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Usygaem wmomubunupoBannyo rpasurammio f(R,JR), koropasg MOXkeT ObITb CBEJEHA K KHPAJIbHOM
KOCMOJIOTHYECKON MOZE/u CIEeNUaJbHOIO THUIld. PAacCMOTPEHBI PA3JIMYHBbIE THUIBI KOCMOJIOTHYECKUX PEHIeHHH,
OCHOBAHHBIE HA TOYHBIX QHAJUTUYECKUX PENIEHUSX, TPUOJINKEHUN MEIJIEHHOTO CKAThIBAHUS, METOIE
CYIIepIOTEHIINAIA, BKJIIOYEHUN JIOIOJIHUTEHHBIX MATEePUAJIbHBIX II0JIeH, a TaKXKe PeayKIIMM MHOTOIIOJIEBOM
Momenn K omHomosimeBoi. Takwm 00pa3oMm, B JAHHOUW CTAaTbe IIPEICTABICHBI AKTYaJIbHBIE METOIBl AHAJIM3A
KOCMOJIOTHYECKHMX MOJIeJIeli, OCHOBaHHBbIE Ha 3(M(EKTUBHON MHOIOIIOJIEBOM WHTEPIIPETAINA IIPEIIOKEHHOMN
MOAN(DUIUPOBAHHON I'DABUTALINH.
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We study modified f(R,00R) gravity which can be reduced to the chiral cosmological model of the special
type. Various types of cosmological solutions are considered based on exact analytical solutions, the slow-roll
approximation, the superpotential method, the inclusion of additional material fields and reduction multi-field
model to single-field one as well. Thus, this paper presents topical methods for analyzing cosmological models
based on an effective multi-field interpretation of the proposed modified gravity.
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Introduction

The need of modification of Einstein gravity closely connected with discovery of the acceleration
in the expansion of the Universe. After this discovery it became clear that GR could not explain this
phenomena by natural way without introduction of additional fields (dark energy). Therefore there were
studied modifications of gravity theory such as the Einstein-Gauss-Bonnet theory, scalar-tensor theory
of gravity, f(R) gravity and f(R) gravity with high derivatives.
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The article is devoted to the special kind of modified gravity with higher derivatives of
the second order on scalar curvature R, namely f(R,JR) gravity. General approach for reducing
f(R,(VR)? (VR)? 0R) gravity to GR with additional scalar fields was proposed in the paper [1]. Then
the case of truncated model when f(R, (VR)?) = fi(R)+X(R)R ,R* was studied in the papers [2-4]. In
the present article we made first analysis of application f(R,JR) gravity to Friedmann cosmology [5,6].
Namely, we reduced the model under consideration to the Chiral Cosmological Model (CCM) with
fixed metric of the target space and fixed potential. Such approach give us possibility to find exact and
approximated solutions with specific restrictions on the modified gravity parameters [7].

In Sec. 2 we consider the method for constructing effective chiral cosmological model corresponding
to cosmological model based on f(R,R)-gravity [8]. Sec. 3 presents the equations of cosmological
dynamics for the considered model and proposes a method for constructing their solutions in the slow-
roll approximation. Sec. 4 discusses the method of supplementing the initial cosmological models with
additional material fields, which makes it possible to obtain physically correct exact analytical solutions
of the equations of cosmological dynamics [9]. The possible properties of additional material fields at
the inflationary stage of the evolution of the universe are also discussed. In Section 5, we consider a
method for reducing the original two-field chiral cosmological model to one-field one for constructing
exact cosmological solutions. The following sections consider examples of exact solutions. Finally, we
discuss the proposed methods and obtained results.

1. The chiral cosmological model of f(R,JR) gravity

In the paper [1] there was proposed the method of the reduction of the model f(R,(VR)? 0R)
to the Einstein gravity with few scalar fields. The special case of the model when f(R,(VR)?) =
fi(R)+X(R)R ,R*" was studied in the papers [3,4]. In the present work we study another simplification,
namely when the function f does not depend on (VR)?, i. e. f = f(R,JR). Thus, the action of the
model is:

S = /d“x\/fg[f(R, OR)]. (1.1)

Out task is lead that model to the model of Einstein gravity with scalar fields by using the method
from the paper [1].

