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РАСШИРЕННАЯ РЕЛЯТИВИСТСКАЯ НЕРАВНОВЕСНАЯ ТЕРМОСТАТИКА
ЗВЕЗДНЫХ СТРУКТУР, ФОРМИРУЕМЫХ ДАВЛЕНИЕМ ИЗЛУЧЕНИЯ *
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𝑎 Казанский федеральный университет, Казань, 420008, Россия.

Разработан расширенный формализм для описания статических сферически симметричных

релятивистских неравновесных звездных систем, в формировании которых ключевую роль играет

давление излучения. Основная концепция данного расширенного формализма наследует идеи, на которых

построена причинная термодинамика Израэля-Стьюарта, однако теперь наряду с времени-подобным

единичным четыре-вектором скорости среды используется пространственно-подобный единичный

вектор, названный директором. Рассмотрено тестовое приложение формализма, анализируются профили

неравновесного давления и температуры как функции от феноменологически введенных управляющих

параметров.
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We establish the extended formalism for description of the static spherically symmetric relativistic non-

equilibrium stellar systems in the formation of which the radiation pressure plays the key role. The main

concept of this extended formalism inherits the ideas, on which the Israel-Stewart causal thermodynamics is

based, but now the unit spacelike four-vector, indicated by the term director, is exploited in addition to the

unit timelike medium velocity four-vector. An application of the extended formalism is considered; we analyze

the profiles of the non-equilibrium pressure and temperature as the functions of guiding parameters introduced

phenomenologically.
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Introduction

In the heart of the Milky Way the supermassive black hole was detected [1]. The publication of the

Science Release ESO1825 concerning this event has become the culmination of long-term observations,

and has opened a new page in the upgrade of the theory of evolution of stellar structures (see, e.g., [2,3]).

One of the zones of the Hertzsprung-Russell diagram, which attracts the interest in this context, is the

area of stellar structures, in the evolution of which the radiation pressure plays an essential role. What

contribution to the development of the star evolution science the theoreticians could make? We assume

that one of the most interesting trends in this direction is the non-local rheological-type extension of
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the relativistic non-equilibrium irreversible thermodynamics and thermostatics. In the work [4] we have

made the step towards the development of the theory based on rheological-type extension of the equation

of state of the neutron stars at zero temperature. In this work we consider the stellar objects with high

temperature and assume that the radiation pressure is the key player in the corresponding equation

of state. We establish our extended model based on the ideas of causal irreversible thermodynamics

elaborated by Israel and Stewart [5]; the short prologue about the mathematical formalism of this

theory is presented in Section II.

We would like to emphasize one detail in the difference between the extended thermodynamics [6]

and extended relativistic thermostatics. The extended thermodynamics deals with the heat propagation.

The corresponding equation for the temperature evolution is hyperbolic (of the second order in derivative

with respect to time) in both versions: proposed by Cattaneo [7] and resulting from the Israel-Stewart

theory [5]. This result is due to accounting for the retardation of the response, the simplest manifestation

of the non-locality in time. The extended relativistic thermostatics does not operate with time derivatives

and thus has to exploit the idea of spatial non-locality. Using this theory one analyzes the static

temperature distribution instead of temperature evolution, and the mathematical formalism has to

be correspondingly extended. We describe these modifications of the formalism in Section III.

The last remark is the following. The causal thermodynamics was used in many works for the

analysis of the rate of cosmological expansion, of the dynamics of perturbations, etc. (see, e.g., [8–

13]). When the system is static, one deals most often with the relativistic thermostatics of spherically

symmetric bodies, and the equation of hydrostatic equilibrium becomes the central element of the

analysis. We also considered the static system with the spherical symmetry, and arranged the results of

analysis in Section IV. Section V contains conclusions.

1. Prologue: The canonic causal relativistic non-equilibrium thermodynamics

The story of irreversible relativistic thermodynamics has a remarkable page associated with the

so-called causal thermodynamics elaborated by Israel and Stewart [5]. This theory is based on the second

law of the phenomenological thermodynamics, which states that the entropy production 𝜎 of a closed

physical system should be non-negative 𝜎 ≥ 0. Entropy production scalar is introduced as the covariant

divergence of the entropy flux four-vector 𝑆𝑘, i.e., 𝜎 = ∇𝑘𝑆
𝑘 (∇𝑘 is the covariant derivative). Modeling

of the vector 𝑆𝑘 is the crucial point of the corresponding theory. In order to motivate the proposed

extension of causal thermodynamics we would like to recall shortly the main details of this theory.

1.1. Eckart’s approach

According to the Eckart version of linear thermodynamics [14] the entropy flux four-vector has the

form

𝑆𝑘(Eckart) = 𝑠0𝑛𝑈
𝑘 +

1

𝑇
𝑞𝑘 , (1)

where 𝑛 is the scalar of particle number density, 𝑇 is the temperature, 𝑠0 is the scalar of entropy per one

particle, 𝑈𝑘 is the unit timelike medium velocity four-vector, and 𝑞𝑘 is the spacelike heat-flux four-vector.

