentiful publications describing the astrophysical and physical properties of black holes,
including the supermassive ones. See, e.g., the subjectively chosen list of textbooks, monographs and
review articles [3, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40].

In this paper we describe mainly the theoretical physical concepts and observational astrophysical
data related with the rotation of supermassive black holes, which is crucially important for different
physical phenomena: a huge energy emission from the accreting matter, a generation of giant relativistic
jets or production of High Energy Cosmic Rays (HECRs).

The numerous observational astrophysical data indicating in favour of the fast rotation of
supermassive black holes in the Active Galactic Nuclei (AGNs) were obtained initially by the
interferometric radio-telescopes. It was the discovery of the extremely long relativistic jets from the
Active Galactic Nuclei [50, 51, 52, 53, 54]. The relativistic jets from the Active Galactic Nuclei are the
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Puc. 2. A reconstruction of the lensed event horizon globus of SgrA* with distant observer a little bit above
the black hole equatorial plane. The closed curves are meridians and parallels on the lensed event horizon globe.
The dashed curve is the null meridian. The grey region is the position of the classical black hole shadow projected
at the celestial sphere. Arrow shows the direction of the black hole spin. The dashed ring is the size of the event
horizon in the imaginary Euclidean space without gravity. For more details see [41, 42, 43, 44, 45, 46, 47, 48, 49].

inevitable sources of the observable High Energy Cosmic Rays, including photons, protons, neutrinos
and, possibly, the hypothesized dark matter particles [55, 56, 57, 58, 59, 60].

A dark spot at the black hole image in the Blandford-Znajek mechanism is a lensed image of
the event horizon globe. We calculate numerically the form of dark spots at the black hole images

by using Carter equations of motion [17] of test articles in the Kerr metric [10]. For more details see
41, 42, 43, 44, 45, 46, 47, 48, 49].

Puc. 3. Superposition of the observable image of SgrA* with the modelled dark spot at the value of spin a = 0
(left) and a = 0.65 (right). The closed curve is the position of the outer boundary of the classical black hole
shadow at the celestial sphere. The dashed ring is the size of the event horizon in the imaginary Euclidean space
without gravity.
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Puc. 4. The superposition of the Event Horizon Telescope image of supermassive black hole SgrA* with the
corresponding numerically modelled dark spot in the case of a = 1 (left panel) and a = 0.75 (right panel). The
closed curve is the position of the outer boundary of the classical black hole shadow at the celestial sphere. The
dashed ring is the size of the event horizon in the imaginary Euclidean space without gravity. Arrow shows the
direction of the black hole spin.

Puc. 5. Spin orientation of the supermassive black hole M87* athe center of the giant elliptical galaxy M&7
with respect to the distant observer at the Earth. Arrow shows the direction of the black hole spin. The grey disk
is a thin accretion disk in the equatorial plane of this black hole. The biggest closed curve at the right side of
the box is a outer boundary of the projection of classical black hole shadow at the celestial sphere. The smaller
closed curve is the outer boundary of the dark spot, which in this case is a gravitationally lensed equator of the
event horizon globe. The inner part of the dark spot is a gravitationally lensed south hemisphere of the black
hole globe. The dashed ring is the size of the event horizon in the imaginary Euclidean space without gravity.
Arrow shows the direction of the black hole spin.

The very promising physical idea for the explanation of the relativistic jet formation and energy
extraction from the fast-rotating black holes was formulated by the Blandford and Znajek [38]. This
idea nowadays is called the “Blandford-—Znajek mechanism” and confirmed by the numerous General
Relativistic Magneto-Hydro-Dynamical (GRMHD) supercomputer simulations [53, 54, 55, 56].

The crucial point of the “Blandford-—Znajek mechanism” is the electric current, generated in the
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accreting plasma and flowing through the event horizon of fast-rotating black hole. The accreting plasma
under these conditions is continuously heated by the electric current up to the very vicinity of the
black hole event horizon. Correspondingly, the heated plasma ensures the strong radiation emission
from the very vicinity of the black hole event horizon. Additionally, it is generated the emission of the
electromagnetic radiation in the form of the Pointing energy flux P along the black hole rotation axis:
P = (1/4)c[EH] with ¢ — velocity of light and, respectively, the electric and magnetic fields E and H,
generated by the accreting plasma around the black hole.

It must be checked that in the classical Shakura-—Sunyaev alpha-model of the accretion disc [57]
the strong emission of accreting plasma is absent inside the region without the stable motion due to a
fast cooling-down of the accreting plasma.

All observational data and theoretical physical ideas are in accordance with the fast rotation of
supermassive black holes in the “Standard Astronomical and Astrophysical Model”.

1. Recovering the spins of supermassive black holes from the form of their images

The angular momenta of black holes in the General Relativity are described by the classical Kerr
metric [10], depending on two parameters: the dimensional spin a, valued in the range 0 < a < 1 and
the black hole mass M (if 0 < a < 1), or the mass of naked singularity (if a > 1).

