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1. Differential geometry

The differential geometry starts with the definition of the manifold which is just the set of points
covered by patches with the coordinate systems 𝑥𝜇, 𝑥′ 𝜇

′
and so on. In the overlapping regions there

exist smooth enough and invertible functions 𝑥𝜇 = 𝑥𝜇(𝑥′
𝜇′
).

The main objects are scalars, vectors and tensors, they are defined by the following transformation
laws.

Scalars:
𝜙(𝑥) = 𝜙(𝑥′). (1.1)

Vectors:

𝑙𝜇
′
(𝑥′) =

𝜕𝑥′
𝜇′

𝜕𝑥𝜇
𝑙𝜇(𝑥), 𝑙𝜇′(𝑥′) =

𝜕𝑥𝜇

𝜕𝑥′𝜇
′ 𝑙𝜇(𝑥). (1.2)

Tensors:

𝐴𝜇′𝜈′
(𝑥′) =

𝜕𝑥′
𝜇′

𝜕𝑥𝜇
𝜕𝑥′

𝜈′

𝜕𝑥𝜈
𝐴𝜇𝜈(𝑥), (1.3)

𝐴𝜇′𝜈′(𝑥′) =
𝜕𝑥𝜇

𝜕𝑥′𝜇
′
𝜕𝑥𝜈

𝜕𝑥′𝜈
′𝐴𝜇𝜈(𝑥), (1.4)

𝐴𝜇′

𝜈′ (𝑥
′) =

𝜕𝑥′
𝜇′

𝜕𝑥𝜇
𝜕𝑥𝜈

𝜕𝑥′𝜈
′𝐴

𝜇
𝜈 (𝑥) . . . . (1.5)
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The ellipsis means that there may be more than two indices. In the above formulas (as well as in many
others below) it is assumed the summation over the same indices appeared up and down (the so called
Einstein’s rule). Main feature of these objects is that the “absence” (= “the existence”) does not depend
on the choice of the coordinate system (their zero values are absolute).

In what follows we will be dealing only with the four-dimensional space-times. Thus, the indices
will take values (0, 1, 2, 3), the index “0” being reserved for the time-like coordinate.

Let us consider the simplest case — the Minkowski space-time of Special Relativity. In 1907 Hermann
Minkowski (1864–1909) introduced the notion “interval”, 𝑑𝑠, between the neighbouring points. Its square,
in the Cartesian (orthogonal) coordinates equals

𝑑𝑠2 = 𝑑𝑡2 − 𝑑�⃗�2, (1.6)

what is a generalization of the Pythagoras’ theorem. Such an interval is invariant under the Lorentz
transformation of Special Relativity, i. e., remains the same for any inertial observer. Transformed to
the general (curvilinear) coordinates 𝑡′(𝑡, �⃗�), �⃗� ′ = �⃗� ′(𝑡, �⃗�), it becomes

𝑑𝑠2 = 𝑔𝜇𝜈(𝑥
′)𝑑𝑥′𝜇𝑑𝑥′𝜈 . (1.7)

In the general space-time, 𝑔𝜇𝜈(𝑥) is called the metric tensor, and its role is of most importance. It is
assumed that the metric tensor is non-degenerate, i. e.,

𝑔 = det(𝑔𝜇𝜈) = ||𝑔𝜇𝜈 || ≠ 0, (1.8)

and it is symmetric, 𝑔𝜇𝜈 = 𝑔𝜈𝜇. Therefore, there exists its reverse, 𝑔𝜇𝜈 ,

𝑔𝜇𝜆𝑔𝜆𝜈 = 𝛿𝜇𝜈 , (1.9)

where 𝛿𝜇𝜈 is the Kronecker symbol (= unit tensor).
The metric tensor 𝑔𝜇𝜈 and its inverse 𝑔𝜇𝜈 allow us to lower and raise indices, so from now on

𝑙𝜇 = 𝑔𝜇𝜈 𝑙
𝜈 and 𝑙𝜇 ≡ 𝑔𝜇𝜈 𝑙𝜈 will denote the same vector, but differently displayed (the formulas for

tensors are evident). Remember the Einstein’s rule!

1.1. Differentiation

The subtitle “Differential geometry” implies that we have to introduce somehow the differentiation
procedure. The general definition is the following: the differentiation is any linear operator obeying the
Leibniz rule. The linearity means that the operator 𝐷, acting on the linear combination of two functions
𝛼𝐴(𝑥) + 𝛽𝐵(𝑥), 𝛼, 𝛽 = 𝑐𝑜𝑛𝑠𝑡, gives us

𝒟(𝛼𝐴(𝑥) + 𝛽𝐵(𝑥)) = 𝛼(𝒟𝐴(𝑥)) + 𝛽(𝒟𝐵(𝑥)), (1.10)

while the Leibniz rule tells us how to deal with the product of two functions,

𝒟(𝐴(𝑥)𝐵(𝑥)) = (𝒟𝐴(𝑥))𝐵(𝑥) +𝐴(𝑥)(𝒟𝐵(𝑥)). (1.11)

Everybody knows from the course of the mathematical analysis that the “ordinary differential”
𝑑𝐴(𝑥) is the linear part of the increment of 𝐴(𝑥), namely,

𝐴(𝑥+𝑑𝑥)−𝐴(𝑥)=𝑑𝐴(𝑥) + . . . =𝐴(𝑥),𝜇𝑑𝑥
𝜇 + . . . , (1.12)

where 𝐴(𝑥),𝜇 ≡ 𝜕𝐴/𝜕𝑥𝜇 is the partial derivative. Evidently, for a scalar field, 𝜙(𝑥 + 𝑑𝑥) − 𝜙(𝑥) is a
scalar. But for the vector or tensor fields it is not so, because we have to compare their values in different
points with different laws of transformations. We need to transfer somehow the vector in one point to
the vector (!) in the neighboring point along some special path. Such a procedure is called the parallel
transfer.
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In the Minkowski space-time (4-dim) or in the Euclidean space (3-dim) all the points are equivalent,
and the parallel transport of any vector 𝑙𝜇 in Galilean (Cartesian) coordinates is, by definition, simply

𝑑𝑙𝜇 = 0, (1.13)

since the metric tensor does not depend on 𝑥. In the curvilinear coordinates it is not so.
Let us introduce some new differential operator, 𝒟, and demand that the vector after transferring

remains the vector. For the parallel transfer, by definition,

𝒟𝑙𝜇 = 0. (1.14)

(For the scalars, 𝒟𝜙 = 𝑑𝜙.)
The linearity condition requires that

𝒟𝑙𝜇 = 𝑑𝑙𝜇 + Γ𝜇
𝜈𝜆𝑙

𝜆𝑑𝑥𝜈 . (1.15)

1.2. Connections

The coefficients Γ𝜇
𝜈𝜆 are called connections. The requirement for vectors to remain vectors leads to

the following transformation law

Γ𝜇′

𝜈′𝜆′ =
𝜕2𝑥𝜇

𝜕𝑥′𝜈
′
𝜕𝑥′𝜆

′
𝜕𝑥′

𝜇′

𝜕𝑥𝜇
+

𝜕𝑥𝜆

𝜕𝑥′𝜆
′
𝜕𝑥𝜈

𝜕𝑥′𝜈
′
𝜕𝑥𝜇

′

𝜕𝑥𝜇
Γ𝜇
𝜈𝜆 (1.16)