The scalar 𝑠0 enters the Gibbs equation (the first law of thermodynamics)

𝛿𝑒+ 𝑃𝛿

(︂
1

𝑛

)︂
= 𝑇𝛿𝑠0 , (2)

where 𝑒 describes the energy density per one particle, and𝑊 = 𝑒𝑛 is the energy density; 𝑃 is the isotropic

equilibrium Pascal pressure, and the operator 𝛿 is connected with the variation of the corresponding

thermodynamic quantity. In the Eckart approach the symbol 𝛿 is replaced with the differential operator

𝐷, the convective derivative defined as 𝐷 = 𝑈𝑘∇𝑘 . The stress-energy tensor of the medium can be

decomposed standardly as follows:

𝑇 𝑖𝑘 = 𝑒𝑛𝑈 𝑖𝑈𝑘 + 𝑈 𝑖𝑞𝑘 + 𝑈𝑘𝑞𝑖 −∆𝑖𝑘𝑃 +Π𝑖𝑘 . (3)
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Here ∆𝑖𝑘 = 𝑔𝑖𝑘−𝑈 𝑖𝑈𝑘 is the projector, and the tensor

Π𝑖𝑘 = Π𝑖𝑘(0) +
1

3
∆𝑖𝑘Π , Π ≡ 𝑔𝑖𝑘Π

𝑖𝑘 , (4)

describes the non-equilibrium pressure of the medium. The stress-energy tensor is considered to be

divergence - free, ∇𝑘𝑇
𝑖𝑘 = 0, as usual, we split these four equations into the scalar and vector subsets,

respectively:

𝐷𝑊 + (𝑊 + 𝑃 )Θ− 𝑞𝑘𝐷𝑈𝑘 +∇𝑘𝑞
𝑘 −Π𝑖𝑘∇𝑘𝑈𝑖 = 0 , (5)

(𝑊 + 𝑃 )𝐷𝑈 𝑗 −
⊥
∇𝑗𝑃 = −𝑞𝑗Θ− 𝑞𝑘

⊥
∇𝑘𝑈

𝑗 −∆𝑗
𝑘𝐷𝑞

𝑘 +Π𝑗𝑘𝐷𝑈𝑘 −∆𝑗
𝑚

⊥
∇𝑘Π

𝑚𝑘 . (6)

The quantity Θ = ∇𝑘𝑈
𝑘 is the scalar of expansion of the medium flow; the operator

⊥
∇𝑘 = ∆𝑙

𝑘∇𝑙 plays

the role of spatial part of the gradient. It is well known that, when one uses the Gibbs equation (2) plus

the energy conservation law (5), the entropy production scalar is calculated to have the form

𝜎 =
1

𝑇

[︂
Π𝑖𝑘

⊥
∇𝑘𝑈𝑖 + 𝑞𝑘

(︂
𝐷𝑈𝑘 −

1

𝑇

⊥
∇𝑘𝑇

)︂]︂
, (7)

where 𝐷𝑈𝑘 is the acceleration four-vector. According to the Eckart results, the entropy production scalar

𝜎 is non-negative, when

𝑞𝑖 = 𝜆

[︂
⊥
∇𝑖𝑇−𝑇𝐷𝑈 𝑖

]︂
, Π = 3𝜁Θ , Π𝑖𝑘(0)=𝜂𝜎𝑖𝑘 , (8)

since such phenomenological ansatz guarantees that

𝑇𝜎 = − 1

𝜆𝑇
𝑞𝑘𝑞𝑘 +

1

𝜂
Π𝑖𝑘(0)Π𝑖𝑘(0) +

1

9𝜁
Π2 , (9)

and the the entropy scalar to be non-negative 𝜎 ≥ 0. The phenomenological constants: 𝜆 (the thermal

conductivity), 𝜂 (the shear viscosity) and 𝜁 (the bulk viscosity), are assumed to be functions of the

temperature 𝑇 . In (8) the standard elements of the decomposition of the velocity covariant derivative

are used:

∇𝑚𝑈𝑛 = 𝑈𝑚𝐷𝑈𝑛 + 𝜎𝑚𝑛 + 𝜔𝑚𝑛 +
1

3
∆𝑚𝑛Θ , (10)

where the symmetric traceless shear tensor 𝜎𝑚𝑛 and the skew-symmetric vorticity tensor 𝜔𝑚𝑛 are given,

respectively, as follows:

𝜎𝑖𝑘 ≡
[︂
1

2

(︂
⊥
∇𝑖𝑈𝑘 +

⊥
∇𝑘𝑈𝑖

)︂
− 1

3
Θ∆𝑖𝑘

]︂
, 𝜔𝑚𝑛 ≡ 1

2

(︂
⊥
∇𝑖𝑈𝑘 −

⊥
∇𝑘𝑈𝑖

)︂
. (11)

These tensors are orthogonal to the velocity four-vector 𝑈𝑘, i.e., 𝜎𝑚𝑛𝑈
𝑚 = 0 = 𝜎𝑚𝑛𝑈

𝑛 and 𝜔𝑚𝑛𝑈
𝑚 =

0 = 𝜔𝑚𝑛𝑈
𝑛.

