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В настоящем исследовании мы описываем основанную на теории гравитации 𝑓(𝑅) космологическую
модель Вселенной с отскоком. Для определения динамического поведения модели использовалось плоское
пространство-время FLRW. В эпоху отскока геометрические параметры демонстрируют поведение син-
гулярности. Параметры масштабного фактора оказывают значительное влияние на поведение характера
отскока.
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In this study, we describe a 𝑓(𝑅) gravity theory-based bouncing cosmological model of the universe. The
flat FLRW space-time were used to determine the model’s dynamical behaviour. At the bouncing epoch, the
geometrical parameters exhibit singularity behaviour. The parameters of the scale factor have a significant impact
on the bouncing behaviour.
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Introduction

Among other problems that General Relativity (GR) has run against in the early Universe is the
initial singularity. According to Friedmann [1, 2], the evolution of the universe began at the time when
the initial singularity occured. The inflationary hypothesis addressed some important problems of the
early Universe, notably [3–5], it is thought that the singularity problem existed before inflation. One
explanation is that after experiencing a bounce, the universe expands rather than attaining singularity
during the contraction. Recent studies [1,2,8–12] have shown that our universe is undergoing a late time
rapid expansion phase, which is explained by dark energy, time-independent vacuum energy .

The current research focuses on the bouncing model in the 𝑓(𝑅) theory in a FLRW space-time, a
modified theory of gravity. It should be noted that the 𝑓(𝑅) gravity theory is a fantastic substitute for
the traditional gravity model while researching dark energy cosmological theories. The Einstein Hilbert
action results in Friedmann equations in FLRW metric and is expressed in terms of two terms, 𝑓(𝑅) and
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matter Lagrangian. Odintsov and Oikonomou [13] have studied a bouncing cosmology with a Type IV
singularity at the bouncing point in the 𝑓(𝑅) modified gravity framework. The extended matter bounce
scenario in ghost free 𝑓(𝑅,𝐺) gravity, which is consistent with gravitational waves, has been examined
by Elizalde et al. [14]. Another geometrically modified theory of gravity that has recently been developed
utilising the non-metricity approach is the extended symmetric teleparallel gravity, or 𝑓(𝑄) gravity [18],
where 𝑄 represents the non-metricity. In [16–18], a number of cosmological and astrophysical features
of 𝑓(𝑄) gravity have been investigated.

Our goal is to examine the bouncing cosmological model in this research so that we can avoid the
initial singularity problem with the functional form of 𝑓(𝑅). The model will examine geometrical degrees
of freedom to address the late-time cosmic speed-up issue. In Sec. 1 of the study, the explanation of
𝑓(𝑅) gravity and the derivation of 𝑓(𝑅) field equations are provided. The bouncing scale factor and
Hubble parameter were introduced in Sec. 2. In Sec. 3, the bouncing scale factor and functional form
of 𝑓(𝑅) have been presented. The cosmographic parameters are covered in Sec. 4, while Sec. 5 provides
the energy conditions for the model. The conclusions are presented in Sec. 6.

1. Field equations of 𝑓(𝑅) gravity

The gravitational action for 𝑓(𝑅) can be described as,

𝑆 =

∫︁ √
−𝑔 𝑓(𝑅)

2𝜅2
𝑑4𝑥+

∫︁ √
−𝑔𝑑4𝑥ℒ𝑚, (1.1)

where ℒ𝑚 be the matter Lagrangian and 𝜅2 = 8𝜋𝐺
𝑐4

, 𝐺 be the Newton’s gravitational constant, 𝑔 is
determinant of the metric tensor 𝑔𝑖𝑗 . The 𝑓(𝑅) gravity field equations can be found by varying action
(1.1) with respect to 𝑔𝑖𝑗 .,

𝑓𝑅𝑅𝑖𝑗 −
𝑓

2
𝑔𝑖𝑗 − (∇𝑖∇𝑗 − 𝑔𝑖𝑗□)𝑓𝑅 = 𝜅2𝑇𝑖𝑗 . (1.2)

Here 𝑓 = 𝑓(𝑅) and 𝑓𝑅 = 𝜕𝑓
𝜕𝑅 , ∇𝑖 represents the covariant derivative, □ ≡ 𝑔𝑖𝑗∇𝑖∇𝑗 is the d’Alembert

operator. The natural system of unit 8𝜋𝐺 = ℎ̄ = 𝑐 = 1 has been used, where 𝐺, ℎ̄ and 𝑐 respectively
denote the Newtonian gravitational constant, reduced Planck constant and velocity of light in vacuum
respectively. We can express the energy momentum tensor 𝑇𝑖𝑗 as,