This new differential is called “the covariant differential”. The corresponding covariant derivative for the
vector field 𝑙𝜇 equals

∇𝜆𝑙
𝜇 def
= 𝑙𝜇,𝜆 + Γ𝜇

𝜆𝜈 𝑙
𝜈 . (1.17)

And what about 𝒟𝑝𝜇? The Leibniz rule will help us because 𝒟𝑝𝜇𝑙𝜇 is a scalar. One has

𝒟(𝑝𝜇𝑙
𝜇) = 𝑙𝜇(𝒟𝑝𝜇) + 𝑝𝜇(𝒟𝑙𝜇) = 𝑙𝜇(𝒟𝑝𝜇) + 𝑝𝜇(𝑑𝑙

𝜇 + Γ𝜇
𝜆𝜈 𝑙

𝜈𝑑𝑥𝜆), (1.18)

But, 𝒟(𝑝𝜇𝑙
𝜇) = 𝑑(𝑝𝜇𝑙

𝜇), hence
𝒟(𝑝𝜇𝑙

𝜇) = 𝑙𝜇(𝑑𝑝𝜇) + 𝑝𝜇(𝑑𝑙
𝜇), (1.19)

and one obtains from this, that
𝒟𝑝𝜇 = 𝑑𝑝𝜇 − Γ𝜈

𝜆𝜇𝑝𝜈𝑑𝑥
𝜆, (1.20)

∇𝜆𝑝𝜇 = 𝑝𝜇,𝜆 − Γ𝜈
𝜆𝜇𝑝𝜈 . (1.21)

The Leibniz rule also helps us in establishing the differentiation of tensors if one remembers that the
product of two vectors 𝑙𝜇𝑝𝜈 is a tensor. We will show below the final result

∇𝜆𝐴
𝜇𝜈 = 𝐴𝜇𝜈

,𝜆 + Γ𝜇
𝜆𝜎𝐴

𝜎𝜈 + Γ𝜈
𝜆𝜎𝐴

𝜇𝜎, (1.22)

∇𝜆𝐴𝜇𝜈 = 𝐴𝜇𝜈,𝜆 − Γ𝜎
𝜆𝜇𝐴𝜎𝜈 − Γ𝜎

𝜆𝜈𝐴𝜇𝜎, (1.23)

∇𝜆𝐴
𝜇
𝜈 = 𝐴𝜇

𝜈,𝜆 + Γ𝜇
𝜆𝜎𝐴

𝜎
𝜈 − Γ𝜎

𝜆𝜈𝐴
𝜇
𝜎. (1.24)

What could happen if some vector 𝑙𝜇 would undergo the parallel transfer along an infinitesimal closed
contour around some point? In general, its length (𝑙𝜇𝑙𝜇) and orientation will be changed. This gives us
the knowledge about the neighborhood of the point in question (topological property). It appears that
the behavior of the vector is defined by the tensor of fourth rank, 𝑅𝜇

𝜈𝜆𝜎, called the curvature tensor,

𝑅𝜇
𝜈𝜆𝜎 =

𝜕Γ𝜇
𝜈𝜎

𝜕𝑥𝜆
−
𝜕Γ𝜇

𝜈𝜆

𝜕𝑥𝜎
+ Γ𝜇

κ𝜆Γ
κ
𝜈𝜎 − Γ𝜇

κ𝜎Γ
κ
𝜈𝜆. (1.25)

Note, that, by construction, 𝑅𝜇
𝜈𝜆𝜎 = −𝑅𝜇

𝜈𝜎𝜆. If 𝑅𝜇
𝜈𝜆𝜎 = 0, the space-time (or space) is called flat. By

summing over 𝜇 = 𝜆, one obtains the new tensor of the second rank, the Ricci tensor,

𝑅𝜈𝜎 = 𝑅𝜆
𝜈𝜆𝜎. (1.26)
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Such an operation (as well as its result) is called “the convolution”. The convolution of the Ricci tensor
gives us the curvature scalar

𝑅 = 𝑅𝜆
𝜆 = 𝑔𝜈𝜎𝑅𝜈𝜎. (1.27)

This completes the description of the differential geometry.
So, in order to construct any differential geometry, one needs to know the metric tensor 𝑔𝜇𝜈(𝑥) and

the connections Γ𝜇
𝜈𝜆(𝑥). But, the connections do not behave like a tensor, and, this is rather inconvenient.

It turns out that the connections can be calculated if one knows three tensors (the trinity), the
metric tensor 𝑔𝜇𝜈(𝑥), the torsion 𝑆𝜆

𝜇𝜈 ,

𝑆𝜆
𝜇𝜈 = Γ𝜆

𝜇𝜈 − Γ𝜆
𝜈𝜇, (1.28)

and the nonmetricity 𝑄𝜆𝜇𝜈 ,
𝑄𝜆𝜇𝜈 = ∇𝜆𝑔𝜇𝜈 . (1.29)

Here we write down the final result which can be obtained by solving the above linear partial differential
equations. Namely,

Γ𝜆
𝜇𝜈 = 𝐶𝜆

𝜇𝜈 +𝐾𝜆
𝜇𝜈 + 𝐿𝜆

𝜇𝜈 , (1.30)

where 𝐶𝜆
𝜇𝜈 are famous Christoffel symbols,

𝐶𝜆
𝜇𝜈 =

1

2
𝑔𝜆𝜅(𝑔𝜅𝜇,𝜈 + 𝑔𝜅𝜈,𝜇 − 𝑔𝜇𝜈,𝜅), (1.31)

and
𝐾𝜆

𝜇𝜈 =
1

2
(𝑆𝜆

𝜇𝜈 − 𝑆 𝜆
𝜇 𝜈 − 𝑆 𝜆

𝜈 𝜇), (1.32)

𝐿𝜆
𝜇𝜈 =

1

2
(𝑄𝜆

𝜇𝜈 −𝑄 𝜆
𝜇 𝜈 −𝑄 𝜆

𝜈 𝜇). (1.33)

1.3. Riemannian geometry

The famous Riemannian geometry appears the most simple, both torsion and nonmetricity are
zero,

𝑆𝜆
𝜇𝜈 = 0, 𝑄𝜆

𝜇𝜈 = 0. (1.34)

That is
Γ𝜆
𝜇𝜈 = Γ𝜆

𝜈𝜇 = 𝐶𝜆
𝜇𝜈 =

1

2
𝑔𝜆𝜅(𝑔𝜅𝜇,𝜈 + 𝑔𝜅𝜈,𝜇 + 𝑔𝜇𝜈,𝜅), (1.35)

∇𝜆𝑔𝜇𝜈 = 𝑔𝜈𝜇;𝜆 = 0. (1.36)

By semicolon, “;”, we denote the covariant derivative, when the connections are the Christoffel symbols.
In the Riemannian geometry the curvature tensor, 𝑅𝜇

𝜈𝜆𝜎, acquires some additional algebraic
symmetries,

𝑅𝜇𝜈𝜆𝜎 = 𝑅𝜆𝜎𝜇𝜈 = −𝑅𝜈𝜇𝜆𝜎 = −𝑅𝜇𝜈𝜎𝜆 (1.37)

𝑅𝜇
𝜈𝜆𝜎 +𝑅𝜇

𝜎𝜈𝜆 +𝑅𝜇
𝜆𝜎𝜈 = 0, (1.38)

and obeys the Bianchi identities

𝑅𝜇
𝜈𝜆𝜎;𝜅 +𝑅𝜇

𝜈𝜅𝜆;𝜎 +𝑅𝜇
𝜈𝜎𝜅;𝜆 = 0. (1.39)

Also the Ricci tensor is symmetric
𝑅𝜇𝜈 = 𝑅𝜈𝜇. (1.40)

The main and famous application of the Riemannian geometry to theoretical physics is, of course,
General Relativity. But before coming to this , we will make some lyrical digression.
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2. The least action principle

The modern theoretical physics is based on the so called Least Action Principle. The invention of
the least action principles is associated with the names of Pierre de Fermat (1601–1665), Pierre-Louis
Mareau de Moupetuis (1698–1759), Leonard Euler (1707–1783) and Joseph Louis Lagrange (1736–1813).

