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Предложен новый метод построения точных решений космологии скалярного поля, основанный на

представлении динамических уравнений Эйнштейна–Фридмана в виде уравнения Шрёдингера. Это

представление позволяет сравнивать решения квантово-механических и космологических задач. С

другой стороны, этот подход позволяет использовать известные форм-инвариантные преобразования

уравнения Шрёдингера для генерации точных космологических решений. В качестве примера применения

данного метода рассмотрено использование преобразований Дарбу в космологии со скалярным полем.

С другой стороны, представленные методы позволяют обобщить полученные решения на многополевые

космологические модели.
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We propose a new method of exact solutions construction for scalar field cosmology based on representation of

the Einstein-Friedmann dynamic equations as Schrödinger-like one. This representation allows one to compare

the solutions of quantum-mechanical and cosmological problems. On the other hand, this approach makes it

possible to use the well-known form-invariant transformations of the Schrödinger equation to generate exact

cosmological solutions. As an example of the application of this method, the use of the Darboux transformations

in scalar field cosmology is considered. On the other hand, the presented methods make it possible to generalize

the obtained solutions to multi-field cosmological models.
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Introduction

Investigation of Scalar Field Cosmology (SFC) is closely connected with the development of

inflationary theory started in the beginning of 1980ies with works by Starobinsky, Guth, Linde and
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Albrecht and Steinhard [1–5]. The first analysis of the system of differential equations describing

the dynamics of the Friedmann universe filled with a scalar field was performed using approximation

methods. About ten years after the discovery of the inflationary stage in the evolution of the universe, the

first exact solution attracted attention of many scientists. Since that time a great number of methods for

construction of exact solutions in SFC have been proposed and developed. Many of these are described

in the works [6–21].

The equations of cosmological dynamics themselves in inflationary models with a scalar field in the

flat Friedmann universe are written as follows

𝐻2 =
1

3

(︂
1

2
𝜑̇2 + 𝑉 (𝜑)

)︂
, (1)

𝐻̇ = −1

2
𝜑̇2, (2)

𝜑+ 3𝐻𝜑̇ = −𝑉 ′(𝜑). (3)

Here 𝑎(𝑡) is the scale factor, 𝐻(𝑡) = 𝑎̇(𝑡)/𝑎(𝑡) is the Hubble parameter, 𝜑(𝑡) is a scalar field, and

𝑉 (𝜑) is a potential energy (or simply potential as it traditionally described in inflationary cosmology).

A dot denotes the derivative with respect to the cosmic time 𝑡, and a prime denotes the derivative with

respect to the scalar field.

It should also be noted that field equation (3) is a consequence of two Einstein-Friedman equations

(1)–(2), which completely determine the dynamics of the early universe at the inflationary stage based

on the General Relativity.

Among the various methods that are used to construct exact solutions of equations (1)–(2), the

method of bringing one of them to the one-dimensional stationary Schrödinger equation was considered.

To our knowledge, the Schrödinger representation of the first Einstein-Friedmann equation (1) was

proposed for the first time by Zhuravlev et al [22]. The method was further developed by A. Yurov with

coauthors in the works [23, 24]. Later Barbosa-Cendejas and Reyes [25] repeated the derivation of the

Schrödinger equation from the Friedmann equation, and compared solutions in cosmology and quantum

mechanics. In our recent work [26], another approach was considered, based on the representation of the

first Einstein-Friedman equation as the Schrödinger-like equation in terms of a scalar field.

In this paper, we consider the representation of the second Einstein-Friedman equation (2) in the

form of the Schrödinger-like equation and give examples of known and new exact cosmological solutions

obtained by this method. Also, this approach provides a new way of comparing quantum-mechanical

and cosmological problems, as shown by the example of the Pöschl–Teller potential.

Further, we consider the possibility of applying the Darboux transformations within the framework

of the proposed approach. It is shown that one can use these transformations both to generate new

exact solutions from known ones in models with one scalar field, and in multi-field Chiral Cosmological

Models (CCM) [27–32] as well.

Finally, we generalize the representation of both Einstein-Friedman equations as a one-dimensional

stationary Schrödinger-like equation, which allows one to compare the solutions obtained by using any

other methods to this approach.