To derive appropriate Einstein gravity with scalar fields, following by the method proposed in [1],
we introduce the lagrangian multipliers 5\, Ay with the corresponding additional fields ¢, B. Thus, the
action (1.1) is transformed to

s = [ dtov=5[1(6,B) - o~ ) - halB - OR)]. (1:2)
The variation of the action (1.2) with respect to fields leads to the equations
of X < 0A, B
a—¢—a—¢(¢—R)—A—a—¢(B—DR) = 0, (1.3)
of oA 9A, _
55 g B -5 B-0R) -k = 0. (1.4)

One can see that the lagrangian multipliers are determined dynamically.
Let us transform the multipliers (X, As) to (A, Ag), to get the constraint equations instead of
dynamical equations for them. The transformation [1] is

A=XA+0Ay, Ay =A,. (1.5)

Using the equation (1.5) for A in the action (1.1) and integrating by part (avoiding 4-divergence)
we get the action

S:/d4x\/jg [f(qs,B)—A(¢—R)+[\2(D¢—DR)—]\2(B—DR) . (1.6)
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Opening brackets in (1.6), and changing A, according to (1.5), we get

5= [ d'ey=g11(6.B) ~ Aé - B) - halB - D). (1.7)
For the action (1.7) variation with respect to (A, As) leads to the constraint equations
¢ = R,
B = 06 (1.8)

Obtained constraints can be plugged back into the action (1.7) without changing the nature of the
theory. Thus, the action takes the form

s = [ d'av=517(6.08) - X6 - R). (19)
Taking into account the constraint equations (1.8) we get
of
9 = M (1.10)
of
o5 = A (1.11)

Note that for the action (1.9) A can not be reduced to the derivative g—f;, and in general it is the function

of the coordinates, i.e. the scalar field which can be determined from the dynamical equations.
Let us consider the action (1.7) again. To form the 4-divergence

VH(ALV 1) = (VFA2)V 6 + A0 (1.12)

we subtract and add the term (V#A3)V,¢ in the action (1.7). Then, avoiding the 4-divergence and
using (1.11), we get the action

S = [ d'av=g AR~ (V" fa) V6 + F(6,06) ~ FuB - 2. (1.13)

Let us note that Ay # const. (in the opposite case the relation B = ¢ may not be valid) fgg # 0.
In that case we can introduce new field

p=In (1.14)

and considering (g,., A, ¢, ¢) as the basis system. It is justified since the transformation (g,., A, ¢, B)
t0 (Guws A, &, @) locally reversibly under the condition fgp # 0.
Let us transform the action (1.13) from the Jordan frame to the Einstein frame using the conformal

transformation gfy = Qz(:b)gzl,, 0%(z) = 2\ and redefinition of the scalar field x = \/gln)\ For it
introducing in the action as a canonical field. As the result in E-frame we have

1 1 1 1 1
S = /d4w\/—g [QR — 59" XX — 56‘\/%"9“”%0#(%5” + 16‘2‘/%" (f(¢,9) = ¢B(,¢)) — 46‘\/?%} :
(1.15)
The integral of the action (1.15) can be considered as the three-component chiral cosmological
model with the target space metric with non-zero components

1
hll = 1, h23 = 56_\/%X. (1.16)

And the potential of the interaction

W 6,0) = 7o VI — 2V (£(9,0) - 0B(5, ). (117
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2. Dynamic equations of the model

Let us use the general form of the chiral field equations in the FRW metric represented in [10]

~hop (87 +3HP) —hop,pdP 9P + ShopodPé® —We = . (2.1)

Using our designations for the fields, the metric and the potential we have the following equations
of the chiral fields

. Py W SRRy I (PR IV _

K BH + eV iy — eV (6—2e7VEx [ = om]) =0, (2.2)
. . 2 .. 1 ~V2x
PH3HS —\[3xo+ 5 (1 —e VIX[f4— soB,as]) =0, (2.3)
¢+3Hp — §X¢_§e 3X[fo—B—¢B,]=0. (2.4)
Einstein — Friedman equations are
1 1 o1 1

BH? = 3% + 5e Vg + e VI — 2 VEX (£(6,0) — 0B(6,9)). (2.5)
= —%xz - %e—\/gxq'xp. (2.6)