1.2. Approach of Israel and Stewart

In the framework of causal thermodynamics Israel and Stewart have used the following ansatz for

the entropy flux four-vector structure:

𝑆𝑘(IS) = 𝑆𝑘(Eckart) +
1

𝑇
𝑞𝑙
[︁
𝛿𝑘𝑙 𝛼0Π+ 𝛼1Π

𝑘
𝑙(0)

]︁
− 1

2𝑇
𝑈𝑘
[︁
𝛽0Π

2 − 𝛽1𝑞
𝑚𝑞𝑚 + 𝛽2Π

𝑚𝑛
(0) Π𝑚𝑛(0)

]︁
. (12)

In other words, the authors of this version of the causal thermodynamics have added all the possible

terms of the second order with respect to the non-equilibrium quantities Π, 𝑞𝑘 and Π𝑚𝑛(0) with new

phenomenological parameters 𝛼0, 𝛼1, 𝛽0, 𝛽1 and 𝛽2. Using the same scheme of calculation of the entropy

production scalar, as in the Eckart version, one can obtain the formula

𝑇𝜎 = Π

[︂
1

3
Θ− 𝛽0𝐷Π− 1

2
𝑇Π∇𝑙

(︂
𝛽0𝑈

𝑙

𝑇

)︂
+ 𝛼0∇𝑘𝑞

𝑘

]︂
+



18 A.B. Balakin, Z. Z. Tukbaev

+𝑞𝑘
[︂
𝐷𝑈𝑘 −

1

𝑇

⊥
∇𝑘𝑇 + 𝛽1𝐷𝑞𝑘 +

𝛽1
2
𝑞𝑘Θ+

1

2
𝑇𝑞𝑘𝐷

(︂
𝛽1
𝑇

)︂
+ 𝑇∇𝑘

(︂
𝛼0Π

𝑇

)︂
+ 𝑇∇𝑙

(︁𝛼1

𝑇
Π𝑙𝑘(0)

)︁]︂
+

+Π𝑖𝑘(0))

[︂
𝜎𝑖𝑘−𝛽2𝐷Π𝑖𝑘(0)−

𝛽2
2
Π𝑖𝑘(0)Θ− 1

2
𝑇Π𝑖𝑘(0)𝐷

(︂
𝛽2
𝑇

)︂
+ 𝛼1∇(𝑖𝑞𝑘)

]︂
. (13)

The entropy production scalar 𝜎 can be presented again as a non-negative quantity (9) if one uses the

following definitions for Π, 𝑞𝑖 and Π𝑖𝑘(0):

𝛽0𝐷Π+Π

[︂
1

9𝜁
+
𝑇

2
(Θ+𝐷)

(︂
𝛽0
𝑇

)︂]︂
=

1

3
Θ+𝛼0∇𝑘𝑞

𝑘 , (14)

𝛽1∆
𝑘
𝑙𝐷𝑞

𝑙 + 𝑞𝑘
[︂

1

𝜆𝑇
+
𝑇

2
(Θ +𝐷)

(︂
𝛽1
𝑇

)︂]︂
=

1

𝑇

⊥
∇𝑘𝑇−𝐷𝑈𝑘−𝑇

⊥
∇𝑘

(︂
𝛼0Π

𝑇

)︂
−𝑇∆𝑘

𝑠∇𝑙

(︁𝛼1

𝑇
Π𝑙𝑠(0)

)︁
, (15)

𝛽2∆
𝑚
𝑖 ∆𝑛

𝑘𝐷Π𝑚𝑛(0)+Π𝑖𝑘(0)

[︂
1

𝜂
+
𝑇

2
(Θ+𝐷)

(︂
𝛽2
𝑇

)︂]︂
= 𝜎𝑖𝑘 + 𝛼1∆

𝑚
𝑖 ∆𝑛

𝑘∇(𝑚𝑞𝑛) . (16)

This canonic result shows that the expansion scalar Θ is the source of the non-equilibrium pressure

scalar Π; the shear tensor 𝜎𝑖𝑘 is the source of the quantity Π𝑖𝑘(0); the difference
1
𝑇

⊥
∇𝑘𝑇−𝐷𝑈𝑘 is the

source of the heat flux. If these sources vanish, there exists the trivial solutions for the mentioned non-

equilibrium fluxes. The phenomenological parameters 𝛽0, 𝛽1, 𝛽2 predetermine the rates of evolution of

the corresponding non-equilibrium fluxes.

2. Extension of the relativistic non-equilibrium thermostatics

2.1. Three remarks concerning the thermostatics of the objects with spherical symmetry

2.1.1 The structure of covariant derivative of the velocity four-vector

The canonic theory of static spherically symmetric stellar structures is presented in the book [15].

Following this work in the whole, we nevertheless, change the signature of the metric and use the interval

𝑑𝑠2 = 𝐵(𝑟)𝑑𝑡2 −𝐴(𝑟)𝑑𝑟2 − 𝑟2
(︀
𝑑𝜃2 + sin2 𝜃𝑑𝜙2

)︀
. (17)

This spacetime admits the existence of the following Killing vectors:

𝜉𝑗(0) = 𝛿𝑗0 , 𝜉𝑗(1) = sin𝜙𝛿𝑗𝜃 + cot 𝜃 cos𝜙𝛿𝑗𝜙 ,

𝜉𝑗(2) = cos𝜙𝛿𝑗𝜃 − cot 𝜃 sin𝜙𝛿𝑗𝜙 , 𝜉𝑗(𝜙) = 𝛿𝑗𝜙 . (18)

We indicate the state of the physical system as inheriting the symmetry of the spacetime, when the Lie

derivatives of all state functions along all the Killing vectors vanish. The Lie derivatives of the scalars