1. Schrödinger-like representation of second Einstein-Friedmann equation

It is well known that to generate exact solutions of the system (1)–(3) in explicit form, it is sufficient

to find solutions of the second Einstein-Friedman equation (2) only.

Now, we consider the one-dimensional Schrödinger-like equation in terms of the cosmic time

𝜓 − 𝑢(𝑡)𝜓 = 0, (4)

where 𝜓 = 𝜓(𝑡) is a some function of time. After the following function change

𝑢(𝑡) = 𝜑− 2𝐻̇, (5)
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𝜓(𝑡) = 𝜇1 exp(𝜑(𝑡)), (6)

where 𝜇1 ̸= 0 is the constant, from equation (4) we obtain the second Einstein-Friedmann equation (2)

𝜑̇2 = −2𝐻̇. (7)

The inverse transformations of the equations (5)–(6) give

𝜑(𝑡) = ln

(︂
1

𝜇1
𝜓(𝑡)

)︂
, (8)

𝐻(𝑡) =
1

2

(︃
𝜓̇

𝜓
−
∫︁
𝑢(𝑡)𝑑𝑡+ 𝜆

)︃
, (9)

where the functions 𝑢(𝑡) and 𝜓(𝑡) are connected by equation (4).

Also, from equations (1)–(2) one has the expression for the potential of a scalar field

𝑉 (𝜑(𝑡)) = 3𝐻2 + 𝐻̇. (10)

Further, we will consider some exact cosmological solutions for some potentials 𝑢(𝑡).

1.1. Solutions for 𝑢 = 0

For the case 𝑢(𝑡) = 0, from equation (4) we obtain

𝜓(𝑡) = 𝜇1(𝑐1𝑡+ 𝑐2), (11)

where 𝑐1 and 𝑐2 are constants of integration. From (8)–(9) and (10) one has

𝜑(𝑡) = ln(𝑐1𝑡+ 𝑐2), (12)

𝐻(𝑡) =
𝑐1𝜆𝑡+ 𝑐2𝜆+ 𝑐1
2(𝑐1𝑡+ 𝑐2)

, (13)

𝑎(𝑡) = 𝑎0𝑒
1
2𝜆𝑡(𝑐1𝑡+ 𝑐2)

1/2, (14)

𝑉 (𝜑) =
𝑐21
4
𝑒−2𝜑 +

3𝑐1𝜆

2
𝑒−𝜑 +

3

4
𝜆2. (15)

These solutions correspond to exponential power-law inflation [7]. For 𝑐1 = 0 we have the de Sitter

solution with 𝜑 = ln(𝑐2) = 𝑐𝑜𝑛𝑠𝑡, 𝐻 = 𝜆
2 = 𝑐𝑜𝑛𝑠𝑡 and 𝑉 = 3

4𝜆
2 = 𝑐𝑜𝑛𝑠𝑡 as the partial solution.

1.2. Solutions for 𝑢 = 𝑐𝑜𝑛𝑠𝑡 ̸= 0

For the case 𝑢(𝑡) = 𝐴 = 𝑐𝑜𝑛𝑠𝑡, from equation (4) we obtain

𝜓(𝑡) = 𝜇1

(︁
𝑐1𝑒

√
𝐴𝑡 + 𝑐2𝑒

−
√
𝐴𝑡
)︁
, (16)

where 𝑐1 and 𝑐2 are the constants of integration. Now, we note the growing and decaying solutions

𝜓1,2(𝑡) = exp
(︁
±
√
𝐴𝑡+ 𝜑0

)︁
, 𝜑0 = 𝑐𝑜𝑛𝑠𝑡. (17)

From (8)–(9) and (10) we obtain exact solutions for chaotic inflation [5, 19]

𝜑(𝑡) = ±
√
𝐴 𝑡+ 𝜑0, (18)

𝐻(𝑡) =
1

2

(︁
𝜆±

√
𝐴−𝐴𝑡

)︁
, (19)

𝑎(𝑡) = 𝑎0 exp

{︂
1

2

[︂(︁
𝜆±

√
𝐴 )𝑡− 𝐴𝑡2

2

]︂}︂
, (20)