Note, that the equations above can be easy reduced to the slow roll approximated ones.
2.1. The slow roll solution

For the case of slow roll approximation we get

1 p) p)
SHy — %e—\/gx (qg_ge—\/%x [f—ng]) -0, (2.7)
1 2
3H + 3 (1= Vi1 —wByl) =0, (2.8)
3H¢ — %ei\/gx [f.ie =B =B =0. (2.9)
Einstein — Friedman equations are
3H? = ie—\/%xqs - %‘2\/% (f(¢.0) — ¢B(¢,9)), (2.10)
H=0. (2.11)

From (2.11) we find H = H, = const Then with necessity we get ¢ = ¢. = const, ¢ = p. = const.
From (2.10) we can find the relation

(F(#:0) = B, )) = eV 3x (9. — 12H2eV3Y). (2.12)

3 ELi 1
X:\/gln (e 3 t+24H2>. (2.13)

With this solution (2.12) reduced to

Hop =Bl = (0 ) (o —ram (e 1)) ey

Integrating (2.7) we find

The potential (1.17) for this slow roll solution equals to constant
W = 3H?. (2.15)

Thus we find the essential difference from Friedmann inflation where H = const leads to V =
const, ¢ = const. We find that one of the fields for the model (1.15) is dynamical one.
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3. Additional material field and cosmological solutions

Let us consider the ansatz
f— @B = peV?/3x, (3.1)

In that case the potential W = 0 and the CCM dynamical equations with the additional material
field take the following form

X+3HX+\[(¢<P+ ¢> Vix=q, (3.2)
G+ 3Hp — \/zxga — 0, (3.3)
$+3H¢— \[xas — 0, (3.4)

3H? = py, + 2x +7e VEx g, (3.5)

3H? + 2H = f%xz f 5@*\/%(2@ — Doy (3.6)

pm + 3H (pm + pm) = 0. (3.7)

It pp, =0, p, =0, ¢ =0 and H(t) = 1/3t we have the exact solution:

f(0,0) = ©B(0,¢), (3.8)

x(t) = :I:\/zln(t) +cq, (3.9

i% <h’l(t) — \/gcl>

Where c1, co u c3 — are the integration constants.

©o(t) = caexp + s, (3.10)

Thus, the obtained solution corresponds to the expansion of the universe according to the law
a(t) o< t'/3 and the universe expansion is driven solely by evolution of the geometrical chiral fields ¢
and x.

Let us note that this solution can be determined from the general equations (2.2)-(2.6) with another
ansatz, namely, f — ¢B = ¢ and ¢ = 0. We have also one more solution ¢ = 0, H(t) =0, x = ¢ u
@ = cot + c3 which corresponds to the stationary universe.

Now, let us consider the cosmological models with non-zero additional material field (fields) which
we consider as perfect barotropic fluid.

If ¢ = 0 we have two classes of the exact solutions. The first one corresponds to x = const

pm = 3H?, (3.11)
pm = —3H? — 2H, (3.12)
o(t) = c1 /a‘3dt + ca, (3.13)

where a = a(t) — is the scale factor.
The second class of the solutions for any field x # const can be represented as follow

H(t)=—-2, a(t)=csx'?, X =csa™®, (3.14)

p(t) = caexp (\/gx(t)> + ¢s, (3.15)



Investigation of the Chiral Cosmological Model of f(R,0OR) gravity 59

oy = é <;<) (3.16)
3

( > - (i) (3.17)

Thus, determining the dynamic H(t¢) or a(t) we can generate the exact solutions of the first class.

The exact solutions of the second class generate with the determination of the dynamic H(t) (or a(t))
or evolution of the scalar field x(¢).

3.1. The properties of additional material field for quasi de Sitter expansion

Now, we consider the properties of additional material field for the solutions obtained based on the
state parameter w = P,/ Pm-

For solutions (3.11)—(3.12) one has

_2H (3.18)
w=-1—-— .
3 H?Z’

which corresponds to the case usual canonical scalar field.

For quasi de Sitter accelerated expansion H ~ const one has vacuum-like state of this field w ~ —1.

