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Abstract: The problem reduction of an evolution modelling of the open Universe for conformally flat space-

time metric in Fock’s form to an equivalent problem of a particle movement with an unit mass in a force field is

demonstrated. The exact cosmological models filled with a substance and radiation in an approximation of the

perfect fluid are found since the Friedman solution by means an introduction of set "mechanical" potentials.

In the article the possibility of deriving from the Einstein equations exact cosmological solutions for the

open Universe by reduction to the equivalent problem of a mass particle motion in the force field is considered.

The cosmological model is filled by substance in an approximation of the perfect fluid with nonzero pressure,

generally speaking. The metric of 4D space-time is taken in the Fock form as the metric conformal to the

Minkowski metric. This metric has the dependence on one variable. A square of the variable is product of

advanced and retarded times.

The using of mechanical interpretation of the gravitation equations leads to a possibility of consideration

of various mechanics force fields with the subsequent physical interpretation of the found exact cosmological

solutions.

First of all a movement of a free particle with an unit mass (a mechanical force equals to zero) is considered,

i.e. the particle moves on inertia. The fourth degree of discovered law of movement is a conformal factor of the

cosmological metric which is conformally flat. This case corresponds to the exact cosmological solution without

pressure, coinciding with known the Friedman solution for the open Universe.

After that the force field leading to uniformly decelerated motion of a particle is considered. The force

potential is taken in the form of linear function. The tangent of a slope angle of the function curve coincides

with particle acceleration. Such research leads to the exact cosmological solution asymptotically describing both

an incoherent dust, and the ultrarelativistic substance which may be interpreted as an equilibrium radiation.

Further a square-law function without a linear term and a constant value is taken as a force potential. Such

potential can be interpreted as potential of the free oscillator. The solution of corresponding equation of motion

is written down in the form of a cosine function with some initial phase related to the ratio between parameters

which define dust-like and ultrarelativistic substance. This conclusion becomes obvious after concidering

asymptotic behaviour of pressure and energy density. Besides, the series expansion of a root of the fourth

degree from a conformal factor asymptoticly coincides with the law of uniformly decelerated motion in previous

case that indicates its particular character.
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Introduction

Modern models of the Universe are based on the well-known cosmological solutions of Friedman [1,2]

as on solutions of the Einstein equations. Without taking into account these models it is impossible to

construct a realistic cosmological model. Up to today, the second solution [2] is the starting point for
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discussing cosmological models of the observable Universe for an isotropic space with negative curvature,

describing an expanding universe filled with incoherent dust (there is no pressure).

At the same time, A. Friedman’s solution [2] belongs to conformally flat solutions, i.e. for them

the conformal curvature tensor of Weyl is equal to zero (see, for example, [3]). In this case we can

write the metric of a four-dimensional space-time as a conformally flat 4D metric. In most cases, this

solution of Friedman is written in the synchronous coordinates (see, for example, [4]). However, the Fock

approach [5,6] allows us to rewrite this metric in such form that is conformal to the Galilean metric (to

the Minkowski metric). In addition, as shown under general approach in [7], that such a transition is

equivalent to a transition from a synchronous frame of reference to a kinemetric one [8]– [14].

Further, a possibility to write the Einstein equations solution in the form of quadratures for a

homogeneous isotropic Universe filled with matter with an arbitrary equation of state is obtained in the

paper [15]. It is made with the help of the Fock approach, in which 4D metric of space-time is conformal

to the Minkowski metric and the conformal factor is a function of one variable. Such writing down can

be used to simulate the evolution of a model of the universe at various stages. But particular interest

for the researcher there are exact solutions of the Einstein equations that generalize the already known

ones.

The Fock approach applied in [16, 17] allowed us to find a generalization of Friedman’s solution

for the open universe in the case of both matter and equilibrium light-like radiation (similar to

electromagnetic radiation) with non-zero pressure without introducing a specific equation of state. The

continuation of this approach has been carried out in further works [18]– [21].

1. The equations of gravitational field

Now we will consider the possibility of obtaining exact solutions using the Fock approach. This

procedure is different from earliar done in [16,17].

