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Introduction

In the heart of the Milky Way the supermassive black hole was detected [1]. The publication of the
Science Release ESO1825 concerning this event has become the culmination of long-term observations,
and has opened a new page in the upgrade of the theory of evolution of stellar structures (see, e.g., [2,3]).
One of the zones of the Hertzsprung-Russell diagram, which attracts the interest in this context, is the
area of stellar structures, in the evolution of which the radiation pressure plays an essential role. What
contribution to the development of the star evolution science the theoreticians could make? We assume
that one of the most interesting trends in this direction is the non-local rheological-type extension of
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the relativistic non-equilibrium irreversible thermodynamics and thermostatics. In the work [4] we have
made the step towards the development of the theory based on rheological-type extension of the equation
of state of the neutron stars at zero temperature. In this work we consider the stellar objects with high
temperature and assume that the radiation pressure is the key player in the corresponding equation
of state. We establish our extended model based on the ideas of causal irreversible thermodynamics
elaborated by Israel and Stewart [5]; the short prologue about the mathematical formalism of this
theory is presented in Section II.

We would like to emphasize one detail in the difference between the extended thermodynamics [6]
and extended relativistic thermostatics. The extended thermodynamics deals with the heat propagation.
The corresponding equation for the temperature evolution is hyperbolic (of the second order in derivative
with respect to time) in both versions: proposed by Cattaneo [7] and resulting from the Israel-Stewart
theory [5]. This result is due to accounting for the retardation of the response, the simplest manifestation
of the non-locality in time. The extended relativistic thermostatics does not operate with time derivatives
and thus has to exploit the idea of spatial non-locality. Using this theory one analyzes the static
temperature distribution instead of temperature evolution, and the mathematical formalism has to
be correspondingly extended. We describe these modifications of the formalism in Section III.

The last remark is the following. The causal thermodynamics was used in many works for the
analysis of the rate of cosmological expansion, of the dynamics of perturbations, etc. (see, e.g., [8-
13]). When the system is static, one deals most often with the relativistic thermostatics of spherically
symmetric bodies, and the equation of hydrostatic equilibrium becomes the central element of the
analysis. We also considered the static system with the spherical symmetry, and arranged the results of
analysis in Section IV. Section V contains conclusions.

1. Prologue: The canonic causal relativistic non-equilibrium thermodynamics

The story of irreversible relativistic thermodynamics has a remarkable page associated with the
so-called causal thermodynamics elaborated by Israel and Stewart [5]. This theory is based on the second
law of the phenomenological thermodynamics, which states that the entropy production o of a closed
physical system should be non-negative o > 0. Entropy production scalar is introduced as the covariant
divergence of the entropy flux four-vector S*, i.e., ¢ = V. S* (V}, is the covariant derivative). Modeling
of the vector S* is the crucial point of the corresponding theory. In order to motivate the proposed
extension of causal thermodynamics we would like to recall shortly the main details of this theory.

1.1. Eckart’s approach

According to the Eckart version of linear thermodynamics [14] the entropy flux four-vector has the
form

1
SFEckart) = SOnUk + qu ) (1)

where n is the scalar of particle number density, 7" is the temperature, sq is the scalar of entropy per one
particle, U* is the unit timelike medium velocity four-vector, and ¢* is the spacelike heat-flux four-vector.
The scalar s enters the Gibbs equation (the first law of thermodynamics)

de + Po (i) =Tdsy, (2)

where e describes the energy density per one particle, and W = en is the energy density; P is the isotropic
equilibrium Pascal pressure, and the operator ¢ is connected with the variation of the corresponding
thermodynamic quantity. In the Eckart approach the symbol § is replaced with the differential operator
D, the convective derivative defined as D = U*V,, . The stress-energy tensor of the medium can be
decomposed standardly as follows:

T = enU'U* + U'q" + Uq' — AP+ 1I™". (3)
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Here A" = ¢** _U'U¥ is the projector, and the tensor
, . 1. ,
I = TI(G) + S AT, T = ggedT™, (4)

describes the non-equilibrium pressure of the medium. The stress-energy tensor is considered to be
divergence - free, V,, T* = 0, as usual, we split these four equations into the scalar and vector subsets,
respectively:

DW + (W + P)© — ¢"DU,, + Vi¢* — I*V,U; = 0, (5)

. L. ) L . . . . L
(W + P)DU? —VIP = —¢’© — ¢"V,, U/ — Al D¢" + TP*DU,, — AJ v, TT™* (6)

1
The quantity © = V,U* is the scalar of expansion of the medium flow; the operator V;, = Al V; plays
the role of spatial part of the gradient. It is well known that, when one uses the Gibbs equation (2) plus
the energy conservation law (5), the entropy production scalar is calculated to have the form

= Mg, + ¢ (DU, — L, (7)
J—T kUi T4 k Tk s

where DUj, is the acceleration four-vector. According to the Eckart results, the entropy production scalar
o is non-negative, when

. 1. .
¢ = {VZT—TDU’] , M=3(0, Myo=noi. (8)

since such phenomenological ansatz guarantees that

1

To=——
TTINT

7" q. + %Hég)ﬂik(o) + §H2 ; (9)
and the the entropy scalar to be non-negative ¢ > 0. The phenomenological constants: A (the thermal
conductivity), n (the shear viscosity) and ¢ (the bulk viscosity), are assumed to be functions of the
temperature 7. In (8) the standard elements of the decomposition of the velocity covariant derivative
are used: 1

ViU, = U DU, + 0pn + Wi, + gAmn@, (10)

where the symmetric traceless shear tensor o,,, and the skew-symmetric vorticity tensor w,,, are given,

respectively, as follows:

1 /L 1 1 1 /1 1L
Tik = {2 (ViUk + VkUi) - 3@Aik:| , Wmn =5 (viUk - kai> : (11)
These tensors are orthogonal to the velocity four-vector U*, i.e., 0,nnU™ = 0 = 0,y U™ and wp, U™ =
0=wm U™

1.2. Approach of Israel and Stewart

In the framework of causal thermodynamics Israel and Stewart have used the following ansatz for
the entropy flux four-vector structure:

1 1
SéfIS) = S?Eckart) + qu (5lk()40H + alﬂkl(o)} — ﬁUk |:BQH2 — qumqm + ﬁgﬂ%?ﬂmn(o) . (12)

In other words, the authors of this version of the causal thermodynamics have added all the possible
terms of the second order with respect to the non-equilibrium quantities II, ¢* and I, (0) With new
phenomenological parameters «ag, a1, B9, £1 and B2. Using the same scheme of calculation of the entropy
production scalar, as in the Eckart version, one can obtain the formula

BoU!
T

1 1
To =11 [3@ — BoDII — iTHVz < ) + aovqu} +
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aoll
[DUk - —VkTJrﬁquk + B—qk®+ 5TaD (ﬂ1> + TV}, ( - ) +TV, (?Hlk(o)ﬂ +

+H(O)) [Uzk B2 D1 (0)— L sz(o)@ Tsz(o)D (6 ) + a1V Qk)] (13)

The entropy production scalar o can be presented again as a non-negative quantity (9) if one uses the
following definitions for II, ¢* and Il )

Bo

Bo DIT+IT [ (®+D) (T )i = %@+aovqu, (14)

9(2

AFDqg!
B1 q +q /\T

(@+D)(§})] —V’“T DU*— Tvk(o‘%n) ~TAb, (Tf) L (15)
Ba
T

This canonic result shows that the expansion scalar © is the source of the non- equilibrium pressure

1
B2 A AR Dy0) + 1 0) iﬂ + (6+D) ( )] =0oik + 1 A ALV (1) - (16)

scalar II; the shear tensor oy is the source of the quantity Hig)’ the difference TV’“T DU* is the
source of the heat flux. If these sources vanish, there exists the trivial solutions for the mentioned non-
equilibrium fluxes. The phenomenological parameters Sy, 51, B2 predetermine the rates of evolution of
the corresponding non-equilibrium fluxes.