𝑊 , 𝑃 , 𝑛, Π vanish, i.e.,

ℒ𝜉(𝑎)
𝑊 = 𝜉𝑘(𝑎)𝜕𝑘𝑊 = 0 , ℒ𝜉(𝑎)

𝑃 = 𝜉𝑘(𝑎)𝜕𝑘𝑃 = 0 , ... (19)

when these scalars depend on the radial variable 𝑟 only. The velocity four-vector has to be chosen now

as

𝑈 𝑖 = 𝛿𝑖0
1√
𝐵
, 𝑈𝑖 = 𝛿0𝑖

√
𝐵 . (20)

The covariant derivative of the velocity four-vector is now of the form

∇𝑘𝑈𝑖 = −𝛿0𝑘𝛿𝑟𝑖
𝐵′

2
√
𝐵
. (21)

This means that

Θ = 0 , 𝜎𝑖𝑘 = 0 , 𝜔𝑖𝑘 = 0 , 𝐷𝑈𝑖 = −𝛿𝑟𝑖
𝐵′

2𝐵
. (22)

In other words, the acceleration four-vector is the only non-vanishing object, and it has the only radial

component.
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2.1.2 Is the heat-flux four-vector vanishing?

The heat-flux four-vector 𝑞𝑘 is orthogonal to the velocity four-vector, 𝑞𝑘𝑈𝑘 = 0, and for the ansatz

(20) we obtain that only 𝑞𝑟, 𝑞𝜃 and 𝑞𝜙 could be nonzero. If we apply the requirement of the symmetry

inheritance to the heat-flux four-vector:

ℒ𝜉(𝑎)
𝑞𝑖 = 𝜉𝑘(𝑎)𝜕𝑘𝑞

𝑖 − 𝑞𝑘𝜕𝑘𝜉
𝑖
(𝑎) = 0 , (23)

for all Killing vectors (18) we conclude, that 𝑞𝜃 = 0, 𝑞𝜙 = 0 and 𝑞𝑟 has to depend on the radial variable

only. However, in the static model the energy density balance equation (5) converts into

0 = 𝑞𝑘𝐷𝑈𝑘 −∇𝑘𝑞
𝑘 ⇒ −𝑞𝑟 𝐵

′

2𝐵
=

1

𝑟2
√
𝐴𝐵

𝑑

𝑑𝑟

(︁
𝑟2
√
𝐴𝐵𝑞𝑟

)︁
, (24)

thus, the solution to (24) is

𝑞𝑟 =
𝐾

𝑟2𝐵
√
𝐴
. (25)

Physical motives hint us that we have to put the integration constant 𝐾 to zero, and thus, we have to

use the ansatz 𝑞𝑖 = 0. Then the equation for Π (14) becomes sourceless and thus (14) prescribes the

scalar non-equilibrium pressure to vanish, Π=0. Similarly, since the shear tensor vanishes, 𝜎𝑖𝑘 = 0, the

tensor Π𝑚𝑛(0) turns into zero. Finally, we obtain from (15), that

𝑞𝑖 = 0 ⇒ 1

𝑇

⊥
∇𝑘𝑇 = 𝐷𝑈𝑘 , (26)

and taking into account (22) we obtain immediately, that

𝑇 (𝑟) =
𝑇0√︀
𝐵(𝑟)

. (27)

In other words, for the static spherically symmetric models all the non-equilibrium fluxes vanish

Π = 0 , 𝑞𝑖 = 0 , Π𝑚𝑛(0) = 0 , (28)

and the distribution of the temperature is described by the equilibrium law (27). This means, in fact,

that the canonic Israel-Stewart theory is not effective in the case, when we study the static spherically

symmetric stellar configurations, and we have to think about the extension of the causal thermostatics.

2.1.3 Special solution for the heat-flux four-vector

Formally speaking, we can consider the case 𝐾 ̸= 0 also. Let us assume that 𝛼1 = 0, thus Π𝑖𝑘(0) has

no physical source and we put Π𝑖𝑘(0) = 0. Then, the equations (5), (14) and (15) yield, respectively,

𝑞𝑘𝐷𝑈𝑘 = ∇𝑘𝑞
𝑘 ⇒ 𝑞𝑘 = 𝛿𝑘𝑟

𝐾

𝑟2𝐵
√
𝐴
, (29)

Π

9𝜁
= 𝛼0∇𝑘𝑞

𝑘 ⇒ Π = − 9𝜁𝛼0𝐾𝐵
′

2𝑟2𝐵2
√
𝐴
, (30)

𝑞𝑘
𝜆𝑇

=
1

𝑇

⊥
∇𝑘𝑇−𝐷𝑈𝑘−𝑇

⊥
∇𝑘

(︂
𝛼0Π

𝑇

)︂
⇒ 𝑇 ′ (1 + 𝛼0Π) + 𝑇

[︂
𝐵′

2𝐵
− (𝛼0Π)

′
]︂
= −𝐾

√
𝐴

𝜆𝑟2𝐵
. (31)

In other words, when 𝐾 ̸= 0, the equations (29)-(31) describe special branch of solutions for the

thermostatic model. In particular, if we choose 𝛼0 = 0 and 𝜆(𝑟) = 𝜆0
√
𝐴

𝐵 with the constant 𝜆0, the

solution to the equation (31) is

𝑇 (𝑟) =
𝑇0√
𝐵

(︂
1 +

𝐾

𝜆0𝑇0𝑟

)︂
. (32)