Thus we assume that the metric may be written as:

𝑑𝑠2 = exp(2𝜎)𝛿𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 , (1)

where 𝑒𝑥𝑝(2𝜎) is a conformal factor; 𝜎 = 𝜎(𝑆); 𝑆2 = 𝛿𝜇𝜈𝑥
𝜇𝑥𝜈 = 𝑡2 − 𝑟2; 𝛿𝜇𝜈 = 𝑑𝑖𝑎𝑔(1;−1;−1;−1)

is the Minkowski metric tensor; 𝜇, 𝜈 = 0, 1, 2, 3; the speed of light and Newton’s gravitational constant

are equal to unit, so the Einstein gravitational constant is equal here to κ = 8𝜋.

The right-hand side of the Einstein equations (without the cosmological constant)

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = −κ𝑇𝜇𝜈 (2)

we will write in the approximation of the perfect fluid with an energy-momentum tensor (EMT)

𝑇𝜇𝜈 = 𝜀 𝑢𝜇𝑢𝜈 + 𝑝 𝑏𝜇𝜈 , (3)

where 𝜀 is an energy density; 𝑝 is a pressure; 4D-speed 𝑢𝜇 = 𝑒𝑥𝑝(𝜎)𝑏𝜇 is proportional to the gradient

of the variable 𝑆 as a function of coordinates 𝑥𝜇 : 𝑏𝜇 = 𝑆,𝜇; 𝑢𝜇𝑢
𝜇 = 1 is 4D-speed normalization

condition; 𝑏𝜇𝜈 = 𝑢𝜇𝑢𝜈−𝑔𝜇𝜈 there is 3D-projector, which plays the role of 3D metric tensor and time-like

congruence 𝑢𝜇 is normal to 3D-space: 𝑏𝜇𝜈𝑢
𝜇 = 0.

System of equations (2) is reduced to the system of two differential equations in full derivatives as

a result (1+3)-splitting:

3

(︂
2
𝜎′

𝑆
+ (𝜎′)2

)︂
= κ𝜀 · 𝑒𝑥𝑝(2𝜎); (4)

2

(︂
𝜎′′ +

2𝜎′

𝑆
+

(𝜎′)2

2

)︂
= −κ𝑝 · 𝑒𝑥𝑝(2𝜎), (5)
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where the prime denotes the derivative 𝑑/𝑑𝑆.

The splitting of the 4-equations of the gravitational field was carried out using the monad formalism

[8]– [14] and projecting the system (2) onto the time-like world line and a space-like surface orthogonal

to the time-like direction. The 4D-velocity vector is used as a monad. As a result, a system of two

differential equations was obtained. One equation determines the energy density, and the other-the

pressure.

Generally speaking, to solve this system, it is necessary to set the equation of state of matter, i.e.

the relationship between energy density and pressure. This connection is obviously a function of the

point of the space-time continuum (in this case it is a function of the variable 𝑆). The vast majority

of cosmological models are constructed on the assumption that this relationship is a constant value,

although it differs at different stages of the evolution of models. This assumption, in our opinion, is a

barrier to the construction of truly evolutionary models, when matter (and, accordingly, the equation

of state) changes because such models develop. We will try to demonstrate that, based on the form of

the equations themselves, it is possible to obtain exact solutions with a variable equation of state that

describe the Universe containing different stages of matter of its evolution.

First of all, we note that the system (4)–(5) can be reduced to the Riccati equation of the variable

𝑆 by explicitly introducing a function of state as [15]

𝛽(𝑆) =
𝑝(𝑆)

𝜀(𝑆)
. (6)

On the assumption of a certain dependence of the pressure from the variable 𝑆 [16, 17] the exact

solution of this equation is found.

2. Reduction of the Universe simulation to the motion problem of a particle in a force field

Here we will take a slightly different path. By replacing 𝜎 = 2 · 𝑙𝑛(𝑦), the system (4)–(5) may be

reduced to a simpler one

12 · 𝑦′
(︂
𝑦′ +

1

𝑆
· 𝑦
)︂

= κ𝜀 · 𝑦6; (7)

4 ·
(︂
𝑦′′ +

2

𝑆
𝑦′
)︂

= −κ𝑝 · 𝑦5. (8)

It is easy to see that in the equation (8) which contains pressure, one can exclude the first derivative

by substituting:

𝑦 = 𝑧1(1/𝑆) 𝑜𝑟 𝑦 = 𝑧2(𝑆)/𝑆, (9)

where 𝑧1 and 𝑧2 are some functions.