2. Extension of the relativistic non-equilibrium thermostatics
2.1. Three remarks concerning the thermostatics of the objects with spherical symmetry

2.1.1 The structure of covariant derivative of the velocity four-vector

The canonic theory of static spherically symmetric stellar structures is presented in the book [15].
Following this work in the whole, we nevertheless, change the signature of the metric and use the interval

ds* = B(r)dt* — A(r)dr* — r* (d6* + sin® 0dp?) . (17)
This spacetime admits the existence of the following Killing vectors:
§g0) = (56 , 5{1) = sin <p§g + cot 6 cos ap(% ,
552) = cos @55 — cot fsin @5{; , 5&0) = 5{; . (18)

We indicate the state of the physical system as inheriting the symmetry of the spacetime, when the Lie
derivatives of all state functions along all the Killing vectors vanish. The Lie derivatives of the scalars
W, P, n, II vanish, i.e.,

LeyW =E0yOW =0, Le, P =E 0P =0,... (19)

when these scalars depend on the radial variable » only. The velocity four-vector has to be chosen now
as

—6’f U, = 69VB. (20)

The covariant derivative of the velocity four-vector is now of the form
B/

VUi = —0967
k iy B

(21)

This means that B
=0 ik =0, ik =0, DU, =-0]—. 22
, ik Wik 5B (22)
In other words, the acceleration four-vector is the only non-vanishing object, and it has the only radial

component.
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2.1.2 Is the heat-flux four-vector vanishing?

The heat-flux four-vector ¢* is orthogonal to the velocity four-vector, ¢*Uj = 0, and for the ansatz
(20) we obtain that only ¢", ¢° and ¢¥ could be nonzero. If we apply the requirement of the symmetry
inheritance to the heat-flux four-vector:

Lo q' = &(yOrd’ — ¢ 0k&lyy = 0, (23)

for all Killing vectors (18) we conclude, that ¢ = 0, ¢¥ = 0 and ¢" has to depend on the radial variable
only. However, in the static model the energy density balance equation (5) converts into

B’ 1 d
k k r 2 T
=¢"DUy, — —q"'— = — (r*VAB 24
0=¢"DUr = Vig" = —0 55 ﬂmdr(r Q), (24)
thus, the solution to (24) is
K
qg = . (25)
r2Bv A

Physical motives hint us that we have to put the integration constant K to zero, and thus, we have to
use the ansatz ¢ = 0. Then the equation for II (14) becomes sourceless and thus (14) prescribes the
scalar non-equilibrium pressure to vanish, II=0. Similarly, since the shear tensor vanishes, o;; = 0, the
tensor Il,,,, (o) turns into zero. Finally, we obtain from (15), that

) 1L

and taking into account (22) we obtain immediately, that
To

T(r)= . 27
(r) B0) (27)

In other words, for the static spherically symmetric models all the non-equilibrium fluxes vanish
m=o, qi =0, Hmn(O) =0, (28)

and the distribution of the temperature is described by the equilibrium law (27). This means, in fact,
that the canonic Israel-Stewart theory is not effective in the case, when we study the static spherically
symmetric stellar configurations, and we have to think about the extension of the causal thermostatics.

2.1.3 Special solution for the heat-flux four-vector

Formally speaking, we can consider the case K # 0 also. Let us assume that a; = 0, thus Hl("g) has
no physical source and we put Hl("g) = 0. Then, the equations (5), (14) and (15) yield, respectively,

K

"DUy = Vig" = ¢" =6 —F+=, 29
q k k4 q TTQB\/Z ( )
I , 9CaoKB'
=Vt = = -2 — , 30
¢ — VM 2r2B2/A (30)
qk _ 14 L OCOH / B/ A K\/A
N Tva DU,—-TV,, ( T =T (1 + Oé()H) +T 5B (OéoH) = "B (31)

In other words, when K = 0, the equations (29)-(31) describe special branch of solutions for the
thermostatic model. In particular, if we choose ag = 0 and A(r) = % with the constant \g, the
solution to the equation (31) is

T K
Tr)=—=(14++——] . 32
0= (1 57 (32)
There is one interesting case, when K is negative: one can denote r¢ = % and obtain T'(r) =

% ( — TTC) Thus the constant of integration K can be linked with the critical value of the radial

variable rc: when r < r¢, the temperature becomes negative, and the thermostatic description becomes

inappropriate.
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2.2. The director and its properties