There is one interesting case, when 𝐾 is negative: one can denote 𝑟C = |𝐾|
𝜆0𝑇0

and obtain 𝑇 (𝑟) =
𝑇0√
𝐵

(︀
1− 𝑟C

𝑟

)︀
. Thus the constant of integration 𝐾 can be linked with the critical value of the radial

variable 𝑟C: when 𝑟 < 𝑟C, the temperature becomes negative, and the thermostatic description becomes

inappropriate.
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2.2. The director and its properties

If we follow the idea that in the framework of thermostatics of the spherically symmetric bodies the

heat-flux four-vector 𝑞𝑘 disappears (i.e., 𝐾 = 0), we need of new four-vector orthogonal to the velocity

four-vector 𝑈 𝑗 . We suggest to use the spacelike unit four-vector ℛ𝑖, which inherits the symmetry of the

spacetime. This means that

ℛ𝑖𝑈𝑖 = 0 , ℛ𝑖ℛ𝑖 = −1 , (33)

and the Lie derivatives along all the Killing vectors (18), admitted by the spacetime symmetry, vanish:

ℒ𝜉(𝑎)
ℛ𝑖 = 𝜉𝑘(𝑎)𝜕𝑘ℛ

𝑖 −ℛ𝑘𝜕𝑘𝜉
𝑖
(𝑎) = 0 . (34)

All the requirements (33), (34) are satisfied for the four-vector

ℛ𝑖 = 𝛿𝑖𝑟
1√
𝐴
, ℛ𝑖 = −𝛿𝑟𝑖

√
𝐴 . (35)

The covariant derivative of this vector

∇𝑘ℛ𝑖 =
1

2
√
𝐴

[︂
𝐵′

𝐵
𝛿𝑖0𝛿

0
𝑘 +

2

𝑟

(︀
𝛿𝑖𝜃𝛿

𝜃
𝑘 + 𝛿𝑖𝜙𝛿

𝜙
𝑘

)︀]︂
, (36)

can be rewritten as

∇𝑘ℛ𝑖 =
𝐵′

2𝐵
√
𝐴
𝑈 𝑖𝑈𝑘 +

1

𝑟
√
𝐴

(︀
𝛿𝑖𝜃𝛿

𝜃
𝑘 + 𝛿𝑖𝜙𝛿

𝜙
𝑘

)︀
. (37)

Clearly, the tensor ∇𝑘ℛ𝑗 is symmetric, and its trace is equal to

∇𝑘ℛ𝑘 =
1

2
√
𝐴

[︂
𝐵′

𝐵
+

4

𝑟

]︂
. (38)

Using the director ℛ𝑘, one can rewrite the relationship (21) in more convenient form

∇𝑘𝑈
𝑖 =

𝐵′

2𝐵
√
𝐴
𝑈𝑘ℛ𝑖 . (39)

Since 𝑈𝑘 and ℛ𝑘 are orthogonal, we see explicitly that ∇𝑘𝑈
𝑘 = 0. Similarly, taking into account (36)

and (39), as well as the normalization conditions for the four-vectors 𝑈𝑘 and ℛ𝑗 , we can write the

system of useful relationships

ℛ𝑘∇𝑘ℛ𝑖 = 0 , ℛ𝑘∇𝑘𝑈
𝑖 = 0 , 𝑈𝑖∇𝑘𝑈

𝑖 = 0 , ℛ𝑖∇𝑘ℛ𝑖 = 0 , (40)

𝑈𝑘∇𝑘ℛ𝑖 = Γ𝑈 𝑖 , 𝑈𝑖∇𝑘ℛ𝑖 = Γ𝑈𝑘 , 𝑈𝑘∇𝑘𝑈
𝑖 = Γℛ𝑖 , ℛ𝑖∇𝑘𝑈

𝑖 = −Γ𝑈𝑘 , (41)

where we introduced the following auxiliary function

Γ(𝑟) ≡ 𝐵′

2𝐵
√
𝐴
. (42)

Clearly, there exists some symmetry in these relationships between the medium velocity 𝑈 𝑖 and the

director ℛ𝑗 . It is interesting to mention that in all formulas (41) the common multiplier Γ (42) appeared.

2.3. Extension of the entropy flux four-vector and modified equations for the pressure Π

and temperature

We assume now that 𝑞𝑖 and Π𝑖𝑘(0) do not participate in the extension procedure; only Π appears in

the new terms of the decomposition of the entropy flux four-vector 𝑆𝑖. We add to the decomposition

(12) the following new terms:

𝑆𝑘 = 𝑆𝑘(IS) +ℛ𝑘

[︂
1

2
𝜏Π2 +

1

3
𝛾Π3 + ...