Fermat was not a professional mathematician, but maid many great achievements. Among them, he
explained the reflection of the light rays using the least action principle, but his works were not published
during his life. Moupetuis rediscovered this and introduced the very notion “action”. Euler and Lagrange
developed the corresponding mathematical formalism known now as the variational calculus. How does
it work?

First of all, one should choose suitable dynamical variables describing the system under consideration.
The next step is the construction of some function of these variables and its derivatives, taking into
account “the first principles”, i. e., space-time symmetries, covariance (= independence of the choice of
the coordinate system), specific symmetries and other properties of the problem and so on. Such a
function is called “the Lagrangian”, its choice, of course, is not unique.

With the Lagrangian at hand, one should integrate it over the space-time region inside the some
boundary. And this is the action functional we are looking for. The least action principle reads as follows.
“ ‘Among all the trajectories of dynamical variables, the “true” ones are that provide the minimum of
the action integral”.

Let us denote the set of the dynamical variables by 𝜓, and the action integral by 𝑆. To find a
minimum (extremum) of 𝑆 we should make a variation of the dynamical variable, 𝛿𝜓, and then put the
corresponding variation 𝛿𝑆 to zero. The variations 𝛿𝜓 of course, can be arbitrary small (infinitesimal)
so the rules of operation are the same as with the derivatives. The only difference is that the dynamical
variables 𝜓1 and 𝜓2, 𝛿𝜓 = 𝜓2(𝑥)− 𝜓1(𝑥) are taken in the same point. Thus, if 𝜓 is, say, a vector, then
𝛿𝜓 is also a vector. Evidently the variation commutes with the partial derivative, i. e., 𝛿(𝜓𝜇) = (𝛿𝜓)𝜇.
It is most important to note that the variations 𝛿𝜓 will inevitably appear at the boundary surface of
integration, Σ. It is required that this variations should vanish. Because of this one may read in the
textbooks about “the least action principle with the fixed ends”. Below are some simple, but useful,
examples of how all this works in practice.

2.1. Classical examples

2.1.1 One dynamical variable

Let us consider a system with only one dynamical variable 𝑥(𝑡) and the Lagrangian ℒ = ℒ(𝑥(𝑡), �̇�(𝑡)),
�̇� — time derivative of 𝑥. Then the action is

𝑆 =

∫︁ 𝑏

𝑎

ℒ(𝑥(𝑡), �̇�(𝑡), 𝑡) 𝑑𝑡. (2.1)

The variation of 𝑆 equals

𝛿𝑆 =

∫︁ 𝑏

𝑎

(𝛿ℒ) 𝑑𝑡 =
∫︁ 𝑏

𝑎

{︂
𝜕ℒ
𝜕𝑥

(𝛿𝑥) +
𝜕ℒ
𝜕�̇�

(𝛿�̇�)

}︂
𝑑𝑡

=

∫︁ 𝑏

𝑎

{︂
𝜕ℒ
𝜕𝑥

(𝛿𝑥) +
𝑑

𝑑𝑡

(︂
𝜕ℒ
𝜕�̇�

𝛿𝑥

)︂
−
(︂
𝑑

𝑑𝑡

𝜕ℒ
𝜕�̇�

)︂
(𝛿𝑥)

}︂
𝑑𝑡. (2.2)

The second term is the full derivative and can be integrated over,

𝛿𝑆 =
𝜕ℒ
𝜕�̇�

(𝛿𝑥)
⃒⃒⃒𝑏
𝑎
+

∫︁ 𝑏

𝑎

{︂
𝜕ℒ
𝜕�̇�

−
(︂
𝑑

𝑑𝑡

𝜕ℒ
𝜕�̇�

)︂}︂
(𝛿𝑥)𝑑𝑡. (2.3)

Since 𝛿𝑥(𝑎) = 𝛿𝑥(𝑏) = 0 (fixed ends!) and 𝛿𝑥 in the integrand is arbitrary, we arrive at the famous
Euler-Lagrange equation

𝜕ℒ
𝜕𝑥

− 𝑑

𝑑𝑡

𝜕ℒ
𝜕�̇�

= 0. (2.4)
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2.1.2 Scalar field

The second example is the system with continuous “number” of dynamical variables, let it be the
scalar field 𝜙(𝑥𝜇), 𝜇 = 0, 1, 2, 3. The action 𝑆 is

𝑆 =

∫︁
ℒ (𝜙(𝑥), 𝜙,𝜇(𝑥))

√
−𝑔 𝑑4𝑥, (2.5)

here 𝑔 = det(𝑔𝜇𝜈) < 0, 𝜙,𝜇 = 𝜕𝜙(𝑥)/𝜕𝑥𝜇, Ω is the volume of integration with the boundary Σ. Then

𝛿𝑆 =

∫︁
Ω

{︂
𝜕ℒ
𝜕𝜙

(𝛿𝜙) +
𝜕ℒ
𝜕𝜙,𝜇

(𝛿𝜙,𝜇)

}︂√
−𝑔 𝑑4𝑥 (2.6)

=

∫︁
Ω

{︃
𝜕ℒ
𝜕𝜙

√
−𝑔(𝛿𝜙)+

(︂
𝜕ℒ
𝜕𝜙,𝜇

√
−𝑔(𝛿𝜙)

)︂
,𝜇

−
(︂
𝜕ℒ
𝜕𝜙,𝜇

√
−𝑔
)︂
,𝜇

(𝛿𝜙)

}︃
𝑑4𝑥.

Now, we will make use of remarkable Stokes’ theorem: for any vector 𝑙𝜇,∫︁
Ω

𝑙𝜇,𝜇 =

∫︁
Σ

𝑙𝜇𝑑𝑆𝜇. (2.7)

We do not intend to explain what 𝑑𝑆𝜇 is, it is essential for us now that the volume integral of the full
derivative is converted into the surface integral. Thus, we have

𝛿𝑆 =

∫︁
Σ

𝜕ℒ
𝜕𝜙,𝜇

√
−𝑔(𝛿𝜙)𝑑𝑆𝜇 +

∫︁
Ω

{︃
𝜕ℒ
𝜕𝜙

− 1√
−𝑔

(︂
𝜕ℒ
𝜕𝜙,𝜇

√
−𝑔
)︂
,𝜇

}︃
(𝛿𝜙)

√
−𝑔 𝑑4𝑥. (2.8)

The surface integral vanishes because 𝛿𝜙 = 0 on Σ (fixed ends!). We are left with the following Euler-
Lagrange equation,

𝜕ℒ
𝜕𝜙

−
(︂
𝜕ℒ
𝜕𝜙,𝜇

)︂
;𝜇

= 0. (2.9)

3. General Relativity

Let us come, at last, to General Relativity. This incredible theory combines physics and geometry
and has two parents, Albert Einstein (physics) and David Hilbert (mathematics).

