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Introduction

It is known that a change in the state of motion of charged particles is usually accompanied
by electromagnetic radiation. The most prominent examples are the radiation of accelerated charges
performing rectilinear or circular motions. While the accurate description of the process should be
carried out in the framework of QED (as described in Refs. [1, 2, 3], for instance) there are numerous
cases where the direct application of the QED formalism leads to technical difficulties. In such cases,
one usually resorts to the classical approximation, which is as follows: the motion of charged particles
is considered within the framework of classical (non-relativistic or relativistic) mechanics, then using
Maxwell’s equations, the electromagnetic field generated by this motion is restored (for example, in the
form of Liénard-Wiechert potentials), and finally, the observed electromagnetic radiation generated by
the motion of the charges is calculated as the energy flux determined by the Poynting-Heaviside theorem,
see, e.g., Refs. [4, 5, 6, 7, 8]. However, it must be noted that such a way of calculating electromagnetic
radiation hinges on certain assumptions; in our opinion, the most adequate discussion on this matter is
in Stratton’s book [9].

In this work we summarize our recent results [10, 11] on an alternative approach to calculate
electromagnetic radiation by charged distributions, which does not suffer from the technical difficulties
associated with the application of QED nor the assumptions underlying the classical theory. We call
such a formulation the semiclassical approach. In this approach, currents generating the radiation are
considered classically, whereas the quantum nature of the radiation is taken into account exactly.
This possibility is based on the exact construction of quantum states of the electromagnetic field
interacting with the mentioned classical currents and subsequent consistent application of Q ED methods
for calculating the radiation. Universal formulas describing multiphoton radiation were derived. The
approach does not require knowledge of the exact solutions of relativistic wave equations with external
fields; hence technical difficulties associated with using the Furry picture do not arise. Moreover, the
semiclassical approach can be applied to any trajectory performed by the particle, even including cases
with backreaction, as these can be accounted for by solving the Lorentz equations with radiation-reaction
terms. We note that in the framework of the semiclassical approach, one can directly calculate the
radiation emitted from any trajectory of a charged particle, whereas, in QED, the technics of calculating
photon transition amplitudes (say in the Furry picture) is adopted only for charge motions caused by
external electromagnetic fields. However, a univocal correspondence between every charge trajectory
and a corresponding electromagnetic field does not exist. The efficacy of the semiclassical approach was
demonstrated in calculating synchrotron [10] and undulator [12] radiations. In this work we consider the
Minkowski spacetime, 7,, = diag(+1,—1,—1,—1), parameterized by coordinates z* = (xo = ct,r).
Boldface letters denote three-dimensional vectors, e.g. r = (a:i, 1= 1,2,3), and three-dimensional
differentials denote volume integration measures, e.g., dr = dr'dz?dz>. Gaussian units are used.

1. Semiclassical description of electromagnetic radiation induced by classical currents

The state vector |V (¢)) of the quantized electromagnetic field interacting with a classical current
satisfies the Schrédinger equation and an initial condition |¥), at the initial time instant ¢,

iho W (1) = H (1) [V (1)), [V (ti)) = V), - (1.1)

Here, H (t) is the Hamiltonian of the quantized electromagnetic field A*(z) = (AO (x),A(r))
interacting with a classical four-current j* (z) = (j°(z),j(z)). The potential A (r) splits into a
transverse A | (r) and longitudinal parts A (r):
Ar)= ( r)+ A (),
AL (r)=0,A(r), Aj(x)=(1-6)A(),
divA (r ) 0, curlAj(r)=0,
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in which §°7 = §*7 — A=19°9” denotes the transverse projection operator, (5, A(r))® = 6P AP(r) (see
Refs. [3, 13]). Sticking to the Coulomb gauge — in which the longitudinal degree of freedom of A (r) is
absent and only transverse photons are present — A (r) = A, (r), and the scalar potential A° (z) is a
non operatorial solution of the Poisson equation,

Am 1 [5%(@1)
AA° 0 (z) = A% (z) = - ’ ! 1.2
@) == @) = A ) = ¢ [T, (12)
while the operator of the vector potential A (r) reads:
2
A (r) = Virhe) / [ékAka (r) + &\ £y (r)] dk,
A=1
eikrek)\ i w
fin (1) = X g (ko = —,k), ko = |K| . (1.3)
2k (27)° ¢

Here, é;r()\ and ¢y are creation and annihilation operators of free photons with wave vector k and
polarizations A,

[ty ] =ond k=K, [ don] = [dndhn] =0, (1.4)

while ey are complex polarization vectors that obey the orthogonality and completeness relations:

2

€€y = O, €k =0, Z by, =07 —n'n?, n' = m . (1.5)
A=1
The Hamiltonian H (t) reads:

~ A 1 1 . 0 . A

H(t) = Hy+- | |5jo(x) A (z) —j(2) A(r)| dr,
) 2
H, = ﬁcZ/koéL\ékAdk : (1.6)

A=1

One can demonstrate that a solution of equation (1.1) can be written as

[T (t)) = U (t,tin) |P);

in ?