The images (or silhouettes) of supermassive black holes M87* at the center of the giant galaxy M87
and SgrA* at the center of our Galaxy, obtained recently by the Event Horizon Telescope collaboration
[2,3,4,5,6,7,8,9,10, 11, 12, 13, 14|, open the unique possibility for the recovering spin values of these
black holes. In accordance with the theoretical predictions for Einstein gravity and for modified gravity
theories both the form and size of the dark spots at the central parts of the observed images strongly
depend on the black hole spin value.

The simplest possible image is the classical black hole shadow, which is the capture photon cross
section in the strong black hole gravitational field. The corresponding equation for the outer boundary
of the classical black hole shadow can be written in the following parametric form (X, q) = (A(r), q(r)),
[18, 27]:

=134+ 3r? —a?(r + 1) o m34a® —r[(r —3))?

A= a(r —1) 4= a?(r —1)2 ' (1.1)

Here A and ¢ are the orbital parameters of photon trajectories, related with the horizontal and vertical
impact parameters a and 3, respectively, for the projection of the Kerr black hole shadow on the celestial
sky, viewed by a distant observer at the black hole equatorial plane [22, 23].

The very intriguing possibility for the described spin measurement is in detection of the photon
ring structures just outside and inside the classical black hole shadow. This detection is a main task of
the projected Millimetron Space Observatory [58, 59].

At last, the additional possibility to measure the supermassive black hole spins is related with the
Lense-Thirring orbital shift of the short-period S-stars orbiting supermassive black hole Sgr A* [60]
and with the observations of wobbling and rotation of relativistic jet near black hole event horizons
[61, 62, 63].

At all Figures of this paper the linear unit is GM/c?* = 1, where G — Newtonian constant, M
— black hole mass, ¢ — velocity of light. Correspondingly, the projection of the classical black hole
shadow on the celestial sphere is drawing by grey color. It is also sometimes shown the closed curve of
the outer boundary of this classical black hole shadow. Arrow shows the direction of the black hole spin.
The dashed ring is the size of the event horizon in the imaginary Euclidean space without gravity.

See in Figure 1 the examples of 3D numerically calculated trajectories of massive test particles,
infalling into the fast rotating black hole with spin a = 1. Particles are winding on the event horizon in
the direction of the black hole rotation by approaching to the black hole. The dark grey sphere is the
globe of the black hole event horizon.
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Figure 2 shows a reconstruction of the lensed event horizon globus of the supermassive black hole
SgrA* with distant observer a little bit above the black hole equatorial plane. The closed curves are
meridians and parallels on the lensed event horizon globe. The dashed curve is the null meridian. The
grey region is the projection of the classical black hole shadow on the celestial sphere. For more details
see [41, 42, 43, 44, 45, 46, 47, 48, 49].

Figures 3 demonstrates the numerically calculated forms of dark spots for the case of supermassive
black hole SgrA* with a distant observer at the black hole equatorial plane and with the spin values
a = 0 and a = 0.65, respectively. The closed curve is the position of the outer boundary of the classical
black hole shadow at the celestial sphere.

Figure 4 shows the the superposition of the Event Horizon Telescope image of supermassive black
hole SgrA* with the corresponding numerically modelled dark spot in the case of a = 1 (left panel) and
a = 0.75 (right panel). Again, the closed curve is the position of the outer boundary of the classical
black hole shadow at the celestial sphere.

superposition of the Event Horizon Telescope image of supermassive black hole SgrA* with the
corresponding dark spot in the case of a =1 (left panel) and a = 0.75 (right panel).

At last, Figure 5 demonstrates the 3D position and orientation of the supermassive black hole
MS87* with respect to the distant observer at the Earth.

Finally, we used the numerically calculated sizes of dark spots in the EventHorizon Telescope images
of SgrA* and M87* for inferring their spins, 0.65 < a < 0.9 and a > 0.75, respectively. For more details
see [49].

Conclusion

The supermassive black holes are the important ingredients of the “Standard Astronomical and
Astrophysical Model”. Nowadays all observational data and theoretical physical ideas are in accordance
with the fast rotation of supermassive black holes.

The gravitationally lensed images (silhouettes) of event horizons are always projected at the
celestial sphere inside the awaited positions of the classical black hole shadows. We used the numerically
calculated sizes of dark spots in the EHT images of supermassive black holes SgrA* and M87* for
inferring their spins, 0.65 < a < 0.9 and a > 0.75, respectively.

It would be possible to reconstruct the dark spot forms at the images of supermassive black holes
SgrA* and M87* with the projected Millimetron Space Observatory, by using the model of geometrically
thin accretion disk highlighting black hole in the vicinity of its event horizon. This reconstruction also
provides the possibility for spin determinations of these supermassive black holes.
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