Einstein’s idea: matter fields make the space-time curved and this very curvature is that we feel
as the gravitation. The Hilbert’s idea: all the physical equations may be deduced from the least action
principles. By the end of 1915 both programs were, actually, fulfilled.

According to Einstein, the left-hand-side should be pure geometrical, while the right-hand-side
should be proportional to the energy-momentum tensor, 𝑇𝜇𝜈 , of the matter fields as a source. According
to Hilbert, the total action, 𝑆tot, should be the sum of the gravitational (geometrical) part, 𝑆grav, and
the matter part 𝑆m, i. e.,

𝑆tot = 𝑆grav + 𝑆m. (3.1)

Both of them kept in mind the Riemannian geometry, so, the only dynamical variable could be the
metric tensor 𝑔𝜇𝜈 . By definition,

𝛿𝑆m
def
= −1

2

∫︁
𝑇𝜇𝜈(𝛿𝑔

𝜇𝜈)
√
−𝑔 𝑑4𝑥 =

1

2

∫︁
𝑇𝜇𝜈(𝛿𝑔𝜇𝜈)

√
−𝑔 𝑑4𝑥. (3.2)

For the gravitational Lagrangian, Hilbert made the simplest possible choice — curvature scalar 𝑅. Thus,
the so called Hilbert action equals

𝑆grav = 𝑆H = − 1

16𝜋𝐺

∫︁
𝑅
√
−𝑔 𝑑4𝑥, (3.3)
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where 𝐺 is the Newton’s gravitational constant (remember that 𝑐 = 1). This coefficient is chosen in
order to have the correct non-relativistic limit and the minimum (not maximum) of the action (the
“minus sign”).

Thus
𝛿

∫︁
𝑅
√
−𝑔 𝑑4𝑥 = 8𝜋𝐺

∫︁
𝑇𝜇𝜈(𝛿𝑔

𝜇𝜈)
√
−𝑔 𝑑4𝑥. (3.4)

Since 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 and 𝛿
√
−𝑔 = −(1/2)

√
−𝑔𝑔𝜇𝜈(𝛿𝑔𝜇𝜈 (famous formulas from the textbooks), one readily

has
𝛿

∫︁
𝑅
√
−𝑔 𝑑4𝑥 =

∫︁ {︁
𝑔𝜇𝜈(𝛿𝑅𝜇𝜈) + (𝑅𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑅)(𝛿𝑔

𝜇𝜈)
}︁√

−𝑔 𝑑4𝑥. (3.5)

For 𝛿𝑅𝜇𝜈 there exists the remarkable formula by Palatini [1], found in 1919,

𝛿𝑅𝜇𝜈 = (𝛿Γ𝜆
𝜇𝜈);𝜆 − (𝛿Γ𝜆

𝜇𝜆);𝜈 (3.6)

(more precisely, the metric covariant derivative “;” should be replaced by the general one, ∇). Everybody
can easily check this, starting from the definition of Ricci tensor and remembering that 𝛿Γ𝜆

𝜇𝜈 is a tensor
(unlike Γ𝜆

𝜇𝜈 itself). Then, noticing that

𝑔𝜇𝜈(𝛿Γ𝜆
𝜇𝜈);𝜆

√
−𝑔 =

(︀
𝑔𝜇𝜈(𝛿Γ𝜆

𝜇𝜈)
)︀
;𝜆

√
−𝑔 =

(︀
𝑔𝜇𝜈(𝛿Γ𝜆

𝜇𝜈)
√
−𝑔
)︀
,𝜆

(3.7)

is a full derivative and using the Stokes’ theorem, one gets immediately the famous Einstein equation

𝑅𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑅 = 8𝜋𝐺𝑇𝜇𝜈 . (3.8)

If David Hilbert would know the Palatini formula in 1915!

4. Weyl Geometry

The triumph of the geometrical description of the gravitational interactions forced scientists to
search for the unification of all known at the time interactions — gravity+electromagnetism — under
the auspices of geometry. Hermann Weyl offered such a geometry.

4.1. Electromagnetic field and gauge invariance

In order to understand, how it was done we have to remind some facts concerning the classical
electrodynamics. Electromagnetic field are described by the vector-potential𝐴𝜇. The electric and magnetic
strengths are the components of the anti-symmetric second rank tensor 𝐹𝜇𝜈 ,

𝐹𝜇𝜈 = 𝐴𝜈,𝜇 −𝐴𝜇,𝜈 = 𝐴𝜈;𝜇 −𝐴𝜇;𝜈 . (4.1)

The first pair of Maxwell equations is just the identity

𝐹𝜇𝜈;𝜎 + 𝐹𝜎𝜇;𝜈 + 𝐹𝜈𝜎;𝜇 = 0, (4.2)

while the second pair has the form

𝐹𝜇𝜈
;𝜈 =

(𝐹𝜇𝜈√−𝑔),𝜈√
−𝑔

= −4𝜋𝑗𝜇, (4.3)

where 𝑗𝜇 is the electric current density. It easy to verify that the electric charge is conserved, i. e.,
𝑗𝜇;𝜇 = 0.

We see that the electromagnetic vector-potential 𝐴𝜇 does not enter the Maxwell equations, only
𝐹𝜇𝜈 are present (and measurable). The tensor 𝐹𝜇𝜈 is, obviously, invariant under the transformation
𝐴𝜇 → 𝐴𝜇 + 𝛼,𝜇, where 𝛼 is an arbitrary scalar field. This the so called gauge transformation and,
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correspondingly, gauge invariance. It is known from the course of the electrodynamics, that the action
for the system “single charged particle of mass 𝑚 + electromagnetic field” has the form

𝑆 = −𝑚
∫︁
𝑑𝑠−

∫︁
𝐴𝜇𝑗

𝜇√−𝑔 𝑑4𝑥− 1

16𝜋

∫︁
𝐹𝜇𝜈𝐹

𝜇𝜈√−𝑔 𝑑4𝑥. (4.4)

It is clear that the second term is not manifestly gauge invariant. And it does not need to be! But
𝛿𝑆(= 0) — does! Let us consider an infinitesimal gauge transformation 𝛿𝛼. The corresponding response,
𝛿𝑆, is

𝛿𝑆 = −
∫︁
(𝛿𝐴𝜇)𝑗

𝜇√−𝑔 𝑑4𝑥 = −
∫︁
𝑗𝜇(𝛿𝛼),𝜇

√
−𝑔 𝑑4𝑥. (4.5)

Separating the full derivative and neglecting it, one gets

𝛿𝑆 =

∫︁
(𝑗𝜇

√
−𝑔),𝜇√
−𝑔

(𝛿𝛼)
√
−𝑔 𝑑4𝑥 =

∫︁
𝑗𝜇;𝜇(𝛿𝛼)

√
−𝑔 𝑑4𝑥 = 0. (4.6)

We obtained the electric charge conservation law, 𝑗𝜇;𝜇 = 0. This is the self-consistency condition.

