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Haerca o0630p mogxoma, rme obmas rteopus orrocmrenbrOocTH (OTO) m mpyrme merpumaeckme Teopum
nepedOpMyIMPOBaHbl B TEOPETHKO-110J1eBOil ¢dopme. IloreHnmanbl rpaBuTanmoOHHOrO 1OIA  (METPpUIECKHE
BO3MYIIEHWUsT) W ApyTue (DU3NTIECKHE MO PACTPOCTPAHAIOTCS BO BCTIOMOTATEIHHOM (DOHOBOM TPOCTPAHCTBE-
BpPEMEHU, KOTOPOE MOKET OBITH NCKPUBJIEHHBIM 6€3 BCakux cumMeTpuit. Takas nepedOpMyInpoOBKa METPUIECKOMN
TEOPUHU ABJISETCS TOYHOM ¥ SKBUBAJJIEHTHOMN MCXOTHOMY T€OMETPUIECKOMY ITPECTABIeHNI0 Teopun. Popmamsm
SIBJISIETCSI JIATPAHKEBBIM B TOM CMBIC/TE, UYTO YPABHEHUS /IS PACIIPOCTPAHSIONINXCS TTOJIeH BBITUCHIBAIOTCS TIOCTIE
BapbUPOBAaHMs COOTBETCTBYIONIErO JIarDAHXKMaHA, TOYHO TakxXKe, Kak u (oHoBble ypaBHenus. Ob6cyxkpaorcs
HOBBI€ IIPE/UIOXKEHNA O TOM, KaK BK/IIOYUTH B (POPMAIU3M CIIMHODHL.

CoxpaHsonpecs: BeJIMYIUHBI IOCIe HCIOAb30BaHus Teopembl Hérep Takike ciemyior m3 Jlarpamkuama.
CoxpaHSOmuecss TOKKA BBIPAXKAIOTCA Yepe3 [UBEPreHIINNA AHTUCHMMETPUYHBIX TEH30PHBIX ILIOTHOCTEHR
(cymeprioTeHnmaANoB), CBA3BIBAOIIUX JIOKAJbHBIE BO3MYINEHHA C KBAa3W-JIOKAJIBHBIMEA COXDPAHSIONIMMUC
BEJIMYMHAMYU . JaBUCUMOCTH OT KaJMOPOBOK, COOTBETCTBYIOIAsi PA3HOMY BbIOOPY (DOHOBBIX METPUK,
OTparKammias TaK HA3bIBAEMYI0 HEJIOKAJIM3YEMOCTh TPABUTAIMOHHONW SHEPTUH, MPEJACTAaBIeHA B TOYHBIX
MaTEMATUYECKUX BBIpaKeHUsXx. POpPMaAJHLHO MHOXKECTBO BBIPAYXKEHWN s JIOKAJIM30BAHHBIX SHEPTUl BMeCTe
C MaTepwaJIbHOW IHEPTHeil YIOBJIETBOPSIOT YPABHEHWIO HEMPEPHLIBHOCTA. ODTHU TOYHBIE BBIPDAXKEHHS MOTYT
ObITh cooTHECEHBI K KaaccmaeckmM ncesporenzopam B OTO (ocobemno x Beipakenwmio Ilanamerpy), Tae B
kagectBe GoHOBOI mcmosb3oBana merpuka (-1,1,1,1), xak B paborax Hecrepa ¢ coaBropaMm, OCHOBAaHHBIX HA
APYTUX IPUHOMIIAX. 'TeopeTuKo-1101eBoit GopMaIu3M AOIYCKAET JBE YACTUYHO IIePEKPhIBAIOIIIECT BO3MOKHOCTI
mpunoxkennit. [lepsas cocrout B mpakTryueckux npuioxkennsx B OTO, rae ¢poH mpeacTaBiaseT mpoCcTo MOJIE3HY 0
GUKTUBHYIO CTPYKTYPY. Jpyras BO3MOXKHOCTD - 3T0 (dHYHIAMEHTAJIbHOE PACCMOTPEHNE, T/ie OHATHE TPUIMHHO-
CJT€JICTBEHHOM CBS3W B (POHOBOM TIPOCTPAHCTBE-BPEMEHN OKA3BIBAETCS TIOJIE3HBIMU JJTsi TIPUIAHUS (PU3UIECKOTO
CMBIC/Ia OMHOBPEMEHHBIM, WM ITPOCTPAHCTBEHHO-TOAOOHBIM, KOMMYTAIMOHHBIM COOTHOIIEHUSM, B KOTODBIX
BbI00D (POHOBOM METPUKH, OIPAHUYECHHBINA HEPABEHCTBAMHE, UMEET Ka4eCTBEHHbBIN, HO HE CTPOr0 KOJIMIeCTBEHHBIN
dusnTecKmit CMBICII.