For solutions (6.7)—(3.17) one has

4H + 6H? + (c3/a)®

R e row (3.19)

Thus, for quasi de Sitter accelerated expansion H =~ const one has w ~ —1 for 6H? > (c3/a)® and
w =~ 1 for 6H? < (c3/a)®. Therefore, the accelerated expansion of the universe can be induced by the
different types of the material fields (from vacuum-like to extremely hard matter) for this modification
of GR.

We also note that the evolution of the state parameter of the material field can be reconstructed
for the chosen dynamics of the universe a = a(t) based on the expression (3.19).

A promising direction of research is the generation of cosmological solutions for system (2.2)—(2.6)
with an additional material field.

4. Construction of the one-field model

Let us follow by procedure introduced in the article [11]. To apply the standard method of
cosmological parameters calculation (power spectrum, spectral indexes, tensor-to-scalar ratio) we reduce
three-field model to single field inflationary model assuming linear dependence between fields:

o(t) = kox(t), @(t) =kyx, k¢ = const, k, = const. (4.1)

The action (1.15) after simple algebra reduced to the following

1 1 1 1
S = /d4w\/—g [23 = 59" XX (1 + e*‘/%"kqﬁkg;) + 16’2‘/%‘ (f(x) — kexB(x)) — 46‘/2"1%»(] :
(4.2)
Let us note that transition to new canonical field

U= / (1 + 67\/2)() i dx

does not perspective because of complicated dependence ¥ on y:

W(mln(l—k?x-i—?\/W)) —el2-2ya(1+a)),

1
U =—
T

2
where x = e\/;X.
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4.1. The one-field model equations

Starting from the action (1.15) one can derive by standard way gravitational and scalar field
equations. Using the FRW metric, one can write down the Einstein-Friedmann equations for the one-
field model: 1

3H? = 3 (1 + e*@X) koko X2 + W (%), (4.3)

. 1
=3 (1 + e—\/%X) koko X2 (4.4)
The field equation takes the following form

3HwX + 0 (wx) — 10w n W _

9 aXX W =0, (4.5)

where
w= (14 e VE) kohy. (4.6)

Making substitution of w from (4.6) and simple transformations, the equations (4.3)-(4.5) are
reduced to the following

1.
3H? = §wx2 + W (x), (4.7)
. 1,
H= 757"‘}){ 3 (48)

Lolw | 10w _
2 0Oy wox
Here v = 1 for canonical and v = —1 for phantom scalar field .

X+ 3Hx — 0. (4.9)

Substituting (4.1) into (1.17) we obtain the reduced potential in the following form
1 .z /2
W= e VA (kox — e VI (F(0) — koxBO) ) (4.10)

The derivative of the potential by the field y is

88% = ie’z\/gx [A/?(f(x) —koxB(x)) — (31;(;() — ke B(x) — kspxag;X)) +eVix (kqs - g’%xﬂ .

5. Special solutions
Let us consider possibility to find exact solutions under special suggestions about models functions.
5.1. Zero potential W =0
If we set potential equal to zero: W(x) = 0, then we get the special ansatz
F00 = koxeV3X 4k, B()- (5.1)
Using the consequence of (4.7) and (4.8)
3H 4+ H=W(x) =0 (5.2)

we find the solution for Hubble parameter

and the scale factor
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Substitution H(¢) into field equation (4.8) and integration the resulting equation gives the
expression defining the solution for the field x

1 / ViteVixgn
—/3kgky, |2V 1+ e~V3X _In te + =Vt + const. (5.5)
4 _Jz

14+eVix—1

It is impossible to express explicitly the field x as the function of ¢.

5.2. The constant potential W = W, = const.
If W = W, = const, using (4.10), we find key relation
(FOO) — kpxB() = kpxeV X —aw,e?Vix, (5.6)

That means that when we find y as the function on time we know the relation between model’s functions
f(x) and B(x) which include W.,.
Setting W = W, = const we conclude that the derivative W, on yx: %—V; becomes equal to zero

1o Ve [Q\/g(f(x) kB (0) = (252 = B0~k T ) e B (1 i \/gxﬂ -

5.7
The solution for Hubble parameter we find from the equation o0
3H>+ H=W. (5.8)
The solutions are
1. Exponential rate of a scale factor
H = H, = const, a(t) = agef™!, W, =3H2, x=x.— o0, (5.9)

where ag is the scale factor at the beginning of inflation. It is clear that the solution of (5.14) is achieved
at the fixed moment (t — t.) = /3W, In(7/2).
2. Expansion defined by hyperbolic functions