(1.7)
where the evolution operator U (¢, ti,) has the form [10, 11],
U (t7 tin) = ei(b(t’tin)U"/ (ta tin) D (y) 5

2
D(y) = eXpZ/ [yk)\ (t,tin) é11,\ — Yiex (t,tin) ékA] dk,

Yix (4, tin) _”/ / dt’/ ') £ (2 tin) dr' . (1.8)

and ¢ (¢, i) is a phase.

With this solution we can calculate transition amplitudes and probabilities between states with a
definite number of photons. For example, the transition probability that the vacuum state |[0) = |¥),
evolves to a state with N photons

|{N} \/7}_[1 kaka ) (19)
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after a time interval At =t — t;, reads [11]:

PN}t t) = |<{N}|w<>>|2
= M H|yka/\a t,tin)| eXpl Z/|yk,\ (t,tin)|2dkl ) (1.10)

From the above probability and the energy of N photons

W ({N}) ﬁcZkOa, ko.a = Kl , (1.11)

the observe that the total electromagnetic energy of N photons radiated by the current, W (N;t, tiy,),
is the sum of energies (1.11) weighted by the probability P ({N};t,t,):

N 2
W(N;ittm) = ][] Z/dkaW({N})P({N};mm)
a=1Ag=1

N-1

The prefactor W (1;¢,ti,) denotes the electromagnetlc energy of one photon radiated by the external
current

2
W (1t tm) = HcP (O;t,tin)Z/ko lyicx (£, )] dk . (1.13)

Finally, summing Eq. (1.12) over all the photons, we obtain the total electromagnetic energy radiated

by the external current:

oo 2
W (tatin) = Z w (N,t, tin) = ﬁCZ/kJO |yk)\ (tytin)|2 dk. (114)
N=1 A=1

With these results, we may define the rate at which energy is emitted from the source by
differentiating Eq. (1.14) with respect to time:

OW (t, tin 2 a
w (t, tin) = # = QﬁCReZ/kO |:yk)\ (t, tin) aykk (t,tin):| dk. (115)

Equations (1.14) and (1.15) can be alternatively expressed in terms of the current density distribution
j(r). To this end, we substitute the function yx» (¢,tn) given by Eq. (1.8) into Egs. (1.14), (1.15) and
simplify the summations over A with the aid the identities (1.5) to finally obtain:

W (t,tin) = 4772/’n>< {nxj(k:;t,tin)Hde,
wittn) = 2(2m)°%Re / e~ ort (5 (ks 1) (ke )
- [nj* (k;t)] [nj(k;t,tin)}}dk. (1.16)
where
j(kst, tin) = W/ ekoct'§ (k) at', §(k;t) = (27:)3/2/61"“'3‘ (') dr’ . (1.17)

The total energy, in particular, coincides with the classical result [6, 7] in the limits ¢;,, — —o0, t = +00,

namely,
- 2
W (00, —00) = Wy :47r2/’n>< [nxj(k)” dk (1.18)
- 1 too
jk) = E/ eFocl j (ks t') dt’ . (1.19)

Here j (k) denotes the ordinary four-dimensional Fourier transform of the current density j (z).
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2. Electromagnetic energies and rates radiated by accelerated charges
2.1. Point charge in a constant and homogeneous magnetic field

Consider a point charge (with algebraic charge ¢ and mass m) moving with velocity v (¢) along
a circular trajectory with radius R in a constant and homogeneous magnetic field B = (0,0, B). The
corresponding current density has the form

@) =q¢5(r—r(t), jl@)=qBt)d(r—r(), B() = ; (2.1)

where the position r (t) and the velocity read [§]

B
r(t) = (RcosQt, RsinQt,0) , v (t) = QR (—sinQt,cosQt,0), Q= ety (2.2)
me
Plugging this current into Eq. (1.8) we find,
—ikoctin t ,
ch c M) B () efadt, ®(t) = koct' —kr () . (2.3)