𝑇𝑖𝑗 = − 2√
−𝑔

𝛿(
√
−𝑔ℒ𝑚)

𝛿𝑔𝑖𝑗
. (1.3)

On contracting (1.2), we can obtain

𝑅𝑓𝑅 − 2𝑓 + 3□𝑓𝑅 = 𝑇, (1.4)

where Ricci scalar, 𝑅 = 𝑔𝑖𝑗𝑅𝑖𝑗 , trace of energy momentum tensor 𝑇 = 𝑔𝑖𝑗𝑇𝑖𝑗 . We consider the flat
FLRW space-time as,

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2), (1.5)

and the energy momentum tensor as the perfect fluid,

𝑇𝑖𝑗 = (𝜌+ 𝑝)𝑢𝑖𝑢𝑗 + 𝑝𝑔𝑖𝑗 . (1.6)

Here, 𝜌 and 𝑝 are the energy density and pressure of the matter field, respectively, and 𝑢𝑖 stands for
the four fluid velocity vectors that fulfil 𝑢𝑖𝑢𝑖 = −1. The explicit form of the field equations (1.2) for the
space time (1.5) is,

𝜅2𝜌 =
1

2
[𝑓𝑅𝑅− 𝑓 ]− 3𝐻𝑓𝑅 + 3(1− 𝑓𝑅)𝐻

2, (1.7)

𝜅2𝑝 = −1

2
[𝑓𝑅𝑅− 𝑓 ] + 𝑓𝑅 + 2𝐻𝑓𝑅 − (1− 𝑓𝑅)(2𝐻̇ + 3𝐻2). (1.8)
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The Hubble parameter, 𝐻 = 𝑎̇
𝑎 , can be used to formulate equations (1.7) and (1.8). To enhance our

understanding of the dynamics of the Universe, we therefore require a Hubble function to determine the
energy density and pressure of the matter field. In addition, the behavior of the equation of state (EoS)
parameter must be examined in order to understand the problem of late time acceleration, which can
be calculated as,

𝜔 =
𝑝

𝜌
= −𝑓𝑅𝑅− 𝑓 − 2𝑓𝑅 − 4𝐻𝑓𝑅 + 2(1− 𝑓𝑅)(2𝐻̇ + 3𝐻2)

𝑓𝑅𝑅− 𝑓 − 6𝐻𝑓𝑅 + 6(1− 𝑓𝑅)𝐻2
. (1.9)

Therefore, by taking into account the bouncing scale factor and the functional form of 𝑓(𝑅), we will
analyse the bouncing scenario and late time cosmic acceleration issue of the Universe in the following
sections.

2. The Scale Factor

One of the two current models of the early Universe that attempts to reconcile the theoretical
inconsistencies of the Big Bang theory is inflationary cosmology, the other theory is matter bounce
cosmology. Inflationary models were subject to tight constraints imposed by the most recent observational
data, which supported some models while disproving others. In this article, we will examine the matter
bounce scenario in 𝑓(𝑅) theory of gravity. The time evolution of the Hubble parameter, or 𝐻 = 𝑎̇/𝑎,
can be used to calculate the rate of the universe’s expansion. The scale factor is subject to the following
restrictions in order to obtain a bouncing scenario:

In the case of a non-singular bounce, the bouncing scenario behaves as a contracting nature
described by a scale factor that decreases over time, i.e., 𝑎̇ < 0, which indicates that the Hubble
parameter is negative during the phase of matter contract, i.e., 𝐻 = 𝑎̇/𝑎 < 0. Since the scale factor
for the bouncing epoch contracts to a non-zero, finite critical size, the Hubble parameter disappears at
bounce, making 𝐻 = 0. The Hubble parameter changes to a positive value after the bounce, i.e., 𝑎̇ > 0,
since the nature of scale factor rises over time with a positive acceleration. When the bouncing epoch is
close, the Hubble parameter is true, i.e., 𝐻̇ > 0, which is appropriate for the ghost (phantom) behaviour
of the model. To further understand a bouncing model, consider how equation of state (EoS) changes
twice at such a phantom region: once before the bounce and once after the bounce.

As a result, our bouncing model in this instance obeys both the simultaneous dynamical behaviour
and the aforementioned bouncing requirements. The Hubble parameter 𝐻 = 𝑡

𝛼+𝛽𝑡2
is then taken into

account along with a bouncing scale factor 𝑎(𝑡) =
(︁

𝛼
𝛽 + 𝑡2

)︁ 1
2𝛽

, where 𝛼 and 𝛽 are positive constants.
The bounce is seen to happen at 𝑡 = 0, and the parameter 𝛼 determines how steep the curve will be. A
steeper slope results from a higher value of 𝛼. The bounce appears to be symmetrical; the scale factor
appears to drop from a greater value at the beginning (in the negative time domain), bounce at 𝑡 = 0,
and then rise again at the end. From a higher negative value, the Hubble parameter’s curve rises, crosses
the bouncing point at 𝑡 = 0, and continues to rise throughout the evolution. The parameters’ behaviour
encourages the occurrence of bouncing scenario, which helps to resolve the initial singularity problem.