Here it is appropriate to draw an analogy with the external and internal tasks in potential theory,

where the external solution (the Laplace equation solution) is often looked for in the first class functions,

and the internal solution (the Poisson equation solution) in the second.

In this case, the equation (7) (determination of the energy density) for both cases of substitution

will take the following form:

𝑑𝑧

𝑑𝑥

(︂
𝑑𝑧

𝑑𝑥
− 𝑧

𝑥

)︂
= κ

𝑧6

12𝑥4
· 𝜀, (10)

where 𝑥 = 1/𝑆 for the first replacement, and 𝑥 = 𝑆 for the second one.

The equation (8) will be transformed to the general writing down in any case



30 A.M. Baranov, E.V. Saveljev

𝑑2𝑧

𝑑𝑥2
= 𝐹 (𝑥, 𝑧, 𝑝), (11)

where

𝐹 (𝑥, 𝑧, 𝑝) = −κ
𝑧5

4𝑥4
· 𝑝. (12)

Considering the variable 𝑥 as a new “time” variable, and the function 𝑧 as a kind of generalized

coordinate, we can interpret (11) as the Newton equation for the one-dimensional motion of a particle

of unit mass under the action of the force 𝐹 from equation (12).

We can integrate this equation knowing the function 𝐹, i.e. we come to the “law of motion” 𝑦 = 𝑦(𝑥).

In other words, in such way we can find the conformal factor 𝑒𝑥𝑝(2𝜎) = 𝑦4. This means that it is easy to

find all physical magnitudes, which are necessary to us in the cosmological model. In this case, a specific

“mechanical” movement of an unit mass particle will correspond to a specific Universe evolution. It is

necessary to emphasize that the force function in mechanics can also depend on the velocity, for example,

when we have an oscillator with dissipation (in particular, see obtaining a cosmological solution with a

viscosity in [22,23].

Thus, there is an opportunity to replace the problem of modeling the evolution of the open Universe

by the equivalent problem of the mechanical motion of an unit mass particle in a certain force field.

The most common force fields are potential fields, therefore consideration of their here and in

subsequent works will be devoted the further research. In particular, if 𝐹 = −𝑑𝑈/𝑑𝑧, then the pressure
is directly related to the choice of the function 𝑈 dependence as

κ𝑝 = 4
𝑥4

𝑧5
· 𝑑𝑈
𝑑𝑧
. (13)

We will stop here at the first replacement, i.e. we will introduce a new variable 𝑥 = 1/𝑆. Now

we will mark the dimensionless “generalized coordinate” 𝑧 as 𝑦. Thus everywhere below we will assume

𝑧 ≡ 𝑦, because Friedman’s solution for the open Universe just corresponds to such a dependence on 𝑆.

If the potential turns out to be a function of only “coordinate” 𝑧, then the equation (11) can be

easily integrated using the corresponding “conservation law”, in which “total energy” will be determined

by the chosen initial conditions. This allows us to model different scenarios of the open Universe.

An inertial motion is the simplest example of motion for which 𝐹 = 0 (𝑈 ≡ 𝑈0 = 𝑐𝑜𝑛𝑠𝑡). Then,

in such a “mechanistic” interpretation, the Friedman solution will correspond to an uniform motion or

motion in a constant potential field:

𝑝 = 0;
𝑑𝑈

𝑑𝑦
= 0; 𝑦 = 1−𝐴𝑥 = 1− 𝐴

𝑆
; 𝐴 > 0, (14)

where 𝐴, on the one hand, is a constant “velocity” ∝ 𝑑𝑦/𝑑𝑥 (in the “mechanical” interpretation, where

𝑥 is a “time variable”, varying from 0 ⇐⇒ 𝑆 = ∞ to 1/𝐴 ⇐⇒ 𝑆 = 𝐴), and on the other hand, it is

a constant associated with the density of dusty matter, i.e. matter that does not “create” pressure and

fills the Friedman Universe.