Yk (ta tin) - - \/m

Setting ¢, = 0 and choosing a reference frame whose origin coincides with the center of the particle’s
circular trajectory, such that the wave vector k is parameterized by the polar 6 and azimuthal ¢ spherical
angles, k = (|kL| cos p, |k |sin ¢, k;”), |ki| = kosin®, k| = kocosf, we obtain:

iqR cos 6

1qicosty,
o L ()

1 (t) = Y (£,0) = —

T+t
X / exp {z <CSOT — k| RsinT)] cosTdr,
iqR
t) = t,0) = ———=Y;
Yxa (t) Yk (£, 0) 2/Ticko k ()
T +Qt
X / exp {z (CSOT—H{LRSiHT)] sinrdr,
- _C]C()
Yelp) = exp i (p—n/2)] (2.4)

To obtain these integrals, we performed a changed of variables Qt' = 7 — 7, 7, = 7/2 — ¢, and used
the following representation of the polarization vectors ex; = (cospcosf,singcosf, —sinf), exs =
(—sing, cos ¢, 0). Next, using the plane-wave expansions of the Bessel functions J, (z) given by Egs.
(9.56) in [8] and performing additional manipulations as described in [10], the total electromagnetic
energy (1.14) radiated by the point charge has the form [10]

2(22 = ) cko — nf)
W (t) Z / dko (cko—nQ> sin? (02t>

n=—oo

X / sin@ [n®J7? (ki| R)cot® 0 + kg R?J)? (k| R)] df. (2.5)
0

Differentiating the energy (2.5) we obtain the rate (1.15) at which energy is emitted by the source:

2(22 = 2sin [(ckog — n€2) t]
wit) = noo/ dko cko—nQ
X / sin@ [n®J7 (k.| R)cot? 0 + kg R?J)? (k| R)] df. (2.6)
0

The above expression is a generalization of the well-known Schott’s formula [14], owing to the explicit
dependence on time. In the semiclassical formulation, the quantum transition interval At =¢ — ¢, = ¢
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determines the interval where radiation is formed; in other words, At is the radiation formation interval.
This feature is absent in the classical theory. However, in the limit where the interval ¢ — oo we obtain
Schott’s classical formula [14]:

qQQQ +oo )

v = Jmw =G
n=—oo

g Q QR\? Q
X / sin 0 [Jﬁ (ncR sin@) cot? 0 + (cR) J? (ncR sin@)] do . (2.7)
0

2.2. Point charge in a constant and homogeneous electric field

Consider the point charge accelerated by a constant and homogeneous electric field, E = (0,0, E).
The current density describing the point charge is given by Eq. (2.1). Its trajectory and velocity with
initial data r =r (0) = (g,g,g), v=v(0)= (v v,V ) read:

T =Y <Lz
et+u/c
r; (t):fj_—i-g—larcsinh <H/> , BL() = u /e =
€ o
\/Q2 + (Et"f‘@H/C)
c 2 et + u /C
| (t):T|+E\/92—|—(€t+U|/C> , 5” (t)z I =
\/92 + (Et +QH/C)
2
E \/m2c? + P c
e=L =Y P, =mu,, gzié- (2.8)
me me 1_ gz
Here,T, =r, —(u, /¢)arcsinh (@H/ QC) and the indexes “ 1", “||” here label components “perpendicular”,
“parallel” to the external field, respectively. Using the above solutions, we substitute ¢’ by 7’
u
=4 Cginny, (2.9)
gc €
and introduce three auxiliary variables z, &, v,
co 1. (k| +k kiu,
z €|J_‘7§ 2n(|k|k| y V c 3 |J_‘7é ) ( )
to rewrite the phase ® (¢') (2.3) as follows
® () =zsinh () — &) —vy' +C, (2.11)
where C is a phase. As a result, the complex function (2.3) admits the representation
—ikgctin ,iC
qce e,
t. tin = Il/ t7tin )
Yiex (L, tin) o o ey ( )
Iy (ta tin) - (gﬁljﬁl) (t, tin) ) QIz(/2) (tv tin)) ) (212)
c

where

n ’ ’
/ ei[zsinh(n 75)71/7] ]dn/ ,
Min
/

IW (8, t,) =

n . . / ’
I[(/Q) (t, tin) _ ez[z smh(n *5)*”77 ] sinh n/dn'7

in

1 =n(t) = arcsinh (Et/g +g|‘/gc) , Nin =1 (tin) - (2.13)
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By performing a supplementary change of variable v’ = i/ — £ we may express the above integrals in
terms of an “incomplete” Macdonald function,