4.2. Weyl geometry versus Riemannian geometry

Hermann Weyl [2] put forward the following pure physical idea: in the course of the parallel transfer
of some rod (= vector), its length is changing (unlike in the Riemannian geometry). It seems quite natural
in the unified theory because the rods are made of the charged particles. Thus,

∇𝜆𝑔𝜇𝜈 ̸= 0. (4.7)

Weyl’s choice was the simplest one:

𝑄𝜆𝜇𝜈 = ∇𝜆𝑔𝜇𝜈 = 𝐴𝜆𝑔𝜇𝜈 , (4.8)

where 𝐴𝜆 is the electromagnetic vector potential. Assuming 𝑆𝜆
𝜇𝜈 = 0 (Γ𝜆

𝜇𝜈 = Γ𝜆
𝜈𝜇), one gets

Γ𝜆
𝜇𝜈 = 𝐶𝜆

𝜇𝜈 +𝑊𝜆
𝜇𝜈 , (4.9)

𝐶𝜆
𝜇𝜈 =

1

2
𝑔𝜆𝜅(𝑔𝜅𝜇,𝜈 + 𝑔𝜅𝜈,𝜇 − 𝑔𝜇𝜈,𝜅), (4.10)

𝑊𝜆
𝜇𝜈 = −1

2
(𝐴𝜇𝛿

𝜆
𝜈 +𝐴𝜈𝛿

𝜆
𝜇 −𝐴𝜆𝑔𝜇𝜈). (4.11)

This is not the end of the story.

4.3. Conformal transformation

The change in the length can be compensated by the suitable local conformal transformation, which
is the following,

𝑑𝑠2 = Ω2(𝑥)𝑑𝑠2, (4.12)

𝑔𝜇𝜈 = Ω2(𝑥)𝑔𝜇𝜈 , 𝑔𝜇𝜈 =
1

Ω2(𝑥)
𝑔𝜇𝜈 . (4.13)

Important note: the local conformal transformation does not touch upon the coordinate system, it is
simply the change of the measurement units.

The Christoffell symbols 𝐶𝜆
𝜇𝜈 are transformed as

𝐶𝜆
𝜇𝜈 = 𝐶𝜆

𝜇𝜈 +

(︂
Ω,𝜇

Ω
𝛿𝜆𝜈 +

Ω,𝜈

Ω
𝛿𝜆𝜇 − 𝑔𝜆𝜎

Ω,𝜎

Ω
𝑔𝜇𝜈

)︂
. (4.14)

Surprisingly enough, if one would demand

𝐴𝜇 = 𝐴𝜇 + 2
Ω,𝜇

Ω
, (4.15)
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then
Γ𝜆
𝜇𝜈 = Γ̂𝜆

𝜈𝜇, (4.16)

i. e. 𝐴𝜇 becomes a gauge field when the connections are required to be conformal invariant [3,4] — great
discovery!

Evidently, one has
𝑅𝜇

𝜈𝜆𝜎 = �̂�𝜇
𝜈𝜆𝜎, (4.17)

𝑅𝜇𝜈 = �̂�𝜇𝜈 , (4.18)

𝐹𝜇𝜈 = 𝐹𝜇𝜈 . (4.19)

This is “the Weyl Geometry”.

5. Weyl gravity

It can be easily shown that the Maxwell equations are invariant under the local conformal transformations.
Hermann Weyl claimed that in the unified theory the gravitational equations must be conformal invariant
too. In analogy with the electromagnetism he decided to include into the Lagrangian only quadratic
terms, namely,

𝑆W =

∫︁
ℒW

√
−𝑔 𝑑4𝑥, (5.1)

ℒW = 𝛼1𝑅𝜇𝜈𝜆𝜎𝑅
𝜇𝜈𝜆𝜎 + 𝛼2𝑅𝜇𝜈𝑅

𝜇𝜈 + 𝛼3𝑅
2 + 𝛼4𝐹𝜇𝜈𝐹

𝜇𝜈 . (5.2)

It is quite clear that the action ℒW is conformal invariant (remember that
√
−𝑔 = Ω4

√
−𝑔).

Albert Einstein found some discrepancies between the predictions of Weyl’s unified theory and the
stability of the atomic spectra (the problem of the “second time” and all that). The theory was rejected
and almost forgotten.

We will not identify the Weyl vector 𝐴𝜇 with the electromagnetic vector potential and consider it
just as a part of the beautiful conformal invariant geometry. Nowadays, even the fact that the Weyl’s
Lagrangian 𝑆W is quadratic, looks plausible, because the terms quadratic in curvatures (in Riemannian
geometry), describe the conformal anomaly in one loop approximation of the quantum field theory [5–13],
the latter being responsible for the vacuum polarization and particle creation [14].

5.1. Total action

The total action is
𝑆tot = 𝑆W + 𝑆m. (5.3)

Though the Weyl action 𝑆W, is conformal invariant, the action for the matter fields, 𝑆m, does not need
to be such. But its variation 𝛿𝑆m, is obliged to be conformal invariant. This means that there exists
some condition imposed on the form of the matter Lagrangian. Let us find it. In general, the matter
Lagrangian depends on some dynamical variables, 𝜓, describing the matter fields, and on the geometrical
variables, 𝑔𝜇𝜈 and 𝐴𝜇.

By definition,

𝛿𝑆m = −1

2

∫︁
𝑇𝜇𝜈(𝛿𝑔𝜇𝜈)

√
−𝑔 𝑑4𝑥−

∫︁
𝐺𝜇(𝛿𝐴𝜇)

√
−𝑔 𝑑4𝑥

+

∫︁
𝜕ℒW

𝜕𝜓
(𝛿𝜓)

√
−𝑔 𝑑4𝑥, (5.4)

where 𝑇𝜇𝜈 is the energy-momentum tensor, and 𝐺𝜇 can be called “the Weyl current”. By virtue of the
Euler-Lagrange equation, the last term equals zero.

Then, consider an infinitesimal conformal transformation

𝛿𝑔𝜇𝜈 = 2Ω𝑔𝜇𝜈(𝛿Ω) = 2𝑔𝜇𝜈
𝛿Ω

Ω
, (5.5)
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𝛿𝐴𝜇 = 2𝛿

(︂
Ω,𝜇

Ω

)︂
= 2𝛿(log Ω),𝜇 = 2(𝛿(log Ω)),𝜇 = 2

(︂
𝛿Ω

Ω

)︂
,𝜇

. (5.6)

Then,

𝛿𝑆m = −1

2

∫︁
𝑇𝜇𝜈

(︂
𝛿Ω

Ω

)︂√
−𝑔 𝑑4𝑥−

∫︁
𝐺𝜇

(︂
𝛿Ω

Ω

)︂√
−𝑔 𝑑4𝑥 = 0. (5.7)

Separating the full derivative in the second term and neglecting it (fixed ends!), one gets

2𝐺𝜇
;𝜇 = Trace(𝑇𝜇𝜈). (5.8)

This is the self-consistency condition. (Note the metric covariant derivative in the left-hand-side).

5.2. Perfect fluid

𝑆m = −
∫︁
𝜀(𝑋,𝑛)

√
−𝑔 𝑑4𝑥+

∫︁
𝜆0(𝑢𝜇𝑢

𝜇 − 1)
√
−𝑔 𝑑4𝑥

+

∫︁
𝜆1(𝑛𝑢

𝜇);𝜇
√
−𝑔 𝑑4𝑥+

∫︁
𝜆2𝑋,𝜇𝑢

𝜇√−𝑔 𝑑4𝑥, (5.9)

with the following dynamical variables: 𝑛(𝑥) as the particle number density, 𝑢𝜇(𝑥) as the four-velocity
vector and 𝑋(𝑥) as the auxiliary variable, enumerating the trajectories [15, 16]. The energy density
𝜀(𝑋,𝑛) depends on two dynamical variables, and 𝜆0(𝑥), 𝜆1(𝑥) and 𝜆2(𝑥) are the Lagrange multipliers,
providing the constraints.