If we follow the idea that in the framework of thermostatics of the spherically symmetric bodies the
heat-flux four-vector ¢* disappears (i.e., K = 0), we need of new four-vector orthogonal to the velocity
four-vector U7. We suggest to use the spacelike unit four-vector R?, which inherits the symmetry of the

spacetime. This means that
RU;, =0, R/R'=-1, (33)

and the Lie derivatives along all the Killing vectors (18), admitted by the spacetime symmetry, vanish:
Le R = E6yO R — RERE],) = 0. (34)

All the requirements (33), (34) are satisfied for the four-vector

) 1
Ri=§—, R;=—-0VA. 35
" /i (35)

The covariant derivative of this vector

) 1 B . 2 . )
i 75250 “ 5159 X4
ViR 2*,4[30”7:(9”“)}’ (36)
can be rewritten as B )
ViR = U'Uy, + —= (0505 + 6167 . 37
k 2BVA k ’I"\/Z( 0% @ k) (37)
Clearly, the tensor VR is symmetric, and its trace is equal to
1 B 4
ViRF= — | =+ } . 38
R = [T 39

Using the director R*, one can rewrite the relationship (21) in more convenient form

/

BVA

Since U* and R¥ are orthogonal, we see explicitly that V,U* = 0. Similarly, taking into account (36)

ViU = 5 UpRE. (39)

and (39), as well as the normalization conditions for the four-vectors U¥ and R’, we can write the
system of useful relationships

RFVLR =0, RFVLU' =0, UVU' =0, R;ViR' =0, (40)
U'VR =TU', UVyR' =TU,, U*V,U' =TR', R,V,U' =-TU,, (41)
where we introduced the following auxiliary function
B/
T 9BVA'

Clearly, there exists some symmetry in these relationships between the medium velocity U? and the

I(r) (42)

director R7. It is interesting to mention that in all formulas (41) the common multiplier ' (42) appeared.

2.3. Extension of the entropy flux four-vector and modified equations for the pressure II
and temperature

We assume now that ¢° and Hé’g) do not participate in the extensign procedure; only IT appears in
the new terms of the decomposition of the entropy flux four-vector S*. We add to the decomposition
(12) the following new terms:

1 1
S* = Sfis) + R 5TH“' + §7H3 +.o (43)
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where the multipliers 7(7T,n) and (7, n) are some functions of the temperature and particle number
density, introduced phenomenologically. The constitutive equation for the scalar I takes now the form

=(©+D) <ﬁT°ﬂ —%@—aovqu =T |(T+~I1) R’VJH%H% (TRY) +%H2Vk (vR’“)]

(44)
Keeping in mind that the model under consideration is static and spherically symmetric, we can reduce

BoDII+IT [9 +3

the constitutive equation (44) into

II

5T (45)

(T + ) RV I+ Hv (TR") + HQVk (vR*) =
In (45) the differential operator D=R"*V, appears, which plays the similar role as the operator D=U*V

in the equation (14). When the non-equilibrium pressure II is non-vanishing, the law of the temperature
distribution (see (15)) transforms into

11
*VkT DU, +TVk (a; ) . (46)

In this set only one equation is nontrivial. Convolution of (46) with R* gives the equation

d d (all

= rog (TVB)| =7 (20 4

a Llog ar \'T (47)
When ap = 0, or 22" = const, the solution to (47) again is T'(r) = %, where T} is a constant of

integration.
2.4. Two particular models

2.4.1 The model with v =10

When the decomposition of the entropy flux (43) contains the quadratic terms only, i.e., when
~ = 0, the equation (45) takes the form

, 1 , I
iV, + -1V, (TRY) = — 4
TRV + STV (7R) 9T (48)
or in more details (again the prime denotes the derivative with respect to radial variable)
1 B 2 VA
I + =II |7 = —. 49
I+ 5 |:T +T<2B+ )] 9T (49)

Clearly, the trivial solution IT = 0 satisfies this equation. We could consider nontrivial solutions, when,
e.g., II(r,) # 0 on some sphere r = r,. We can rewrite the equation (49) in the form

H VA
2 — 2
T = oty H =1\/72VB. (50)
In the particular case, when ((T")= CO , and 7(r)=79pv/A with constants {; and 79, we obtain the analytic
solution )
e\ (A )B(ra)\ * T — T,
II(r) =1(ry) (| — _ . 1
() =1 () ( AnBr) ) P\ 9Gm (51

Mention should be made that the sign of the phenomenological parameter 7y is not yet fixed.