3. Model

The dynamical parameters must be obtained by solving Eq. (1.7) and Eq. (1.8) before the cosmological
model can be built. To do this, one must take into account a functional form for 𝑓(𝑅). We look at the
form of 𝑓(𝑅) [20] as follows:

𝑓(𝑅) = 𝑅+ 𝜆𝑅0

[︃(︂
1 +

𝑅2

𝑅2
0

)︂−𝑛

− 1

]︃
, (3.1)

where 𝑅0, 𝜆, and 𝑛 are all constants and 𝑅0 is the characteristic curvature. To align with the
Starobinsky model, we selected the exponent value of 𝑛 = 1.
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Substituting Eq. (3.1) in Eqs. (1.7), (1.8)(1.9), the matter pressure, energy density and the equation
of state parameter can be obtained in the form of Hubble parameter. Further using the assumed form
of the Hubble parameter, the dynamical parameters can be expressed in cosmic time.
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Fig. 1. Variation of equation of state parameter in cosmic time with varying 𝛼 = 1.2, 1.3, 1.4 with 𝛽 = 0.9,
𝑅0 = 2, 𝜆 = 0.01

The EoS parameter for the model exhibits a bounce at 𝑡 = 0 and remains negative throughout the
evolution. The well of the curve is more pronounced as 𝛼 increases in magnitude. Given a lower value
of 𝛼, the symmetric curve approaches being flat around the bounce epoch. Throughout, the energy
density stays in the positive area. The bounce at 𝑡 = 0 becomes more pronounced with increasing
levels of 𝛼. The initial increase in energy density is followed by a kind of ditch reduction near and at
the bounce, followed by a continuing decrease. Since the energy density is always positive, the matter
pressure becomes always negative and it exhibits the bounce at 𝑡 = 0. The EoS parameter further grows
initially before swiftly decreasing to form the well, increasing quickly for a short period of time following
the bounce.

4. Cosmographic Parameters

The dark energy models and modified gravity models are two families of models being researched
in cosmology. Both are fundamentally distinct in that it is easy to tell these models of the two families
with the identical cosmic expansion history apart from one another. Even though all of the models have
the same expansion history, the growth rate of cosmic density perturbations is estimated in the normal
way and distinguishes the models based on different gravity theories. One method for differentiating
between modified gravity models and dark energy is to use the growth factor of the perturbation in
matter density [21]. Using the state finder pair (𝑗, 𝑠), which is mentioned in [22], is another method
of separating the dark energy models. It is well known that the scale factor may be used to define
the expansion rate of the universe and that the deceleration parameter (𝑞) corresponds to the second
derivative of the scale factor. The third and fourth derivatives of scale factor are represented by the jerk
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(𝑗) and snap (𝑠) parameters, respectively, while the lerk (𝑙) parameter represents the fifth derivative of
scale factor. In the Taylor series expansion around the scale factor, these values can be described as,

𝑎(𝑡) = 𝑎(𝑡0) +

∞∑︁
𝑛=0

1

𝑛!

𝑑𝑛𝑎

𝑑𝑡𝑛
𝑡=𝑡0(𝑡− 𝑡0)

𝑛, (4.1)

where 𝑛 = 1, 2, 3, ..., is an integer and 𝑡0 is the current cosmic time. The coefficients of the expansion
will give these parameters, called the cosmographic parameters. These geometrical characteristics can
be derived from the scale factor as follows:

𝑞 = − 𝑎̈
𝑎
.
1

𝐻2
=
𝛼

𝑡2
+ 𝛽,

𝑗 =

...
𝑎

𝑎
.
1

𝐻3
=

(2𝛽 − 1)
[︀
𝑡2(𝛽 − 1)− 3𝛼

]︀
𝑡2

,

𝑠 =
𝑎(4)

𝑎
.
1

𝐻4
= −

(2𝛽 − 1)
[︀
3𝛼2 + 𝑡4(𝛽 − 1)(3𝛽 − 1) + 6𝛼𝑡2(1− 3𝛽)

]︀
𝑡4

,

𝑙 =
𝑎(5)

𝑎
.
1

𝐻5
=

(︀
8𝛽2 − 6𝛽 + 1

)︀ [︀
15𝛼2 + 𝑡4(𝛽 − 1)(3𝛽 − 1) + 10𝛼𝑡2(1− 3𝛽)

]︀
𝑡4

. (4.2)

The Hubble parameter as derived from the assumed scale factor experiencing bounce at 𝑡 = 0, the
other geometrical parameters as expressed above will also having the bouncing scenario.