]︂
, (43)
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where the multipliers 𝜏(𝑇, 𝑛) and 𝛾(𝑇, 𝑛) are some functions of the temperature and particle number

density, introduced phenomenologically. The constitutive equation for the scalar Π takes now the form

𝛽0𝐷Π+Π

[︂
1

9𝜁
+
𝑇

2
(Θ+𝐷)

(︂
𝛽0
𝑇

)︂]︂
−1

3
Θ−𝛼0∇𝑘𝑞

𝑘 = 𝑇

[︂
(𝜏+𝛾Π)ℛ𝑖∇𝑖Π+

1

2
Π∇𝑖

(︀
𝜏ℛ𝑖

)︀
+
1

3
Π2∇𝑘

(︀
𝛾ℛ𝑘

)︀]︂
(44)

Keeping in mind that the model under consideration is static and spherically symmetric, we can reduce

the constitutive equation (44) into

(𝜏 + 𝛾Π)ℛ𝑖∇𝑖Π+
1

2
Π∇𝑖

(︀
𝜏ℛ𝑖

)︀
+

1

3
Π2∇𝑘

(︀
𝛾ℛ𝑘

)︀
=

Π

9𝜁𝑇
. (45)

In (45) the differential operator 𝒟=ℛ𝑘∇𝑘 appears, which plays the similar role as the operator𝐷=𝑈𝑘∇𝑘

in the equation (14). When the non-equilibrium pressure Π is non-vanishing, the law of the temperature

distribution (see (15)) transforms into

1

𝑇

⊥
∇𝑘𝑇 = 𝐷𝑈𝑘 + 𝑇

⊥
∇𝑘

(︂
𝛼0Π

𝑇

)︂
. (46)

In this set only one equation is nontrivial. Convolution of (46) with ℛ𝑘 gives the equation

𝑑

𝑑𝑟

[︁
log
(︁
𝑇
√
𝐵
)︁]︁

= 𝑇
𝑑

𝑑𝑟

(︂
𝛼0Π

𝑇

)︂
. (47)

When 𝛼0 = 0, or 𝛼0Π
𝑇 = 𝑐𝑜𝑛𝑠𝑡, the solution to (47) again is 𝑇 (𝑟) = 𝑇0√

𝐵
, where 𝑇0 is a constant of

integration.

2.4. Two particular models

2.4.1 The model with 𝛾 = 0

When the decomposition of the entropy flux (43) contains the quadratic terms only, i.e., when

𝛾 = 0, the equation (45) takes the form

𝜏ℛ𝑖∇𝑖Π+
1

2
Π∇𝑖

(︀
𝜏ℛ𝑖

)︀
=

Π

9𝜁𝑇
, (48)

or in more details (again the prime denotes the derivative with respect to radial variable)

𝜏Π′ +
1

2
Π

[︂
𝜏 ′ + 𝜏

(︂
𝐵′

2𝐵
+

2

𝑟

)︂]︂
=

Π
√
𝐴

9𝜁𝑇
. (49)

Clearly, the trivial solution Π = 0 satisfies this equation. We could consider nontrivial solutions, when,

e.g., Π(𝑟*) ̸= 0 on some sphere 𝑟 = 𝑟*. We can rewrite the equation (49) in the form

𝐻 ′

𝐻
=

√
𝐴

9𝜁𝑇𝜏
, 𝐻 = Π

√︁
𝜏𝑟2

√
𝐵 . (50)

In the particular case, when 𝜁(𝑇 )= 𝜁0
𝑇 , and 𝜏(𝑟)=𝜏0

√
𝐴 with constants 𝜁0 and 𝜏0, we obtain the analytic

solution

Π(𝑟) = Π(𝑟*)
(︁𝑟*
𝑟

)︁(︂𝐴(𝑟*)𝐵(𝑟*)

𝐴(𝑟)𝐵(𝑟)

)︂ 1
4

exp

(︂
𝑟 − 𝑟*
9𝜁0𝜏0

)︂
. (51)

Mention should be made that the sign of the phenomenological parameter 𝜏0 is not yet fixed.

2.4.2 The model with 𝜏 = 0, 𝛾 ̸= 0

This case is interesting since the constitutive equation for the non-equilibrium pressure Π

Π

[︂
𝛾ℛ𝑘∇𝑘Π+

1

3
Π∇𝑘

(︀
𝛾ℛ𝑘

)︀
− 1

9𝜁𝑇

]︂
= 0 (52)
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splits into the pair of equations: one of them gives the trivial solution, and the second is the equation

with the source provided by the bulk viscosity

𝛾ℛ𝑘∇𝑘Π+
1

3
Π∇𝑘

(︀
𝛾ℛ𝑘

)︀
=

1

9𝜁𝑇
. (53)

The equation (53) for Π can be written as follows:

1

𝑟2
𝑑

𝑑𝑟

[︂
Π
(︁
𝑟2𝛾

√
𝐵
)︁ 1

3

]︂
=

√
𝐴𝐵

9𝜁𝑇

(︁
𝑟2𝛾

√
𝐵
)︁− 2

3
. (54)

In particular, if 𝛾(𝑟) = 𝛾0√
𝐵
and 𝜁(𝑟) = 𝜁0

√
𝐴𝐵
𝑇 with the constants 𝛾0 and 𝜁0, the non-equilibrium pressure

can be found analytically

Π(𝑟) = Π(𝑟*)
(︁𝑟*
𝑟

)︁ 2
3
+

𝑟

15𝜁0𝛾0

[︂
1−

(︁𝑟*
𝑟

)︁ 5
3

]︂
. (55)

This function is non-monotonic, and for the appropriate values of the parameters Π(𝑟*), 𝑟*, 𝜁0 and 𝛾0

can change the sign and reach a minimum.