2.4.2 The model with 7 =0, v # 0

This case is interesting since the constitutive equation for the non-equilibrium pressure II

1
k kY _ _—
II |YR*V 11 4 HVk (772 ) ocT =0 (52)
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splits into the pair of equations: one of them gives the trivial solution, and the second is the equation
with the source provided by the bulk viscosity

1 1
VeI 4+ TIV = —.
YREVLIL+ 2 Kk (YRY) ocT (53)

The equation (53) for II can be written as follows:

4ol ey

n particular, 1 y(r) = —= an r) = (o5 Wl e constants 9 and (g, the non-equilibrium pressure
In particular, if 2% and VAB with th tant d (o, th ilibri

can be found analytically

) =1 (2) 4 o[- ()] (59

T 15¢o70 r

This function is non-monotonic, and for the appropriate values of the parameters II(r.), 7., (o and 7
can change the sign and reach a minimum.

3. The study of modified equation of hydrostatic equilibrium
3.1. The canonic equation of hydrostatic equilibrium

When ¢* = 0, Hf’g) =0, © = 0, and all the state functions depend on the radial variable only, we
obtain that the equation of the energy balance (5) becomes trivial, and the equation (6) takes the form

iR
(W +P) DU, = V),P, (56)

where the total pressure P = P — %H contains both equilibrium and non-equilibrium parts. Convolution
of this equation with the director R* yields

B’ 2P’

Z - __= 57
B (W+P) (57)
As usual, to find the functions A(r) and B(r) we address to the pair of Einstein’s equations
1 A’ 1
ﬁ+TA2_m_8ﬂGW7 (58)
1 B’ 1
_T72+7“1473+7‘27A_87TG,P. (59)
From the equation (58) one obtains immediately the standard solution
1 2GM "
1, 2GME). M(r) = 47r/ 2 dr'W(r') . (60)
A T 0
Using (57) we obtain from (59) the equation of hydrostatic equilibrium
M + 4773
—TQP’:G<W+P)( + 4mr ’P). (61)
(1-25%)

This integro-differential equation can be rewritten as the nonlinear differential equation of the second
order
2P+ 4nGr3P(W +P)]
2rp’ — (W +P)

=47 Gr*w . (62)
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3.2. Equation of state

We assume that the model of stellar configuration under study contains two constituents. The
first one is the relativistic gas (fluid); the second element of the system is the radiation, which is in
equilibrium with the radiative gas. The total pressure of the system is assumed to be presented by the
following function:

1 1
P =nkgT + ga(SB)T‘1 — gH. (63)

Here kg is the Boltzmann constant; osp) is the Stefan-Boltzmann constant equal to

21.4
osB) = 6”?];23 . (64)
For the total energy-density of the system we use the formula
W=n [mgzgii - kBT] + (opyT* —10) . (65)
Here n is the particle number density; K, (\) are the McDonald functions given by
K,(\) = S / " dte Aot g2 t, (66)
1-3---(2n—-1) J

with A = 72 (see the book [16] for details).

The pair of equations (63) and (65) gives us the specific version of the equation of state; one has
to add to these equations the equation for the non-equilibrium pressure II (45), and the equation for
the temperature distribution (47). Then, we put W from (65) and P from (63) into the equation of
hydrostatic equilibrium (61) or (62) and obtain the key equation for the profile n(r). Using the solution
for n(r) we can recover the state functions W (r) and P(r) and then can reconstruct the metric functions
A(r) and B(r). In general case this procedure can be realized only numerically, and we hope to fulfil
such a detailed analysis in the next work. Below we consider, as an example, only one specific solution
for the toy model.