𝑉 (𝜑) =
[︁
𝜆±

√
𝐴±

√
𝐴 (𝜑0 − 𝜑)

]︁2
− 1

2
𝐴. (21)

The other wave functions derived from the conditions 𝑐1 = 𝑐2, 𝑐1 = −𝑐2 don’t lead to physical

inflationary potentials.
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1.3. Solutions for the Pöschl–Teller quantum mechanical potential

Now, we consider the following wave function

𝜓(𝑡) = 𝜇1 tanh(𝛼𝑡), (22)

where 𝛼 is an arbitrary constant. From equation (4) we obtain the quantum mechanical Pöschl–Teller

potential [33]

𝑢(𝑡) = − 2𝛼2

cosh2(𝛼𝑡)
. (23)

From (8)–(9) and (10) for 𝜆 = 0 one has the corresponding cosmological model

𝜑(𝑡) = ln(tanh(𝛼𝑡)), (24)

𝐻(𝑡) = 𝛼 cot(2𝛼𝑡), (25)

𝑎(𝑡) = 𝑎0[sinh(2𝛼𝑡)]
1/2, (26)

𝑉 (𝜑) = 𝛼2[cosh2(𝜑) + 2]. (27)

Similar solutions for the potential (27) were considered earlier in [11, 13]. Hence, we have a

connection between the cosmological and quantum mechanical problems for the case considered.

1.4. Generalization of inflationary models with polynomial potentials for the small scalar
field

Now, we consider the wave function

𝜓(𝑡) = 𝜇1 exp

{︂
1

𝐶
arcsin

[︀
exp

(︀
−2𝐴𝐶2(𝑡+ 𝑐1)

)︀]︀}︂
, (28)

where 𝐴 and 𝐶 are arbitrary constants. From equations (4)–(10) we obtain the exact solutions

𝐻(𝑡) =
𝐴

2
ln
[︀
1 + exp

(︀
−4𝐴𝐶2(𝑡+ 𝑐1)

)︀]︀
+𝐵, (29)

𝜑(𝑡) =
1

𝐶
arcsin

[︀
exp

(︀
−2𝐴𝐶2(𝑡+ 𝑐1)

)︀]︀
, (30)

𝑎(𝑡) = 𝑎0 exp

(︂
1

8𝐶2

{︀
8𝐵𝐶2𝑡+ 𝑓

[︀
1 + exp(−4𝐴𝐶2(𝑡+ 𝑐1))

]︀}︀)︂
, (31)

𝑉 (𝜑) = 3 (𝐴 ln[cosh(𝐶𝜑)] +𝐵)
2 − 2𝐴2𝐶2 tanh2(𝐶𝜑), (32)

where 𝐵 is the constant of integration and the function 𝑓(𝜉) is defined as

𝑓(𝜉) =

∫︁ 𝜉

1

ln(𝜉)

1− 𝜉
𝑑𝜉. (33)

For the small scalar field 𝜑≪ 1 from (32) we obtain the double-well potential

𝑉 (𝜑) =

(︂
−1

2
𝐴𝐵𝐶4 +

3

4
𝐴2𝐶4 +

4

3
𝐴2𝐶6

)︂
𝜑4 +(︀

−2𝐴2𝐶4 + 3𝐴𝐵𝐶2
)︀
𝜑2 + 3𝐵2 +𝒪(𝜑6), (34)

Therefore, for different choices of the constants 𝐴, 𝐵 and 𝐶 we have the different potentials as the

partial cases. For the case 𝐵 = 2
3𝐴𝐶

2 we have

𝑉 (𝜑) = 𝐴2𝐶4

(︂
𝐶2 +

3

4

)︂
𝜑4 +𝒪(𝜑6), (35)
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For the case 𝐵 = 8
3𝐴𝐶

2 + 3
2𝐴 we obtain

𝑉 (𝜑) = 3𝐴𝐶2

(︂
2𝐶2 +

3

2

)︂
𝜑2 +𝒪(𝜑6), (36)

The case 𝐵 = − 1
2𝐴 and 𝐶 = ±

√
3𝑖
2 corresponds to the potential

𝑉 (𝜑) = 3𝐵2 +𝒪(𝜑6). (37)

The evolution of the remaining parameters of these models is determined by substitution of the

constants in solutions (29)–(31). Thus, we have new cosmological solutions for known potentials which

are considered in [3–5] with negligible corrections for the small scalar field.