3. The study of modified equation of hydrostatic equilibrium

3.1. The canonic equation of hydrostatic equilibrium

When 𝑞𝑖 = 0, Π𝑖𝑘(0) = 0, Θ = 0, and all the state functions depend on the radial variable only, we

obtain that the equation of the energy balance (5) becomes trivial, and the equation (6) takes the form

(𝑊 + 𝒫) 𝐷𝑈𝑘 =
⊥
∇𝑘𝒫 , (56)

where the total pressure 𝒫 = 𝑃 − 1
3Π contains both equilibrium and non-equilibrium parts. Convolution

of this equation with the director ℛ𝑘 yields

𝐵′

𝐵
= − 2𝒫 ′

(𝑊 + 𝒫)
. (57)

As usual, to find the functions 𝐴(𝑟) and 𝐵(𝑟) we address to the pair of Einstein’s equations

1

𝑟2
+

𝐴′

𝑟𝐴2
− 1

𝑟2𝐴
= 8𝜋𝐺𝑊 , (58)

− 1

𝑟2
+

𝐵′

𝑟𝐴𝐵
+

1

𝑟2𝐴
= 8𝜋𝐺𝒫 . (59)

From the equation (58) one obtains immediately the standard solution

1

𝐴
= 1− 2𝐺𝑀(𝑟)

𝑟
, 𝑀(𝑟) = 4𝜋

∫︁ 𝑟

0

𝑟′
2
𝑑𝑟′𝑊 (𝑟′) . (60)

Using (57) we obtain from (59) the equation of hydrostatic equilibrium

− 𝑟2𝒫 ′ =
𝐺(𝑊 + 𝒫)(𝑀 + 4𝜋𝑟3𝒫)(︀

1− 2𝐺𝑀
𝑟

)︀ . (61)

This integro-differential equation can be rewritten as the nonlinear differential equation of the second

order [︂
𝑟2𝒫 ′ + 4𝜋𝐺𝑟3𝒫(𝑊 + 𝒫)

2𝑟𝒫 ′ − (𝑊 + 𝒫)

]︂′
= 4𝜋𝐺𝑟2𝑊 . (62)
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3.2. Equation of state

We assume that the model of stellar configuration under study contains two constituents. The

first one is the relativistic gas (fluid); the second element of the system is the radiation, which is in

equilibrium with the radiative gas. The total pressure of the system is assumed to be presented by the

following function:

𝒫 = 𝑛𝑘B𝑇 +
1

3
𝜎(SB)𝑇

4 − 1

3
Π . (63)

Here 𝑘B is the Boltzmann constant; 𝜎(SB) is the Stefan-Boltzmann constant equal to

𝜎(SB) =
𝜋2𝑘4B
60𝑐2ℏ3

. (64)

For the total energy-density of the system we use the formula

𝑊 = 𝑛

[︂
𝑚
𝐾3(𝜆)

𝐾2(𝜆)
− 𝑘B𝑇

]︂
+
(︀
𝜎(SB)𝑇

4 −Π
)︀
. (65)

Here 𝑛 is the particle number density; 𝐾𝑛(𝜆) are the McDonald functions given by

𝐾𝑛(𝜆) =
𝜆𝑛

1 · 3 · · · (2𝑛− 1)

∫︁ ∞

0

𝑑𝑡𝑒−𝜆 cosh 𝑡 · sinh2𝑛 𝑡 , (66)

with 𝜆 = 𝑚
𝑘B𝑇

(see the book [16] for details).

The pair of equations (63) and (65) gives us the specific version of the equation of state; one has

to add to these equations the equation for the non-equilibrium pressure Π (45), and the equation for

the temperature distribution (47). Then, we put 𝑊 from (65) and 𝒫 from (63) into the equation of

hydrostatic equilibrium (61) or (62) and obtain the key equation for the profile 𝑛(𝑟). Using the solution

for 𝑛(𝑟) we can recover the state functions𝑊 (𝑟) and 𝒫(𝑟) and then can reconstruct the metric functions

𝐴(𝑟) and 𝐵(𝑟). In general case this procedure can be realized only numerically, and we hope to fulfil

such a detailed analysis in the next work. Below we consider, as an example, only one specific solution

for the toy model.

Mention should be made that such a representation of the equations of state for two-component

relativistic system is disputable. The question is whether we can add or not the term −Π into the

expression for the total energy density (65)? Our ansatz is that the term
(︀
1
3𝜎(SB)𝑇

4− 1
3Π
)︀
naturally

appeared in the total pressure (63) relates to the radiation, and this term is equal to one third of the

radiation energy density, appeared in (65). Similar problem appeared in the medium electrodynamics,

when the terms containing both: the medium velocity and the terms connected with the electromagnetic

field, should be classified and packed either to the stress-energy tensor of the electromagnetic field, or

to the one of the matter. We think the formulas (63) and (65) form a special ansatz, and it has to be

verified in the future.