The conformal factor of the metric (1) is here

𝑒𝑥𝑝(2𝜎) = 𝑦4 = (1− 𝐴

𝑆
)4 (15)

and coincides with the one which is obtained in [5] for the open model of the Friedman Universe.

In [5,6], the solution (14) is considered in sufficient details. Therefore, we will here not consider the

analysis of Friedman’s solution in such form of writing down. We will only remind of that the condition

of the energy density positivity requires the positivity of the constant 𝐴, therefore we give here an exact

expression for the energy density of the incoherent dust of the Friedman solution

κ𝜀 =
12𝐴𝑥3

(1−𝐴𝑥)6
. (16)



Exact solutions of the conformally flat Universe. I 31

Obtaining the above result on the basis of the “mechanical” approach assumes that “non-uniform

motion” in this approach should lead to a generalization of Friedman’s solution.

The next simple “potential” is a linear function (with constants 𝑎 and 𝑏),

𝑈 = 𝑎𝑦 + 𝑏, (17)

i.e. uniformly decelerated motion is realized under the action of a constant force onto a unit mass

particle:

𝐹 = −𝑑𝑈
𝑑𝑦

= −𝑎, (18)

where 𝑎 is a constant that coincides with the acceleration in the mechanical approach.

Then we immediately find dimensionless “path” by which this particle goes,

𝑦 = 𝐶0 + 𝐶𝑥− 𝑎

2
𝑥2, (19)

where 𝐶 and 𝐶0 are the integration constants respectively interpreted as the velocity and the initial

dimensionless distance when 𝑥 = 0.

On the other hand, the expression (19) is the exact solution of the equations (7)–(8).

When 𝑥 → 0 (𝑆 → ∞) the Galilean condition must be. In this case the Friedman solution as

asymptotic solution must be satisfied for the open model of Universe. From these requirements we

obtain the constants equal to 𝐶0 = 1 and 𝐶 = −𝐴, in (19), i.e. we can rewrite the expression for 𝑦 as

𝑦 = 1−𝐴𝑥− 𝑎

2
𝑥2. (20)

Such writing down of the function 𝑦 with a positive parameter (𝑎) sets up the condition 𝑔00 < 1

of a metric tensor component 𝑔00 for all 𝑆 < ∞ or 𝑥 > 0. In our case, this condition is true for the

conformal factor, which be written as

𝑒𝑥𝑝(2𝜎) =
(︁
1−𝐴𝑥− 𝑎

2
𝑥2
)︁4

=

(︂
1− 𝐴

𝑆
− 𝑎

2𝑆2

)︂4

. (21)

It is clear, that the behavior of the model will be determined by the relationship between constants

𝐴 and 𝑎. A complete study of this exact solution will be researched into later publications. Here we will

indicate only some interesting, in our opinion, the points.

The pressure will be written as

κ𝑝(𝑥) =
4𝑎𝑥4

𝑦5
. (22)

It should be said that when the constant 𝑎 is negative, the pressure is also negative, i.e. the pressure

sign is determined by the “acceleration” sign 𝑎.

The energy density from (10) is now written as

κ𝜀(𝑥) = 12𝑥3
(𝐴+ 𝑎𝑥)(1 + 𝑎𝑥2/2)

𝑦6
. (23)

The three-dimensional scalar curvature in this approach is calculated in accordance with the formula

3𝑅 = −3𝜎′
𝑆

𝑆
𝑒𝑥𝑝(−2𝜎) =

6𝑥3𝑦′𝑥
𝑦5

(24)

and in our case it will be
3𝑅 = − 6𝑥3(𝐴+ 𝑎𝑥)

(1−𝐴𝑥− 𝑎𝑥2/2)5
. (25)

The point of singularity in this model (the time-point when the conformal factor vanishes, and the

three-dimensional scalar curvature equals to infinity) will correspond to the non-negativity of 𝑥



32 A.M. Baranov, E.V. Saveljev

𝑥0 = 1/𝑆0 =
−𝐴+

√︀
(𝐴2 + 2𝑎)

𝑎
. (26)

In addition, the point of the singularity in the limit becomes equal to 𝑥0 = 1/𝐴 when the parameter

𝑎 tends to zero (𝑎→ 0).