The equations of motion are

𝛿𝑛 : − 𝜕𝜀

𝜕𝑛
− 𝜆1,𝜇𝑢

𝜇 = 0, (5.10)

𝛿𝑢𝜇 : 2𝜆0𝑢
𝜇 − 𝑛𝜆1,𝜇 + 𝜆2𝑋,𝜇 = 0, (5.11)

𝛿𝑋 : − 𝜕𝜀

𝜕𝑋
− (𝜆2𝑢

𝜇);𝜇 = 0. (5.12)

The constraints are
𝛿𝜆1 : (𝑛𝑢𝜇);𝜇 = 0, (5.13)

𝛿𝜆1 : (𝑛𝑢𝜇);𝜇 = 0, (5.14)

𝛿𝜆2 : 𝑋,𝜇𝑢
𝜇 = 0. (5.15)

The first of them is just the familiar renormalization of the four-velocities, the second one demonstrates
the conservation law of the number of particles, while the third constraint tells us that the auxiliary
variable 𝑋 is constant along the trajectory.

The energy-momentum tensor is obtained by varying the metric tensor 𝛿𝑔𝜇𝜈 : 𝑇𝜇𝜈 = 𝜀𝑔𝜇𝜈 −
2𝜆0𝑢

𝜇𝑢𝜈 + 𝑛𝜆1,𝜎𝑢
𝜎𝑔𝜇𝜈 . By contracting the second of the equations of motion with 𝑢𝜇, using the

constraints and the comparing with the first one, allows us to extract the relation

2𝜆0 = −𝑛 𝜕𝜀
𝜕𝑛

. (5.16)

Introducing, then, the hydrodynamical pressure 𝑝

𝑝 = 𝑛
𝜕𝜀

𝜕𝑛
− 𝜀, (5.17)

we get the familiar energy-momentum tensor for the perfect fluid

𝑇𝜇𝜈 = (𝜀+ 𝑝)𝑢𝜇𝑢𝜈 − 𝑝𝑔𝜇𝜈 . (5.18)
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The Weyl geometry may and will cause the modifications of the simple picture presented above. To
understand what kind of changes are possible, let us consider the single particle moving in a given
space-time.

Everybody knows that in the Riemannian geometry, the only invariant that can be constructed in
order to describe the particle motion is the interval 𝑠 along its trajectory. Hence,

𝑆part = −𝑚
∫︁
𝑑𝑠 = −𝑚

∫︁ √︂
𝑔𝜇𝜈(𝑥)

𝑑𝑥𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
𝑑𝜏, (5.19)

where 𝑚 is the particle mass (𝑢𝜇𝑢𝜇 = 1), 𝑑𝑥𝜇/𝑑𝑠 = 𝑑𝑥𝜇/𝑑𝜏 = 𝑢𝜇 — its four-velocity, and 𝜏 — the proper
time.

The least action principle, 𝛿𝑆m = 0, with the fixed ends gives us the geodesic equations (“shortest”
interval),

𝑢𝜆;𝜈𝑢
𝜈 = 0. (5.20)

In the Weyl geometry, however, there exists yet another invariant,

𝐵 = 𝐴𝜇𝑢
𝜇, (5.21)

and the single particle action may have the more general form,

𝑆part =

∫︁
𝑓1(𝐵)𝑑𝑠+

∫︁
𝑓2(𝐵)𝑑𝜏 =

∫︁
{ 𝑓1(𝐵)

√︀
𝑔𝜇𝜈𝑢𝜇𝑢𝜈+ 𝑓2(𝐵) } 𝑑𝜏. (5.22)

The equations of motion become

𝑓1𝑢𝜆;𝜇𝑢
𝜇 =

(︁
(𝑓

′′

1 + 𝑓
′′

1 )𝐴𝜆 − 𝑓
′

1𝑢𝜆)
)︁
𝐵,𝜇𝑢

𝜇 + (𝑓
′

1 + 𝑓
′

2)𝐹𝜆𝜇𝑢
𝜇, (5.23)

where 𝐹𝜆𝜇 = 𝐴𝜇,𝜆 − 𝐴𝜆,𝜇. Since 𝐹𝜆𝜇𝑢
𝜆𝑢𝜇 ≡ 0 and 𝑢𝜆;𝜎𝑢

𝜆 ≡ 0 (due to the normalization), then the
contraction with 𝑢𝜆 gives us (︁

(𝑓
′′

1 + 𝑓
′′

2 )𝐵 − 𝑓
′

1

)︁
𝐵,𝜇𝑢

𝜇 = 0. (5.24)

This is a consistency condition.
How to insert the interaction with the Weyl vector 𝐴𝜇 into the perfect fluid Lagrangian? Evidently,

the new invariant 𝐵 = 𝐴𝜇𝑢
𝜇 is tightly linked to the particle number density 𝑛. Hence, it seems natural to

make the replacement 𝑛 → 𝜙(𝐵)𝑛. And how about the particle number conservation law, (𝑛𝑢𝜇);𝜇 = 0?
We have already mentioned that the quadratic in curvatures terms describe the vacuum polarization

and may cause the particle creation from the vacuum fluctuations. Therefore,

(𝑛𝑢𝜇);𝜇 = Ψ(inv), (5.25)

where Ψ is some invariants constructed from the geometrical structures and classical fields which also
are possible sources of the particle production.

Clearly, particles, can be just counted, point by point, its number should not depend on the metric
itself and on the conformal factor, in particular. Let us check this. The local conformal transformation
𝑔𝜇𝜈 = Ω2𝑔𝜇𝜈 causes the following changes,

𝑛 =
�̂�

Ω3
, 𝑢𝜇 =

�̂�𝜇

Ω
,

√
−𝑔 = Ω4

√︀
−𝑔. (5.26)

Thus,
(𝑛𝑢𝜇);𝜇

√
−𝑔 = (𝑛𝑢𝜇),𝜇 = (�̂��̂�𝜇

√︀
−𝑔),𝜇, (5.27)

i. e., (𝑛𝑢𝜇);𝜇
√
−𝑔 is conformal invariant. The result (though rather simple) is of very importance, since

it does not depend at all on the type of geometry or the gravitational Lagrangian.
In the absence of the classical matter fields we have no other choice but the following

Φ(inv) = 𝛼′
1𝑅

𝜇𝜈𝜆𝜎
𝜇𝜈𝜆𝜎 + 𝛼′

2𝑅
𝜇𝜈
𝜇𝜈 + 𝛼′

3𝑅
2 + 𝛼′

4𝐹𝜇𝜈𝐹
𝜇𝜈 , (5.28)
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i. e., the Weyl gravitational Lagrangian with “primed” coefficients.
The matter action integral 𝑆m becomes now,

𝑆m = −
∫︁
𝜀(𝑋,𝜙(𝐵)𝑛)

√
−𝑔 𝑑4𝑥+

∫︁
𝜆0(𝑢𝜇𝑢

𝜇 − 1)
√
−𝑔 𝑑4𝑥

+

∫︁
𝜆1 ((𝑛𝑢

𝜇);𝜇 − Φ(inv))
√
−𝑔 𝑑4𝑥+

∫︁
𝜆2𝑋,𝜇𝑢

𝜇√−𝑔 𝑑4𝑥. (5.29)

Surely, the changes made by us, will influence both Weyl current 𝐺𝜇, and the energy-momentum
tensor, 𝑇𝜇𝜈 . There are contributions from the energy density 𝜀, we call the 𝐺𝜇[part] and 𝐺𝜇𝜈 [part],
correspondingly, and from the creation function Φ(inv), we call them 𝐺𝜇[cr] and 𝑇𝜇𝜈 [cr]. The former
ones can be easily calculated,

𝐺𝜇[part] =
𝜙′

𝜙
(𝜀+ 𝑝)𝑢𝜇, (5.30)

𝑇𝜇𝜈 [part] = (𝜀+ 𝑝)

(︂
1−𝐵

𝜙′

𝜙

)︂
𝑢𝜇𝑢𝜈 − 𝑝𝑔𝜇𝜈 . (5.31)

The creation parts are two lengthy. We will show them in the next Section 6, for the cosmological
space-times.