H(t):\/@ tanh( SW*(t—t*)), a(t):aocosh1/3< 3W*(t—t*)). (5.10)

where v = —1, and

H{t) = \/?coth (\/ﬁ(t - t*)) . a(t) = apsinh!/3 (\/ﬁ(t - t*)) . (5.11)

where v = 1.
3. Expansion defined by trigonometric functions

H(t)__\/?tan(M(t—t*)), a(t):aocosl/?’( 3W*(t—t*)). (5.12)

where v = 1.
The solution (5.12) can be represented in another form:

H(t) = vg cot( 3W*(t—t*)), a(t):aosinl/3( 3W*(t—t*)). (5.13)

where v = 1.
We note that for the solution (5.10) the dependence x on time ¢ can be find from the equation
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/ ViteVixgn
Z —koky, | =2V 1+ e VEX £ n te Yo = arctan (exp[\/SW*(t - t*)]) + const.
Vi+e Vi

As one can see again, it is impossible to express explicitly the field x as the function of ¢.

(5.14)

Working with cosmological parameters we find that the solutions (5.10)-(5.13) conflict with
observation data and they are not verifiable. Therefore it needs to take into account quantum fluctuation
on the early stage of universe evolution, including, say, Gauss-Bonnet term into the model action (1.1).
Another possibility is to find solutions with nonconstant potential W (¢) # const. Next section is devoted
to search of new solution with nonconstant potential.

6. Solutions for special form of the potential
We looking for the solutions using some freedom for the functions f and B.
6.1. Selection of the full square form of the potential W
To represent, the potential as the square expression let us suggest
100 = V300, BOo) = eVEkaxBi(x). (6.1)

The chain of transformations is showing how the potential reducing to the expression in square
form. Using (6.1) we obtain

kyx — e VX (£(y) - koxB(x)) = kgx — e VEXeVEX (£, - koxBi) = kgx — (f1 —koxB1).  (6.2)

Evident transformation to the full square

2
kgx — (f1 — koxB1) = \/kex — 2\/fl;Tx\/k¢X + koxB1 = <\/k¢x —3 fll%x) (6.3)

leads for the relation between f and B

2
(2 f;¢x> = k,xBi. (6.4)

Therefore By can be defined over f; and x by the following way:

2
B, = lef:;;x?' (6.5)
Thus the potential reads:
2

W= ie—\/gx <\/k:¢7— 2\;@) . (6.6)

Such form of the potential simplify definition of Hubble parameter in slow roll approximation and when
the superpotential method is applied.

6.2. The slow roll regime

Standard conditions in inflationary Friedmann cosmology with a canonical scalar field for the slow
roll are: 2 < 1, ¥ < 1. In our case we deal with additional kinetic term as multiplier for kinetic term of
the scalar field. Therefore we may simplify dynamic equations (4.7)-(4.9) by suggestions 1wx? < W (x)
and y < 1.
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The cosmological dynamic equations become

3H? ~ W,
1

H = 5@).(2,
0

Using (6.7) we find H:

e (o))

The potential (6.6) can be represented in the following form

W = 367@X <k¢Xf1 + Safl)

%‘j(/:_i\/ge—\/?x <k‘¢X—fl+ fl) *e_fx (k;¢—f1,x+

Substitution into equation (6.9) gives

93¢~ 3VEx (m_ ; f; ) (1+eVE) kohoict
oX

/Zy 2 k
+e VX <—\/;(k¢x—f1 + 4]2f12> +ke—fix+

Thus we have got a general solution in integral form

- 8 (Vi - zﬁ*) cosh ($/3x) ko

(6.11)

];f; flfLX) ) (6.12)

k
2];f1f1,x> =0. (6.13)