The function of state (6) takes the form

𝛽(𝑥) =
𝑝(𝑥)

𝜀(𝑥)
=

1

3

𝑎𝑥(1−𝐴𝑥− 𝑎𝑥2/2)

(𝐴+ 𝑎𝑥)(1 + 𝑎𝑥2/2)
. (27)

It is easy to see from here that 𝛽(𝑥) vanishes on the ends of the segment: as in the point 𝑥 = 0 so

and into the singularity point 𝑥0. And this is despite of the fact that into the point of the singularity,

both the pressure and the energy density take on the infinite values.

The vanishing of 𝛽(𝑥) on the ends of the segment means that into some point in the segment the

function of state reaches its maximum value, which depends on the ratio between the values of 𝐴 and

𝑎. In a neighborhood of the point 𝑥 = 0 for the state function the ratio is valid

𝛽(𝑥) ≈ 1

3

𝑎

𝐴
𝑥. (28)

In particular, if now we take 𝐴 = 0 in the expression (27), i.e. assume that Universe is filled only

with matter “creating” a non-zero pressure, we get the function

𝑦 = 1− 𝑎2𝑥2/2 (29)

and the corresponding function of state

𝛽 =
1

3

(︀
1− 𝑎2𝑥2/2

)︀
(1 + 𝑎2𝑥2/2)

, (30)

which will reach the maximum value 𝑏𝑒𝑡𝑎 = 1/3 when 𝑥 tends to zero (𝑆 → ∞).

This case will be is when the parameter 𝐴 is small compared to 𝑎 : 𝐴 << 𝑎. It can be interpreted

as the evolutionary “disappearance” of a dust substance, the existence of which is associated with the

parameter 𝐴. At the same time, at the later stages of evolution, asymptotically we have matter with

the equation of state of an ultrarelativistic gas. In other words, with the above-mentioned relationship

between the parameters 𝐴 and 𝑎, the maximum of the function 𝛽 is shifted to the point 𝑥 = 0.

In fact, we write down the corresponding pressure and energy density for the case 𝐴 = 0 :

κ𝑝 =
4𝑎𝑥4

(1− 𝑎𝑥2/2)5
; (31)

κ𝜀 = 12𝑎𝑥4
(1 + 𝑎𝑥2/2)

(1− 𝑎𝑥2/2)6
. (32)

The asymptotic behavior of the expressions (31) and (32) nearby to 𝑥 = 0 (𝑆 → ∞) can be

represented as

κ𝑝 ≈ 4𝑎𝑥4 (33)

and

κ𝜀 ≈ 12𝑎𝑥4. (34)

This means that the not dusty matter filling the Universe, which “creates” a pressure different

from zero and is associated with the parameter 𝑎, there is matter that asymptotically obeys the ultra-

relativistic equation of state

𝜀𝑟𝑎𝑑 = 3𝑝. (35)
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A similar consideration of the behavior of pressure (22) and energy density (23) nearby to 𝑥 = 0

(𝑆 → ∞) leads to the following results:

κ𝑝 ≈ 4𝑎𝑥4 (36)

and

κ𝜀 ≈ 12𝐴𝑥3(1 + 6𝐴𝑥) + 12𝑎𝑥4, (37)

or

𝜀 ≈ 𝜀𝑑𝑢𝑠𝑡 + 𝜀𝑟𝑎𝑑, (38)

where 𝜀𝑑𝑢𝑠𝑡 and 𝜀𝑟𝑎𝑑 are, respectively, the energy density of the incoherent dust obtained asymptotically

at 𝑎 = 0 (coinciding with the asymptotic form of the relation (16)) and the energy density of the

ultrarelativistic matter (𝑎 ̸= 0).

3. The open Universe model as an oscillator

Let’s take the next step and consider the quadratic potential or oscillatory motion:

𝑈 = 𝐵2𝑦2/2 + 𝑈0, (39)

where 𝐵 is a constant that has the meaning of the spring stiffness coefficient in the mechanical

interpretation.