2. Darboux class of exact cosmological solutions

One of the possible form-invariant transformations of the one-dimensional stationary Schrödinger

equation is the Darboux transformations [34–36]. It should be noted that the application of such a

transformations to the first Einstein-Friedmann equation, written in different forms, was discussed in

[23, 26]. In this case, we will consider the application of the Darboux transformations to the second

Einstein-Friedman equation to generate new exact cosmological solutions from known ones and for

conversion of exact solutions from the case of single-field models to multi-field Chiral Cosmological

Models (CCM) as well.

2.1. Single field cosmological models

Now, we consider the one-dimensional Schrödinger equation in terms of the cosmic time

¨̃
𝜓 − 𝑢̃(𝑡)𝜓 = 0, (38)

where 𝜓 = 𝜓(𝑡) is a some function of time. After the following function change

𝑢̃(𝑡) = 𝜙− 2 ˙̃𝐻, (39)

𝜓(𝑡) = 𝜇2 exp(𝜙(𝑡)), (40)

where 𝜇2 ̸= 0 is the constant, from equation (4) we obtain the second Einstein-Friedmann equation (2)

𝜙̇2 = −2 ˙̃𝐻. (41)

We will consider 𝜓 and 𝜓 as a partial solutions of the equations (4) and (38). The connection

between this solutions can be obtained from the Darboux transformations

𝑢̃ = 𝑢− 2
𝑑2

𝑑𝑡2
ln(𝑓(𝑡)), (42)

𝜓 = 𝜓̇ − 𝜓

{︂
𝑑

𝑑𝑡
ln(𝑓(𝑡))

}︂
, (43)

where 𝑓(𝑡) is the general solution of the equation (4)

𝑓 − 𝑢(𝑡)𝑓 = 0. (44)

Therefore, based on these transformations, one can obtain the connection between the exact

solutions of the equation (7) and (41) in the following form

𝜙(𝑡) =
√
𝑛 [𝜑(𝑡) + 𝜒(𝑡)] + 𝜙0, (45)

𝐻̃(𝑡) = 𝑛

[︃
𝐻(𝑡) +

𝑓

𝑓
+

1

2
𝜒̇

]︃
+ 𝜆, (46)

𝜒(𝑡) = ln

[︃
𝜇1

𝜇2

(︃
𝜑̇− 𝑓

𝑓

)︃]︃
, (47)

𝑓 −
(︁
𝜑− 2𝐻̇

)︁
𝑓 = 0, (48)
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where 𝑛, 𝜆 and 𝜙0 are some constants.

The general solution 𝑓 = 𝜓(1)+𝜓(2) of the equation (48) can be found on the basis of the expression

for 𝑢 = 𝜑− 2𝐻̇ and known particular solution 𝜓(1)(𝑡) = 𝜇1 exp(𝜑(𝑡)). For the case
𝜇1
𝜇2

(︁
𝜑̇− 𝑓

𝑓

)︁
> 0 one

has a canonical field 𝜙(𝑡) for 𝑛 > 0 and phantom one for 𝑛 < 0. For 𝜇1
𝜇2

(︁
𝜑̇− 𝑓

𝑓

)︁
< 0 we have a complex

scalar field 𝜙(𝑡) in which real and imaginary components depend on the sign of 𝑛.

Also, one can define the new potential as

𝑉 (𝜙(𝑡)) = 3𝐻̃2 + ˙̃𝐻. (49)

Thus, from known solutions 𝜑 and 𝐻 of equation (7) one can obtain the new exact solutions 𝜙, 𝐻̃ and

𝑉 from expressions (45)–(49).