6. Cosmology

By cosmology we will understand the homogeneous and isotropic space-time described by the
Roberson-Walker metric. What is it?

Let us consider the Euclidean 3-dimensional space. Its line element 𝑑𝑙 is determined by the familiar
Pythagoras’ theorem

𝑑𝑙2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2). (6.1)

The last equality represents the same, but written in the spherical coordinates, 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 —
radius of the sphere centering at any point. Evidently, this is homogeneous and isotropic. Surely, the
most general form looks as follows,

𝑑𝑙2 = 𝑓(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2). (6.2)

Thus we have one unknown function, 𝑓(𝑟). So we need only one equation in order to determine it. If
one assumes that our 3-geometry is Riemannian (you already know what it means), the 3-dimensional
curvature scalar, 𝐾, should be constant (due to the homogeneity),

𝐾 = 𝐾0. (6.3)

Using general formulas, given above in the first part of the lectures, you may calculate 𝐾 (as an exercise)
and obtain the following equation

2𝑓 ′

𝑟𝑓2
+

2

𝑟2

(︂
1− 1

𝑓

)︂
= 𝐾0 = 𝑐𝑜𝑛𝑠𝑡, (6.4)

which is readily integrated,
1

𝑓
= 1− 𝐾0

6
𝑟2 +

𝐾1

𝑟
. (6.5)

The central point, 𝑟 = 0, is singular. But it cannot be so — otherwise, all the points must be singular
as well (homogeneity!). Therefore, 𝐾1 = 0, and after the rescaling of 𝑟 one gets

𝑑𝑙2 = 𝑎20

(︂
𝑑𝑟2

1− 𝑘𝑟2
+ 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)

)︂
, 𝑘 = 0,±1. (6.6)
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Because of the homogeneity (again!) it is possible to introduce the global time 𝑡 and write down the
4-dimensional metric in the form

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)

(︂
𝑑𝑟2

1− 𝑘𝑟2
+ 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)

)︂
, 𝑘 = 0,±1. (6.7)

The time 𝑡 is called “the cosmological time”. This is just the Robertson-Walker metric. The only unknown
function in the metric tensor is the so called scale factor 𝑎(𝑡).

The Weyl geometry is characterized also by the Weyl vector 𝐴𝜇. How about it? Due to the very
high cosmological symmetry, the Weyl vector may have only one nonzero component, 𝐴0(𝑡). By the
suitable conformal transformation Ω(𝑡) it can be put zero, since 𝐴(𝑡) = 𝐴(𝑡) + 2Ω̇/Ω. This fixes the
gauge freedom. Evidently, in cosmology

𝐹𝜇𝜈 = 𝐴𝜈,𝜇 −𝐴𝜇,𝜈 ≡ 0. (6.8)

Warning! We are not allowed to put 𝐴𝜇 = 0 prior to the variation of the action, because 𝛿𝐴𝜇 ̸= 0. So, we
should calculate the variation both of the Weyl action, 𝑆W, and the matter action, 𝑆m. The result will
be the vector gravitational equation with 𝐺𝜇 in the right-hand-side in the first case, and the definition
of 𝐺𝜇 (in the left-hand-side) in the second case. As already mentioned, the latter consists of two parts,
𝐺𝜇[part] and 𝐺𝜇[cr]. The first one, that comes from the direct interaction of the particles with the Weyl
vector, we presented above. The calculation of the second, that comes from the particle creation law, is
rather cumbersome. Below is the result

𝐺𝑖[cr] = 0, (6.9)

𝐺0[cr] = −2(2𝛼′
1 + 𝛼′

2)�̇�1R
0
0 − (𝛼′

2 + 6𝛼′
3)�̇�1R− 2(𝛼′

1 + 𝛼′
2 + 3𝛼′

3)𝜆1Ṙ. (6.10)

In order to obtain the vector gravitational equation it is sufficient to put 𝜆1 ≡ 1 and to remove primes

− 2(𝛼1 + 𝛼2 + 3𝛼3)𝜆1�̇� = 𝐺0. (6.11)

It is right now that we have the right to put 𝐴𝜇 = 0 straight in the Lagrangians. Actually, we will
be dealing with the Riemannian geometry, where the Weyl Lagrangian can be rewritten in the following
way

ℒW = 𝛼1𝑅𝜇𝜈𝜆𝜎𝑅
𝜇𝜈𝜆𝜎 + 𝛼2𝑅𝜇𝜈𝑅

𝜇𝜈 + 𝛼3𝑅
2 + 𝛼4𝐹𝜇𝜈𝐹

𝜇𝜈

= 𝛼𝐶2 + 𝛽𝐺𝐵 + 𝛾𝑅2. (6.12)

Here 𝐶2 = 𝐶𝜇𝜈𝜆𝜎𝐶
𝜇𝜈𝜆𝜎, where 𝐶𝜇𝜈𝜆𝜎 is the so called Weyl tensor, defined as the completely traceless

part of the curvature tensor 𝑅𝜇𝜈𝜆𝜎,

𝐶𝜇𝜈𝜆𝜎 = 𝑅𝜇𝜈𝜆𝜎 +
1

2
(−𝑅𝜇𝜆𝑔𝜈𝜎 +𝑅𝜇𝜎𝑔𝜈𝜆 +𝑅𝜈𝜆𝑔𝜇𝜎 −𝑅𝜈𝜎𝑔𝜆𝜇)

+
1

6
𝑅(𝑔𝜇𝜆𝑔𝜈𝜎 − 𝑔𝜇𝜎𝑔𝜈𝜆), (6.13)

𝐶2 = 𝑅𝜇𝜈𝜆𝜎𝑅
𝜇𝜈𝜆𝜎 − 2𝑅𝜇𝜈𝑅

𝜇𝜈 +
1

3
𝑅2. (6.14)

Then follows the so called Gauss-Bonnet term, GB,

𝐺𝐵 = 𝑅𝜇𝜈𝜆𝜎𝑅
𝜇𝜈𝜆𝜎 − 4𝑅𝜇𝜈𝑅

𝜇𝜈 +𝑅2, (6.15)

which is the full derivative in the 4-dimensional space-time and does not affect the field equations.
It is easy to calculate the coefficients 𝛼, 𝛽 and 𝛾:⎧⎪⎨⎪⎩

𝛼+ 𝛽 = 𝛼1

−2𝛼− 4𝛽 = 𝛼2
1
3𝛼+ 𝛽 + 𝛾 = 𝛼3.