From the equation (11), which takes the form of the equation “oscillations”, we immediately get the

exact solution given in [16], [17] and found there by more complex way as solving the Riccati equation:

𝑦 =
√︀
(1 +𝐴2/𝐵2) cos(𝐵𝑥+ 𝛼0) =

cos(𝐵𝑥+ 𝛼0)

cos 𝛼0
, (40)

where tan2 𝛼0 = 𝐴2/𝐵2 = 1− 1/ cos2 𝛼0, 𝐴 = 𝑐𝑜𝑛𝑠𝑡, 𝐵 = 𝑐𝑜𝑛𝑠𝑡.

The conformal factor is written as

𝑒𝑥𝑝(2𝜎) =
(︀
1 +𝐴2/𝐵2

)︀2
cos4 (𝐵𝑥+ 𝛼0) =

(︀
1 +𝐴2/𝐵2

)︀2
cos4 𝜙(𝑥) =

(︂
cos 𝜙(𝑥)

cos 𝛼0

)︂4

, (41)

where 𝜙 ≡ 𝐵/𝑆 + 𝛼0 = 𝐵𝑥+ 𝛼0.

From (39) and (13), we immediately come to the expression for pressure:

κ𝑝 =
4𝐵2

𝑆4

1

(1 +𝐴2/𝐵2)
2
cos4 𝜙(𝑆)

= 4𝐵2𝑥4
(︂

cos 𝛼0

cos 𝜙(𝑥)

)︂4

, (42)

and from (7) we have the expression for the energy density:

κ𝜀 =
12𝐵

𝑆3

tan𝜙(𝑆)

(︂
1 +

𝐵

𝑆
tan𝜙(𝑆)

)︂
(1 +𝐴2/𝐵2)

2
cos4 𝜙(𝑆)

= 12𝐵𝑥3 tan𝜙(𝑥) (1 +𝐵𝑥 tan𝜙(𝑥))

(︂
cos 𝛼0

cos 𝜙(𝑥)

)︂4

. (43)

From here it can be seen that the function of state takes the form:

𝛽 =
1

3
𝐵𝑥

cot𝜙(𝑥)

(1 +𝐵𝑥 tan𝜙(𝑥))
(44)

For this solution 3D scalar curvature is written as

3𝑅 = −6𝐵𝑥3 tan𝜙(𝑥)

(︂
cos 𝛼0

cos 𝜙(𝑥)

)︂4

= − κ𝜀
2 (1 +𝐵𝑥 tan𝜙(𝑥))

. (45)
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To interpret the solution (41), it is necessary to consider the asymptotic behavior of the conformal

factor, energy density, and pressure. We need to understand what the constants 𝐴 and 𝐵 are related to.

We limit our consideration to the interval 0 ≤ (𝐵𝑥 + 𝛼0) < 𝜋/2. In other words, the singularity

point (i.e. when the conformal factor vanishes, and the pressure and energy density tend to infinity) in

our model it will correspond to

𝑥0 = 1/𝑆0 =
(𝜋/2− 𝛼0)

𝐵
. (46)

When 𝑥 tends to zero (𝑆 → ∞), the conformal factor naturally tends to unit.

In this case, for comparison with the observational data on density of matter and the radiation

density in the modern era, we must associate the coordinate variable 𝑆 with its own (physical) time as

𝜏 =

𝑆∫︁
𝑆0

𝑢𝜇𝑑𝑥
𝜇 =

𝑆∫︁
𝑆0

𝑦2𝑑𝑆 =
(︀
1 +𝐴2/𝐵2

)︀ 𝑆∫︁
𝑆0

cos2
(︂
𝐵

𝑆
+ 𝛼0

)︂
𝑑𝑆 = − 𝐵

cos2 𝛼0

𝜙∫︁
𝜋/2

(︂
cos 𝜙

𝜙− 𝛼0

)︂2

𝑑𝜙, (47)

It is not difficult to see that asymptotically 𝜏 ≈ 𝑆. At the same time, an expansion of the pressure

and energy density into a series of powers of 𝑥 (or (1/𝑆)) with accuracy up to 𝑂(𝑥5) gives

κ𝑝 ≈ 4𝐵2𝑥4; (48)

κ𝜀 ≈ 12𝐴𝑥3(1 + 6𝐴𝑥) + 12𝐵2𝑥4 = κ𝜀𝑑𝑢𝑠𝑡 + κ𝜀𝑟𝑎𝑑, (49)

where κ𝜀𝑟𝑎𝑑 = 3κ𝑝 is the energy density of the ultrarelativistic state of matter, and κ𝜀𝑑𝑢𝑠𝑡 is the energy
density of the incoherent dust, which equals to the asymptotic energy density of the Friedman solution

in this approximation (see (16)).