Mention should be made that such a representation of the equations of state for two-component
relativistic system is disputable. The question is whether we can add or not the term —II into the
expression for the total energy density (65)7 Our ansatz is that the term ($o(sp)T?—31II) naturally
appeared in the total pressure (63) relates to the radiation, and this term is equal to one third of the
radiation energy density, appeared in (65). Similar problem appeared in the medium electrodynamics,
when the terms containing both: the medium velocity and the terms connected with the electromagnetic
field, should be classified and packed either to the stress-energy tensor of the electromagnetic field, or
to the one of the matter. We think the formulas (63) and (65) form a special ansatz, and it has to be
verified in the future.

3.3. The example of exact solutions for a toy-model

We assume now that the gas (fluid) is ultrarelativistic, i.e., A << 1, and its energy-density takes
the form W,,q) ~ 3kpnT. Thus, the system as a whole is ultrarelativistic with W = 3P. For this model
the equation of hydrostatic equilibrium is known to have a specific exact solution with

% 3 3r

7
P} _3P7 WO_W7 M(r)_mv B(T)—BOT» A(T)_f' (67)

W(r) = 1

r

The spacetime with these metric coefficients is known to have conical singularity at the center, since
A(0) # 1 and thus the Ricci scalar diverges R(0) = oo (see, e.g., the problem 16.13 in [17]). Now we
are ready to present analytically the profiles of the non-equilibrium pressure, temperature and particle
number density.
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3.3.1 The model with v+ =0, g = 0 and 79 < 0

For this case we obtain that the non-equilibrium pressure and temperature have, respectively, the
following form:

T\ 7 Te —T T\ 3

II(7r) = II(r. (—*) ex (* ), T(r)="T(ry (—*) . 68
) =) ()" en (g0 ). 70) =70 (68)
The particle number density can be found from the equation

W = 3kpnT + ogp)T* —11. (69)
Now we obtain

=) () {1 i | () 0 () )

The parameters T'(r.), II(r.) and n(r,) are linked by one relationship

=

3

oG 3kpn(r )T (ry) + O(SB)T4(T*) —T(r.), (71)

two of them should be chosen based on some physical assumptions. Similarly to W (r) and P(r), the
solutions (68) and (70) are singular at the center and vanish at the infinity.

3.3.2 The model with 7 =0

Integration of the equation (54) with v(r) = 4o = const and ((r)T = {y = const yields

) =) (%) 2 1 (2] &

Integration of the equation (47) with o, = %% = const gives the following profile of the inverse

T(r,) VT 1 | 2T [1 - (7’)%]} . (73)

temperature:

= (5) {5 - ()]

Finally, we can formally write the particle number density in the form

=

 33C00 33GoY0

1 3
| T 4T 4
n(r) = 35,7 [567TG7“2 CORN ] ’ (74)

where T'(r) and II(r) can be taken from (73) and (72), respectively.
Conclusions

1. We presented a new extended version of the relativistic non-equilibrium thermostatics.
Terminologically, this extended theory can not be indicated as causal thermostatics, since standardly the
causality of the thermodynamic processes is associated with the hyperbolic law of the heat propagation.
However, the extended formalism of the developed theory inherits the ideas, on which the causal
relativistic thermodynamics has been constructed in the works of Israel and Stewart, and in addition
to the timelike unit medium velocity four-vector, the key element of the dynamic theory, the spacelike
unit four-vector indicated as the director, is introduced into the static theory.

2. The established formalism is applied to the model of static spherically symmetric stellar
structures, in the formation of which the radiation pressure plays the key role. For this model the
extended formalism gives a recipe how to calculate the non-equilibrium pressure and how to obtain the
profile of the temperature with respect to the radial variable. Master equations of the model are based
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on the standard equation of hydrostatic equilibrium and are supplemented by the extended equations
for the non-equilibrium pressure and temperature.

3. In order to illustrate the formalism, we analyzed in detail one toy-model corresponding to the
ultrarelativistic state of matter interacting with radiation. We realize that this theory requires a multi-
sectorial numerical modeling, which we plan to consider in future investigations. The main expected
result is the estimation of the star radius, which is defined as the first null of the generalized total
pressure of the stellar configuration, and is the function of the set of the model guiding parameters.
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