2.2. Two field cosmological models

As one can see, the function 𝜒(𝑡) can be considered as the additional scalar field. After substituting

the scalar field

𝜙(𝑡) =
√
𝑛 [𝜑(𝑡) + 𝜒(𝑡)] + 𝜙0 (50)

into the Einsten-Friedmann equations (1)–(2) we obtain

3𝐻̃2 =
𝑛

2
𝜑̇2 + 𝑛𝜑̇𝜒̇+

𝑛

2
𝜒̇2 + 𝑉 (𝜑, 𝜒), (51)

− ˙̃𝐻 =
𝑛

2
𝜑̇2 + 𝑛𝜑̇𝜒̇+

𝑛

2
𝜒̇2. (52)

After substituting the field (50) into the field equation (3) one has

√
𝑛(𝜑+ 𝜒̈) + 3

√
𝑛𝐻̃(𝜑̇+ 𝜒̇) = −𝑑𝑉 (𝜙)

𝑑𝜙
=
𝑑𝑉

𝑑𝑡

𝑑𝑡

𝑑𝜙
=

= −
(︂
𝜕𝑉 (𝜑, 𝜒)

𝜕𝜑
𝜑̇+

𝜕𝑉 (𝜑, 𝜒)

𝜕𝜒
𝜒̇

)︂
1

√
𝑛(𝜑̇+ 𝜒̇)

. (53)

𝑛(𝜑+ 𝜒̈)(𝜑̇+ 𝜒̇) + 3𝑛𝐻̃(𝜑̇+ 𝜒̇)2 = −𝜕𝑉 (𝜑, 𝜒)

𝜕𝜑
𝜑̇− 𝜕𝑉 (𝜑, 𝜒)

𝜕𝜒
𝜒̇ . (54)

𝜑𝜑̇+ 𝜒̈𝜑̇+ 3𝐻̃(𝜑̇2 + 𝜒̇𝜑̇) + 𝜑𝜒̇+ 𝜒̈𝜒̇+ 3𝐻̃(𝜒̇2 + 𝜑̇𝜒̇) =

= − 1

𝑛

(︂
𝜕𝑉 (𝜑, 𝜒)

𝜕𝜑
𝜑̇+

𝜕𝑉 (𝜑, 𝜒)

𝜕𝜒
𝜒̇

)︂
. (55)

Therefore, the field equation (55) can be represented as two ones in the following form

𝜑+ 3𝐻̃(𝜑̇+ 𝜒̇) + 𝜒̈ = − 1

𝑛

𝜕𝑉 (𝜑, 𝜒)

𝜕𝜑
, (56)

𝜒̈+ 3𝐻̃(𝜑̇+ 𝜒̇) + 𝜑 = − 1

𝑛

𝜕𝑉 (𝜑, 𝜒)

𝜕𝜒
. (57)

Such a model with dynamic equations (51)–(52) and (56)–(57) containing a mixed kinetic terms was

considered earlier in the paper [37] for 𝑛 = 1.

Also, we note, that this system has two independent equations only, because the equation (53) and

(56)–(57) can be obtained from equations (51)–(52).

Thus, based on the transformations (45)–(48) one can generate the exact cosmological solutions for

this system of equations from known 𝜑 and 𝐻 following from (7).
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2.3. Multi-field cosmological models

The previous models with mixed kinetic terms is the partial case of the chiral cosmological models

(CCM) with 𝐾 scalar fields 𝜑𝐴 (𝜑 = 𝜑0, 𝜑1, 𝜑2..., 𝜑𝐾) (𝐾 = 2) based on the action [27–32]

𝑆 =

∫︁
𝑑4𝑥

√
−𝑔
[︂
1

2
𝑅− 1

2
ℎ𝐴𝐵𝜕𝜇𝜑

𝐴𝜕𝜈𝜑
𝐵𝑔𝜇𝜈 − 𝑉 (𝜑)

]︂
, (58)

where the ℎ𝐴𝐵 = 𝑛𝐼, and 𝐼 is the unit matrix.