3.3. The example of exact solutions for a toy-model

We assume now that the gas (fluid) is ultrarelativistic, i.e., 𝜆 << 1, and its energy-density takes

the form 𝑊(gas) ≈ 3𝑘B𝑛𝑇 . Thus, the system as a whole is ultrarelativistic with 𝑊 = 3𝒫. For this model
the equation of hydrostatic equilibrium is known to have a specific exact solution with

𝑊 (𝑟) =
𝑊0

𝑟2
= 3𝒫 , 𝑊0 =

3

56𝜋𝐺
, 𝑀(𝑟) =

3𝑟

14𝐺
, 𝐵(𝑟) = 𝐵0 𝑟 , 𝐴(𝑟) =

7

4
. (67)

The spacetime with these metric coefficients is known to have conical singularity at the center, since

𝐴(0) ̸= 1 and thus the Ricci scalar diverges 𝑅(0) = ∞ (see, e.g., the problem 16.13 in [17]). Now we

are ready to present analytically the profiles of the non-equilibrium pressure, temperature and particle

number density.
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3.3.1 The model with 𝛾 = 0, 𝛼0 = 0 and 𝜏0 < 0

For this case we obtain that the non-equilibrium pressure and temperature have, respectively, the

following form:

Π(𝑟) = Π(𝑟*)
(︁𝑟*
𝑟

)︁ 5
4

exp

(︂
𝑟* − 𝑟

9𝜁0|𝜏0|

)︂
, 𝑇 (𝑟) = 𝑇 (𝑟*)

(︁𝑟*
𝑟

)︁ 1
2
. (68)

The particle number density can be found from the equation

𝑊 = 3𝑘𝐵𝑛𝑇 + 𝜎(SB)𝑇
4 −Π . (69)

Now we obtain

𝑛(𝑟) = 𝑛(𝑟*)
(︁𝑟*
𝑟

)︁ 3
2

{︃
1 +

Π(𝑟*)

3𝑘B𝑇 (𝑟*)𝑛(𝑟*)

[︃(︂
𝑟

𝑟*

)︂ 1
4

exp

(︂
𝑟* − 𝑟

9𝜁0|𝜏0|

)︂
− 1

]︃}︃
. (70)

The parameters 𝑇 (𝑟*), Π(𝑟*) and 𝑛(𝑟*) are linked by one relationship

3

56𝜋𝐺𝑟2*
= 3𝑘𝐵𝑛(𝑟*)𝑇 (𝑟*) + 𝜎(SB)𝑇

4(𝑟*)−Π(𝑟*) , (71)

two of them should be chosen based on some physical assumptions. Similarly to 𝑊 (𝑟) and 𝒫(𝑟), the

solutions (68) and (70) are singular at the center and vanish at the infinity.

3.3.2 The model with 𝜏 = 0

Integration of the equation (54) with 𝛾(𝑟) = 𝛾0 = 𝑐𝑜𝑛𝑠𝑡 and 𝜁(𝑟)𝑇 = 𝜁0 = 𝑐𝑜𝑛𝑠𝑡 yields

Π(𝑟) = Π(𝑟*)
(︁𝑟*
𝑟

)︁ 5
6
+

√
7𝑟

33𝜁0𝛾0

[︂
1−

(︁𝑟*
𝑟

)︁ 11
6

]︂
. (72)

Integration of the equation (47) with 𝛼* = 𝛼0
𝑇 = 𝑐𝑜𝑛𝑠𝑡 gives the following profile of the inverse

temperature:

1

𝑇 (𝑟)
=

(︂
𝑟

𝑟*

)︂ 1
2

{︃
1

𝑇 (𝑟*)
+

5𝛼*

8

[︂
1−

(︁𝑟*
𝑟

)︁ 4
3

]︂ [︃
Π(𝑟*)−

√
7𝑟*

33𝜁0𝛾0

]︃
+

2
√
7𝛼*𝑟*

33𝜁0𝛾0

[︃
1−

(︂
𝑟

𝑟*

)︂ 1
2

]︃}︃
. (73)

Finally, we can formally write the particle number density in the form

𝑛(𝑟) =
1

3𝑘𝐵𝑇

[︂
3

56𝜋𝐺𝑟2
− 𝜎(SB)𝑇

4 +Π

]︂
, (74)

where 𝑇 (𝑟) and Π(𝑟) can be taken from (73) and (72), respectively.

Conclusions

1. We presented a new extended version of the relativistic non-equilibrium thermostatics.

Terminologically, this extended theory can not be indicated as causal thermostatics, since standardly the

causality of the thermodynamic processes is associated with the hyperbolic law of the heat propagation.

However, the extended formalism of the developed theory inherits the ideas, on which the causal

relativistic thermodynamics has been constructed in the works of Israel and Stewart, and in addition

to the timelike unit medium velocity four-vector, the key element of the dynamic theory, the spacelike

unit four-vector indicated as the director, is introduced into the static theory.

2. The established formalism is applied to the model of static spherically symmetric stellar

structures, in the formation of which the radiation pressure plays the key role. For this model the

extended formalism gives a recipe how to calculate the non-equilibrium pressure and how to obtain the

profile of the temperature with respect to the radial variable. Master equations of the model are based
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on the standard equation of hydrostatic equilibrium and are supplemented by the extended equations

for the non-equilibrium pressure and temperature.

3. In order to illustrate the formalism, we analyzed in detail one toy-model corresponding to the

ultrarelativistic state of matter interacting with radiation. We realize that this theory requires a multi-

sectorial numerical modeling, which we plan to consider in future investigations. The main expected

result is the estimation of the star radius, which is defined as the first null of the generalized total

pressure of the stellar configuration, and is the function of the set of the model guiding parameters.
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