From here it is clear that the constants (𝐴) and (𝐵) determine matter and radiation, respectively.

The energy density in this case asymptotically splits into the direct sum of the dust energy density and

the energy density of the equilibrium radiation (49). Moreover, the equation of state coincides (in this

approximation) with the equation of state of an ultrarelativistic gas, which is not difficult to obtain by

expanding into series the function of state (44).

But if the constant 𝐵 is responsible for the presence of radiation in the model, then directing it

to zero, we should get the Friedman solution in the limit. Indeed, in the limiting case when 𝐵 → 0,

we obtain the Friedman solution (15) and thus make sure that the constant 𝐴 from (41) is exactly

Friedman’s constant mentioned in the previous section.

lim
𝐵→0

(︂√︀
(1 +𝐴2/𝐵2) cos

(︂
𝐵

𝑆
+ 𝛼0

)︂)︂
= 1−𝐴/𝑆 = 1−𝐴𝑥. (50)

If we now expand the function 𝑦(𝑥) (40) in a series by degrees of 𝑥 nearby the point 𝑥 = 0 and

limit ourselves to the accuracy of 𝑂(𝑥3), we will actually get the expression

𝑦(𝑥) ≈ 1−𝐴𝑥− 𝐵2𝑥2

2
(51)

under the condition 𝑎 = 𝐵2.

Thus, the choice of the potential (39) lead to a generalization of the previously considered case.

Therefore, the solution under discussion is an exact solution of the Einstein equations, which

describes the stages of the evolution of the Universe when there is matter and radiation (see (40), (41)).

However, this conclusion follows from the asymptotic expressions. As for the earlier behavior of the

model, it is necessary to investigate, for example, the ratio of pressure to energy density. This ratio is

the equation of state in a small neighborhood of a given fixed value 𝑆.
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Conclusion

In the paper is considered the possibility of obtaining exact cosmological solutions of the Einstein

equations for the open Universe by reducing the problem to the equivalent problem of a motion of a

particle with an unit mass in a force field. The cosmological model being studied is filled with matter

in the approximation of the perfect fluid with a pressure not equal to zero, generally speaking. The

metric of 4D space-time is chosen in the Fock form as a metric conformal to the Minkowski metric with

a dependence on a single variable, the square of which is a product of the retarded and advanced times.

The use of a mechanical interpretation for one of the two equations of gravitation leads to the

possibility of considering various mechanics force fields, in particular potential ones, with subsequent

physical interpretation of the exact cosmological solutions obtained.

First of all, we consider the motion of a free particle of an unit mass (there is no any mechanical

force), i.e., the particle moves according to the inertia law. The fourth degree of the found law of motion,

taking into account the Galilean nature of space-time, is the conformal factor of the cosmological metric.

This case corresponds to the exact cosmological solution without pressure, which coincides with the well-

known Friedman solution for the open Universe.

Further we choose a force field leading to the uniformly decelerated motion of the particle, i.e. the

corresponding force potential is selected in the form of a linear function and the tangent of the slope

of the graph of the function coincides with the acceleration of the particle. After this study we have

an exact cosmological solution that asymptotically describes both incoherent dust and ultrarelativistic

matter, which could be interpreted as equilibrium radiation.

Next, a quadratic function without a linear term and a constant is chosen as the potential function.

Such a potential can be interpreted as the potential of a free oscillator corresponding to a linear

displacement force (the Hooke force). So the solution of the corresponding equation of motion is written

down as a function of the cosine with some initial phase associated with the ratio of the parameters that

determine the dusty and ultrarelativistic matter. This conclusion becomes apparent after an asymptotic

consideration of the pressure and energy density. In addition, the series expansion of the fourth-degree

root of the conformal factor coincides asymtotically with the law of uniformly decelerated motion in the

previous case that indicates its particular character.
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2. Friedman A.A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys.,
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