(6.16)
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The same, surely, true for the “primed” version. With this new notations, one has

𝐺𝑖[cr] = 4𝛽�̇�1𝑅
0
0 − 2(𝛽 + 3𝛾)�̇�1𝑅− 6𝛾𝜆1�̇�. (6.17)

The coefficient 𝛼 does not enter at all, as it should be, since the Weyl tensor is identically zero for any
homogeneous and isotropic space-time.

The variation of the metric tensor, 𝛿𝑔𝜇𝜈 provides us with the left-hand-sides of the tensor gravitational
equations (coming from 𝛿𝑆W) and their right-hand-sides, energy momentum tensor 𝑇𝜇𝜈 (coming from
𝛿𝑆m). Note, that in cosmology we need to know only 𝑇 00 = 𝑇 0

0 and 𝑇 = Trace𝑇𝜇𝜈 , since 𝑇 0𝑖 = 0 and
𝑇 𝑖𝑗 = 𝑇 1

1 𝑔
𝑖𝑗 , 𝑇 1

1 = (1/3)(𝑇 − 𝑇 0
0 ). Thus,

𝑇 = 𝑇 [part] + T[cr], (6.18)

𝑇 [part] = 𝜀− 3𝑝, (6.19)

𝑇 [cr] = �̈�1(8𝛽
′𝑅0

0 − 4𝛽′𝑅− 12𝛾′𝑅)

−4�̇�1

(︂
𝛽′ �̇�

𝑎
(𝑅+ 2𝑅0

0) + 6𝛾′�̇�+ 9𝛾′
�̇�

𝑎
𝑅

)︂
−12𝜆1𝛾

′(�̈�+ 3
�̇�

𝑎
�̇�), (6.20)

𝑇 0
0 = 𝑇 0

0 [part] + 𝑇 0
0 [cr], (6.21)

𝑇 0
0 [part] = 𝜀, (6.22)

𝑇 0
0 [cr] = 8𝛾′�̇�1

�̇�

𝑎
𝑅0

0 − 4(𝛽′ + 3𝛾′)�̇�1
�̇�

𝑎
𝑅

−𝛾′𝜆1
(︂
12
�̇�

𝑎
�̇�+𝑅(4𝑅0

0 −𝑅)

)︂
. (6.23)

Again, in order to get the corresponding left-hand-sides, one should put 𝜆1 ≡ 1 and erased “primes”.
At last, let us write down the complete set of the field equations.
Vector:

− 6𝛾�̇� = 𝐺0. (6.24)

Tensor:
− 𝛾

(︂
12
�̇�

𝑎
�̇�+𝑅(4𝑅0

0 −𝑅)

)︂
= 𝑇 0

0 , (6.25)

− 12𝛾

(︂
�̈�+ 3

�̇�

𝑎
�̇�

)︂
= 𝑇. (6.26)

Self-consistency condition:

2
(𝐺0𝑎3)˙

𝑎3
= 𝑇 0

0 + 3𝑇 1
1 = 𝑇, (6.27)

where
𝑅0

0 = −3
�̈�

𝑎
, (6.28)

𝑅 = −6

(︂
�̈�

𝑎
+
�̇�2 + 𝑘

𝑎2

)︂
, 𝑘 = 0,±1 (6.29)

It is quite clear that the self-consistency condition is just the consequence of the vector and trace
equations.

How about the equations of motion for the cosmological perfect fluid? It appears that we are left
with only one equation plus the law of the particle creation, namely,{︃

�̇�1 = − 𝜀+𝑝
𝑛

(𝑛𝑎3)˙

𝑎3 = Φ(inv)
(6.30)
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Φ(inv) = −4

3
𝛽′𝑅0

0(2𝑅
0
0 −𝑅) + 𝛾′𝑅2. (6.31)

Remember, we assumed the absence of any classical fields that may cause the particle production.
Let us suppose now that the universe was created from “nothing”, i. e., from some quantum foam [17].

Most likely, it emerged empty — without matter fields (particles). This vacuum is not absolutely empty,
it is filled with the quantum (virtual) fluctuations of the matter fields (particles are the real quanta of
these fields).

Such a vacuum, being deformed (polarized) by the strong gravitational field, can produce particles.
Then, the question arises: being the initial state, may or may not it persists? In other words, may it
survive for a while? If the answer is “yes”, we will call this physical vacuum “the pregnant” vacuum — it
may give birth to particles, but did not do this yet (see also [18,19]).

What are the condition to be the pregnant vacuum? First of all,

Φ(inv) = 0, |𝛽′|+ |𝛾′| ≠ 0, (6.32)

i. e., the particle creation is not completely prohibited. This is translated to

4

3
𝛽′𝑅0

0(2𝑅
0
0 −𝑅) = 𝛾′𝑅2. (6.33)

Then, evidently,
𝑛 = 0 (6.34)

and
𝐺0[part] = 𝑇 0

0 [part] = 𝑇 [part] = 0. (6.35)

Let us have a look at the equation left from the set of equations of motion for the perfect fluid, namely

�̇�1 = −𝜀+ 𝑝

𝑛
. (6.36)

There are three completely different types of behavior of the right-hand-side in the limit 𝑛→ 0.

1. lim
𝑛→0

𝜀+𝑝
𝑛 = ∞. There is no vacuum solution at all, even in the very beginning.

2. 𝑛→ 0 lim
𝑛→0

𝜀+𝑝
𝑛 = 0 (for example, thermal radiation). Then, if 𝛽′, 𝛾′ ̸= 0, we have the following set

of equations,
𝜆1 = 𝑐𝑜𝑛𝑠𝑡 (6.37)

𝑅 = 𝜉𝑅0
0 ⇒ (6.38)

(3𝛾′𝜉2 + 4𝛽′(𝜉 − 2))𝑅0
0 = 0 (6.39)

− 6(𝛾 − 𝛾′𝜆1)�̇� = 0 (6.40)

− 12(𝛾 − 𝛾′𝜆1)
(�̇�𝑎3)˙

𝑎3
= 0 (6.41)

− (𝛾 − 𝛾′𝜆1)

{︂
12
�̇�

𝑎
�̇�+𝑅(𝑅− 4𝑅0

0)

}︂
= 0. (6.42)

Let, first, 𝛾 ̸= 𝛾′𝜆1, then �̇� = 0. Now we have two possibilities. Either 𝑅 = 0 and, hence, 𝑅0
0 = 0 —

in this case the vacuum represents the so called Milne universe, i. e., locally flat (Minkowski) space-
time. Or 𝜉 = 4, one gets the (Anti) de Sitter space-time for the specific choice of the coefficients
𝛽 + 6𝛾′ = 0.

Let now
𝛾 = 𝛾′𝜆1, (6.43)

it is not the special condition, but the solution for 𝜆1. Then

�̇�2 + 𝑘 = 𝐶0𝑎
4

𝜉−2 . (6.44)
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Formally the vacuum solution exists, but, first, it may be unstable, and, second, if no other types
of particle are producing.

At last, let us come to the third case.

3. Dust pregnancy. For the dust matter

𝜆1 = −𝜑(0)(𝑡− 𝑡0). (6.45)

The whole set of equations are reduced to

�̇� = 0 (6.46)

𝑅(𝑅− 4𝑅0
0) = 0. (6.47)

Up to now, the results are the same as before. But, for the general choice of 𝛽′ and 𝛾′, the universe
emerging from the quantum foam, like Aphrodite, immediately starts to produce dust particles!!!
Dark matter?
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