- dx. (6.14)
V3 (kox = S+ 2 2) + s = Frac+ 32 i
Knowing the function f; one can consider the integral (6.14).
6.3. The example of solutions
Let us return to the exact equation (4.8). Starting from
v N
=YWV _ 1 Vi Shx - (6.15)
V3 23 P2 Rax
we get
. 2 (2 — 2 -2
=L o3V _\[ hox = 1) | [ ZReX = 2Niaxt o (6.16)
43 3\ 2kex 2x/koX
Substituting the result into (4.8) we find
R Fix— (& +22) hirke (y/2x—1) o1
2v3 (1+ e VE) gk, VEox '

Or under some manipulations

¥ = 8\1[k¢k ( osh = \/§x> w%((fl,x—<1X+2*§>f1+k¢<ﬁx—1>>. (6.18)
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A.
Let us suggest

2 [ 2kyx — 2kex — 2
l4eVix— \f X —J1\ [ 2kex —2fixx+ N1 (6.19)
3 2/ kgx 2x+v/ kX
Then we can define the field x from equation
. 67%\/%X (6 20)
X Bk, '
The result is
V2(t — t.)
= In | ————=|. 6.21
x =V [ 12k gk, (6.21)

Our next task is to find f; from (6.19) as the function on y. The equation (6.19) can be reduced

3
fie— N <12—;$> + \/gl%x - \/gk:d, -4 (g) VEker (1+e7) =0. (6.22)

The solution is

to the form

4
fi(z) = Vokgr — (54)V4 kg [;e_l +1-— gem/Q - Ch, e’g/Q} (6.23)

where z = \/%X-
Thus from (6.15) we can find the Hubble parameter

H(t) = g [(s(t—t) P+ (s(t—t)) ' —4-3C1], s= 12;?%. (6.24)
B.
Let us suggest
[\/g <k¢x - ;fl) - (; —fix+ J:) =A\/x, A= const. (6.25)

The equation on f; is reduced to

/ 3
fl,z*fl <12—;x> +\/§k¢x\/§k¢A4 (2) \/5:0. (6.26)

The solution for f;(x) is

fi(x) = —zkyV3me™ 2er f (\/g) + V6kgr + Cry/we?. (6.27)
The solution for the field y is
t— 1.
X = V6sinh™* [12\/5} . (6.28)

Thus from (6.15) we can find the Hubble parameter

H(z) = ?\/@ (\f— \/Eex/Qerf(x/Q)) + 5 Cll% il/g. (6.29)
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7. The superpotential approach
Let us define the superpotential as

Sw =W(x) + %w’c? = ie’\/g" (kqsx — e VE(f(y) - kwa(x))) + %U(x)z, (7.1)

where U?(y) = wx?.
Taking U in the form

U(x) = 4\\?%6‘\/3" (f(0) = koxB(x)) (x) (7.2)

we can represent Sy as

2

k
Sy = 268 [ b o VEopr 4 uy (73)
Knowing U = y/wx we can define x from (7.2)
3 2/3
= (3m) -, (7.4
taking into account the ansatz
-1
(f00) = kexB() = e VEx (14 eVEx) (7.5)
In (7.4)
2
K—e V2 (7.6)
4\/kokg
The Hubble parameter now is
2 kg 1/2
H®) =[5 [\ v +etViu| (77)

2 5 o\ /2
U(X):4\/;¢e_2\/§’<x_1/2 (14+eV5) (7.8)

Conclusion

We study chiral cosmological model with the action (1.15) as an equivalent of f(R,R) modified
gravity. Examples of exact solutions with additional material field were found and their properties for
quasi de Sitter expansion were investigated. To find the way of verification of considered cosmological
model we construct the one-field model using linear connection between chiral fields (4.1). For this model
we study two special cases for zero and constant potential and found set of exact solutions. Further we
search for new solutions for special form of the potential. Considering the slow roll regime we find the
general solution in integral form (6.14). Further we found two special exact solutions with functional
fixing of the modified gravity parameters (6.1), (6.23), (6.27). Considering the superpotential approach
we found the example of exact solution imposing ansatz relation on model’s parameters.

Thus, in this paper we propose various methods for analyzing effective chiral cosmological model
based on f(R,0R) gravity. It was also shown that the proposed interpretation of these modifications
of Einstein gravity implies a wide class of cosmological models with different possible dynamics of the
accelerated expansion of the early universe and different types of potentials of scalar fields as well.

In spite of complexity of obtained in the article solutions, it may be possible to verify them for
correspondence to observation data in another separate work.
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