—mv/2

2

e

Ky (23t tinm) = / ew(“,)du’, ¢ (u') = zsinhv' — v’ . (2.14)

Finally, calculating the modulus square of Eq. (2.12) and summing the result over the photon
polarizations with the aid of the identities (1.5), the total electromagnetic energy radiated by the particle
(1.14) takes the form [11]:

W = (2) [ {[(1—) & = 1] o (it

+ 0 IS (it )l } dk, (2.15)
where
Siv (z:t,tin) = K, (23t tin) — i|kk|| G (231, i)
Ki, (zit,tin) = 0.Ky (23t,tim)
and
Ky (z:t,tin) = OeKiy (23, tin)

if —oo<ty <t<4oo,
0 if t=—t; =+ .

{ 77_”//2 ei(z sinh uin_V“in)_ei(z sinh u—vu)
(&
— 2

This compact expression corresponds to a generalization of the classical differential energy due to its
dependence on time; cf. Eq. (16) in Ref. [15]. In the limit ¢ — oo, ti, — —o00, we recover the result
obtained by Nikishov and Ritus in classical theory [15]:

W= lim W) = (ﬁ)Q/eﬂV { Kl - Zj) o - 1] K2 (2) + *K2 (z)} ik .

At—00 ETT

It remains to discuss the energy rate emitted by the accelerated particle. Differentiating Eq. (2.15)
with respect to time we find:

_ (g L [ e v 900 fr (4
w(t i) = (w) Eg/coshn 1 ) 1| Re [e Kl-y(z,t,tm)]

k A
|l|(£' <sinh - Z|k||> 0°Re [iel¢(“)5fu (z;t7tin)} } dk. (2.16)
L

This equation is our main result. It expresses the electromagnetic energy radiated by the particle within
the quantum transition interval At =t —t;,. Similarly to the total energy (2.15), Eq. (2.16) corresponds
to a generalization of the classical energy rate radiated by the particle accelerated by the electric field.
The computation of the rate simplifies considerably if we set t;, — —oo and restrict ourselves to the
case where the particle is subjected to the initial condition v; = 0. In this case, o = 1, v = 0, and the
energy rate (2.16) assumes the form

2(g0)*
w (t)|XL:0 = tanh
. /oo a1 / cos (zsinh u) ImKJ, (z;t) — sin (z sinh u) ReK{) (2;1) iy (2.17)
0

1/kiJrkﬁ

where K| (z;t) = K{j (2;t, —00). In the limit ¢ — +o00, the integral

—mv/2 uwo ,
K (z;t) = Ky (25t, —00) = ¢ 5 / RECOFTS (2.18)

— 00
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becomes the Macdonald function and ImK() (z;+00) = 0, ReK| (2; +00) = K|, (2). Thus, performing a
supplementary change of variables and using the identity K () = —K; (z) we finally obtain

2.2 [e s} 2 E
— lim w ()], o= | Ki(z)2?dz=2La* o=L. (2.19)
C

w =
‘ t—00 v, =0 c Jo m

v, =0

Except by a factor of 1/3, this result coincides with Larmor’s formula for the total energy rate
radiated by a uniformly accelerated charged particle [7, 16]. The absence of this factor was also pointed
out in the framework of the classical theory by Nikishov and Ritus in Ref. [15].

3. Conclusion

In this work we addressed the problem of the electromagnetic radiation produced by charge
distributions in a semiclassical approach, in which the radiation field is quantum while current densities—
sources of radiation—are regarded classically. In this formulation, pertinent electromagnetic quantities,
such as energies and energy rates radiated by currents, are calculated with the aid of transition
probabilities between states with a well-defined number of photons. Assuming the vacuum as the
initial state, we calculated time-dependent one-photon, multi-photon, total electromagnetic energies
and the rate at which the radiation is emitted from the source. We discovered that our formulas for
the total energy and rate are compatible with the corresponding classical results in the limit where
the quantum transition interval tends to infinity. To illustrate the use of the semiclassical approach, we
summarized our recent results on the synchroton radiation [10] and the radiation by a charged particle in
rectilinear accelerated motion [11]. We conclude this work by emphasizing that the semiclassical approach
offers an alternative description of physical systems interacting with background fields. Despite being
an approximation compared to QED, the semiclassical formulation exactly incorporates the quantum
character of the electromagnetic field. For this reason, this theory allows extracting information about
electromagnetic properties stemming from the interaction between radiation and matter beyond the
reach of classical electrodynamics.
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