For the CCM with K-fields, in the spatially flat Friedmann–Robertson–Walker metric, from the

action (58), one has the following dynamic equations

3𝐻̃2 =
1

2
ℎ𝐴𝐵𝜑̇

𝐴𝜑̇𝐵 + 𝑉 (𝜑), (59)

− ˙̃𝐻 =
1

2
ℎ𝐴𝐵𝜑̇

𝐴𝜑̇𝐵 , (60)

ℎ𝐶𝐵(𝜑
𝐵 + 3𝐻̃𝜑̇𝐵) + 𝑉,𝐶 = 0. (61)

We start from the equation for one scalar field

− 2𝐻̇0 = 𝜑̇0𝜑̇0 =
(︁
𝜑̇0
)︁2
. (62)

The first way to construct the exact solutions from known 𝜑0 and 𝐻0 is to represent the field 𝜒 as the

sum of the other fields 𝜒 = 𝜑1 + 𝜑2 + ...𝜑𝑁 .

Thus, from the transformations (45)–(48), one has

𝜑(𝑡) =
√
𝑛

[︃
𝜑0(𝑡) +

𝑁∑︁
𝐵=1

𝜑𝐵

]︃
+ 𝑐𝑜𝑛𝑠𝑡, (63)

𝐻̃(𝑡) = 𝑛

[︃
𝐻0(𝑡) +

𝑓

𝑓
+

1

2

(︃
𝑑

𝑑𝑡

𝑁∑︁
𝐵=1

𝜑𝐵

)︃]︃
+ 𝜆, (64)

𝑁∑︁
𝐵=1

𝜑𝐵 = ln

[︃
𝜇0

𝜇1

(︃
𝜑̇0 − 𝑓

𝑓

)︃]︃
, (65)

𝑓 −
(︁
𝜑0 − 2𝐻̇0

)︁
𝑓 = 0, (66)

𝑉 (𝜑(𝑡)) = 3𝐻̃2 + ˙̃𝐻, (67)

where one can consider any scalar fields 𝜑𝐵 corresponding to the condition (65).

The second way is to use the Darboux transformation 𝐾-times. Each Darboux transformation of

the equation (60) gives one additional field, therefore one has the following equations

𝜑(𝑡) =
√
𝑛

𝐾∑︁
𝐴=0

[︀
𝜑𝐴(𝑡) + 𝜑𝐴+1(𝑡)

]︀
+ 𝑐𝑜𝑛𝑠𝑡, (68)

𝐻̃(𝑡) = 𝑛

𝐾∑︁
𝐴=0

[︃
𝐻𝐴(𝑡) +

𝑓𝐴

𝑓𝐴
+

1

2
𝜑̇𝐴+1

]︃
+ 𝜆, (69)

𝜑𝐴+1(𝑡) = ln

[︃
𝜇𝐴
𝜇𝐴+1

(︃
𝜑̇𝐴 − 𝑓𝐴

𝑓𝐴

)︃]︃
, (70)

𝑓𝐴 −
(︁
𝜑𝐴 − 2𝐻̇𝐴

)︁
𝑓𝐴 = 0, (71)

𝑉 (𝜑(𝑡)) = 3𝐻̃2 + ˙̃𝐻. (72)

One can also combine these approaches to construct exact cosmological solutions for multi-field

Chiral Cosmological Models.



90 И.В. Фомин, С.В. Червон, С.Д. Махарадж

3. Generalized Schrödinger-like representation of cosmological dynamic equations

Now, we combine the method under consideration and the other approach which was considered

earlier in [26]. The basis of this approach is representation of a first Einstein-Friedmann as Schrödinger-

like one with corresponding dynamic equations (1)–(3) in following form [26][︂
− 𝑑2

𝑑𝜑2
+ 𝑈(𝜑)

]︂
𝜓(𝜑) = 0, (73)

𝑉 ′
𝜑 = 6

[︂
1− 2

3
𝑈(𝜑)

]︂
𝜓𝜓′

𝜑, (74)

𝜑̇ = −2𝜓′
𝜑, (75)

where 𝜓(𝜑) ≡ 𝐻(𝜑), therefore, in this case, the Hubble parameter playing role a wave function in

equation (73).