5. Energy conditions

The energy momentum tensor must meet a number of requirements since the causal metric and
geodesic structure of space-time are addressed by Einstein’s field equations in general relativity (GR).
We can normalise the time-like vector 𝑢𝑖 to be 𝑢𝑖𝑢𝑖 = −1 and the future directed null 𝑘𝑖 as 𝑘𝑖𝑘𝑖 = 0 for
the space-time (−,+,+,+). According to [23–25], we can describe the energy conditions as contractions
of time like or null vector fields with regard to the Einstein tensor and the energy-momentum tensor
from the matter side of the Einstein’s field equations. Four energy conditions that we can get are as
follows:

• At each point of the space time, the energy momentum tensor should satisfy, 𝑇𝑖𝑗𝑢𝑖𝑢𝑗 ≥ 0: Weak
Energy Condition (WEC). So, 𝜌 ≥ 0, 𝜌+ 𝑝 ≥ 0.

• For the future directed null vector 𝑘𝑖, 𝑇𝑖𝑗𝑢𝑖𝑢𝑗 ≥ 0: Null Energy Condition (NEC). So, 𝜌+ 𝑝 ≥ 0.

• The matter flows along time like or null line and with contracted energy momentum tensor,
the quantity 𝑇𝑖𝑗𝑢

𝑖𝑗 becomes future directed time like or null like vector field: Dominant Energy
Condition (DEC). So, 𝜌− 𝑝 ≥ 0.

•
(︀
𝑇𝑖𝑗 − 1

2𝑇𝑔𝑖𝑗
)︀
𝑢𝑖𝑢𝑗 ≥ 0 says the gravity has to be attractive: Strong Energy Condition (SEC). So,

𝜌+ 3𝑝 ≥ 0.

The 𝑓(𝑅) gravity and the expanded theories of gravity are simple extensions of Einstein’s GR. The
energy conditions should be brought up with any such expanded theory. From Eqs. (1.7) and (1.8), the
expression for the energy conditions can be obtained. We have given below the graphical representation
of the energy conditions.

All the energy conditions are showing the symmetric behaviour. Both the NEC and SEC are initially
satisfying and before the bounce violates and subsequently after some time of the bounce again satisfies.
However since it violates at and around the bouncing epoch, it supports the bouncing model. The
violation of SEC has become essential in the context of modified theories of gravity. The DEC satisfies
entirely. We obtain the behaviour of the energy conditions as needed in the context of the model that
shows bouncing behaviour.
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Fig. 2. Variation of null energy condition (left panel), strong energy condition (right panel) and dominant
energy condition (lower panel) in cosmic time with varying 𝛼 = 1.2, 1.3, 1.4 with 𝛽 = 0.9, 𝑅0 = 2, 𝜆 = 0.01

6. Conclusion

In the 𝑓(𝑅) theory of gravity, the bouncing cosmological model of the universe has been proposed.
A minimally coupled function in 𝑅 is used in place of the typical Ricci scalar in the action that leads to
the 𝑓(𝑅) theory of gravity. With a bouncing scale factor, well-known versions of the 𝑓(𝑅) function have
been taken into consideration. At 𝑡 = 0, the model displays the bouncing behaviour. Additionally, for the
selected bouncing scale factor, the Hubble radius diverges at the place of the bounce, falls monotonically
on both sides of the bounce, and then asymptotically contracts to zero, pointing to an expanding universe
in the late stages of the expansion. Additionally, for the provided 𝑓(𝑅) theory to be compatible with
Planck constraints and produce the necessary perturbation modes close to the bounce, such scale factor
behaviour is necessary. Throughout evolution, the matter pressure and energy density have remained,
respectively, negative and positive. To support the bouncing behaviour, the EoS parameter curve crosses
the phantom-divide line twice. The behaviour of the EoS and deceleration parameters further verified
the models’ accelerated expansion. The singularity in the EoS parameter is eliminated if there is a finite
non-zero value of 𝑅0 during the bouncing epoch. Additionally, the scale parameter of the scale factor
affects how the EoS parameter behaves. The NEC and SEC violations are verified. In the framework
of a bouncing and accelerating cosmic model, these breaches are unavoidable. It should be noted that
the failure of the null energy criteria could lead to the phantom phase developing in the model with a
positive Hubble parameter slope. We conclude by stating that this may provide additional insight into
overcoming the original singularity problem.
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