Thus, on the basis of equations (4)–(9) and (73)–(75) we can conclude that for cosmological

inflationary models containing a scalar field and based on Einstein gravity in a flat four-dimensional

Friedmann-Robertson-Walker space-time, the exact solutions of the system of dynamical equations (1)–

(3) obtained by using any methods, can also be obtained based on the Schrödinger-like equation

𝑑2𝜓(𝑥)

𝑑𝑥2
− 𝑈(𝑥)𝜓(𝑥) = 0, (76)

for which the case 𝑥 ≡ 𝜑, 𝑈(𝑥) = 𝑈(𝜑) corresponds to the relations

𝑉 ′
𝜑 = 6

[︂
1− 2

3
𝑈(𝜑)

]︂
𝜓𝜓′

𝜑, (77)

𝜑̇ = −2𝜓′
𝜑, 𝐻(𝜑) = 𝜓(𝜑), (78)

and the case 𝑥 ≡ 𝑡, 𝑈(𝑥) = 𝑢(𝑡) correspond to the relations

𝐻̇ =
1

2

[︃
𝑑

𝑑𝑡

(︃
𝜓̇

𝜓

)︃
− 𝑢(𝑡)

]︃
, (79)

𝜑(𝑡) = ln(𝜓(𝑡)), 𝑉 (𝜑(𝑡)) = 3𝐻2 + 𝐻̇. (80)

It should also be noted that some solutions of equation (76) correspond to different solutions of

equations (77)–(78) and (79)–(80).

Thus, one can investigate the exactly solvable cosmological models on the basis of the Schrödinger-

type equation only with additional relations between the parameters of the models. This approach gives

two alternative ways to connect the quantum mechanical and cosmological problems as well.

We also note, that based on the results presented in [38–43], one can use the proposed approach for

constructing exact solutions for cosmological inflationary models with modified gravity theories, namely,

with Einstein-Gauss-Bonnet gravity and scalar-tensor gravity as well by the functional and parametric

connections between these types of gravity theories and General Relativity in Friedmann universe.

Conclusion

In this paper we considered an application of the Schrödinger-type equation to construction exact

cosmological solutions in inflationary models with scalar field based on General Relativity. The first

step in this analysis was a new representation of the second Einstein-Friedmann equation as a one-

dimensional stationary Schrödinger-type equation. This representation made it possible to obtain exact

cosmological solutions in explicit form. Also, this approach allows us to compare quantum-mechanical

and cosmological problems in a new way.

The second step was to use the Darboux transformations to generate new exact solutions from the

known ones. It was also shown that these transformations allow the transition from models with one
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scalar field to Chiral Cosmological Models with several fields. This approach differs from that proposed

in work [44], in which such a transition was carried out due to the specific choice of the target space

metric.

Finally, we generalized the representation of both Einstein-Friedman equations as the Schrödinger

equation with different conditions for various variables (scalar field or cosmic time). Such a representation

of background dynamics equations (1)–(3) is quite convenient since, on the one hand, any exact solutions

for an unperturbed scalar field can be obtained in the presented way, on the other hand, the evolution

equations of scalar 𝑣𝑘 and tensor 𝑢𝑘 cosmological perturbations in linear order of perturbations theory

are also can be written as the Schrödinger-type equations, namely [45,46]

𝑑2𝑣𝑘
𝑑𝜂2

+

(︂
𝑘2 − 1

𝑧

𝑑2𝑧

𝑑𝜂2

)︂
𝑣𝑘 = 0, (81)

𝑑2𝑢𝑘
𝑑𝜂2

+

(︂
𝑘2 − 1

𝑎

𝑑2𝑎

𝑑𝜂2

)︂
𝑢𝑘 = 0, (82)

where 𝑧 = 𝑎𝜑̇/𝐻, 𝑘 is the wave number and 𝜂 =
∫︀
𝑑𝑡/𝑎 is the conformal time.

Thus, the same task, from a mathematical point of view, corresponds to two different levels of

analysis of cosmological models that leads to the assertion that the whole problem of constructing

models of the early universe with a scalar field on the basis of General Relativity can be reduced to an

analyzing of same type equations (76) and (81)–(82).

The prospect of using an approach based on the application of the Schrödinger equation to the

analysis of cosmological models consists in developing existing and constructing new effective methods

for exact and approximate solutions of this type of equation or developing effective algorithms for

its numerical solutions, which will allow to comprehensively solve the problem of constructing verifiable

models of the early universe corresponding to observational constraints on the parameters of cosmological

perturbations [47]. The development of this approach is the task of our following investigations in this

direction.
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