Pemenwne IllBaprimmuibaa sBASETCS TJIABHBIM OOBEKTOM I JEMOHCTPAITUN BO3MOXKHOCTEH METOMa.
IIpencraBnensl pasamdHble BapUAHTHI PACUeTa MACChl MIBAPIIIIUIBIOBON YEPHON MBIPHI C HCIIOIH30BAHMEM
IIOBEPXHOCTHOTO MHTErPUPOBaHUs cyleprnorennuastoB. IIpeacrasiass pemenns [IBapmmuibaa B Bume Toi min
MHOU 10J1eBOM KOHMUIypanuu B IPOCTPAHCTBE MUHKOBCKOIO, MbI OIMCHIBAEM HCKPUBJIEHHOE IIPOCTPAHCTBO-
BpeMsi OT MPOCTPAHCTBEHHONH OECKOHEYHOCTHU 0 TOPU3OHTA W TIOJ TOPU3OHTOM JI0 WCTUHHON CHHTYJISIDHOCTH,
KOTOpas TMPEICTABIEHA HEPOTHBOPEYUBHIM 00pa30M B BU/IE TOUE€THON JACTHUITHI C UCIIOIb30BAHNEM TUPAKOBCKOIN
nenbra-GyHrmun. [IpoIeMOHCTPUPOBAHO, 9TO TPAEKTOPHUM MPOOHBIX YACTHI] B MIBAPIMIIUILIOBON T€OMeTPUN
KaIMOPOBOYHO 3aBUCUMBI Ha (DOHE [0 TAKOHN CTEHeHH, 9TO PA3PbIBBl HA TOPU30HTE MOTYT OBITH JIMKBUINPOBAHBL
(mm mOPOXKIEHBI) COOTBETCTBYIOIMMHU KaJIuOPOBOYHBIME [peo0pasoBanusMu. 10T (AKT HLIIOCTPUPYET
BCIIOMOTATEIHHYI0 TPUPOIY (HPOHOBOTO TPOCTPAHCTBA-BPEMEHU U HEOOXOJUMOCTH BBECTH TMPEJICTaB/IEHUE O
MaKCUMAJIbHO BO3MOYKHBIX MTPEOOPa30BAHMSAX, TOYHO TaK¥kKe€, KaK C KOOPIAWHATHBIMU TPEOOpPA30BAHUSIMU B
reomerpudeckoit OTO. B pamkax Te0peTHKO-TI0I€BOTO METOIa CMOIEIMPOBAH HEIIPEPHIBHBIN KOJIJIATIC K TOYETHO-
MOA00HOMY COCTOSIHHIO C WCIOJIb30BAHUEM IUPAKOBCKOHN HesbTa-byHKITHH.

Teoperuko mosieBoll MerToxm 0000IIEH /I HPOU3BOJIBHBIX METPUYECKAX TEeOpUil B MIPOMU3BOJIBHBIX
u3MepeHusX. Pe3ysbTaThl pa3BUTHI i JIABJIOKOBCKON TpaBUTAIMM W WCIIOJIH30BAHBI JJIsT pPacdera Mace
MIBAPIIIAIbI0-TIOTO0HBIX UepHBIX IbIp. OOCYKIAIOTCS BO3MOMKHBIE TpWIOKeHus. PopMan3M OKa3bIBAETCS
€CTeCTBEHHBIM [jig OGOCHOBaHWs TOTO, 4TOOBI NMpuaaTh Macchl rpasBuronam. Caenam o63op pabor Babaka-
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BOIIPOCHI HEIIPEPHIBHOCTU 0€3MaCCOBOTO IIPE/iejia B MACCUBHOM TEOPUU CIIWHA 2 W CTAOWIBHOCTH KJIACCUIECKOU
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The representation of General Relativity (GR) and other metric theories of gravity in field-theoretic form on
a background is reviewed. The gravitational field potential (metric perturbation) and other physical fields are
propagated in an auxiliary background spacetime, which may be curved and may lack symmetries. Such a
reformulation of a metric theory is exact and generally equivalent to its initial formulation in the standard
geometrical form. The formalism is Lagrangian-based, in that the equations for the propagating fields are
obtained by varying the related Lagrangian, as are the background field equations. A new sketch of how to
include spinor fields is included.

Conserved quantities are obtained by applying the Noether theorem to the Lagrangian as well. Conserved
currents are expressed through divergences of antisymmetric tensor densities (superpotentials), connecting local
perturbations with quasi-local conserved quantities. The gauge dependence due to the background metric is
studied, reflecting the so-called non-localizability of gravitational energy in exact mathematical expressions
formally, an infinity of localized energy distributions that, combined with the material energy, satisfy the
continuity equation. The exact expressions can be related to pure GR pseudotensors (especially Papapetrou’s)
employing the matrix diag(—1,1,1, 1), as Nester et al. consider on independent grounds.

The field-theoretic formalism admits two partially overlapping uses. The first one is practical applications of
pure GR, where the background presents merely a useful fiction. The second one is foundational considerations
in which a background notion of causality, n-causality, is useful for making sense of equal-time or space-like
commutation relations, in which case the background metric via inequalities has qualitative but not strict
quantitative physical meaning.

The Schwarzschild solution is the main object for demonstration of the power of the method. Various
possibilities for calculating the mass of the Schwarzschild black hole using surface integration of superpotentials
are given. Presenting the Schwarzschild solution as a field configuration on a Minkowski background, we describe
a curved spacetime from spatial infinity to the horizon and even to the true singularity, which is represented
in consistently as a point particle using the Dirac J-function. Trajectories of test particles in the Schwarzschild
geometry are gauge-dependent in that even breakdowns at the horizon can be suppressed (or generated) by
naive gauge transformations. This fact illustrates the auxiliary nature of the background metric and the need
for some notion of maximal extension—much as with coordinate transformations in geometric GR. A continuous
collapse to a point-like state modelled by the Dirac é-function in the framework of the field-theoretic method is
presented.

The field-theoretic method is generalized to arbitrary metric theories in arbitrary D dimensions. The results
are developed in the framework of Lovelock gravity and applied to calculate masses of Schwarzschild-like black
holes. Future applications are discussed. The formalism also makes it natural to consider adding a graviton
mass. The works of Babak and Grishchuk, which are partly numerical and hence nonperturbative, are reviewed,
shedding light on the traditional questions of a (dis)continuous massless limit for massive pure spin-2 and the
(in)stability of a classical theory including massive spin-2 and spin-0 gravitons.
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Introduction

In the framework of the field-theoretic approach, a metric theory is represented in the form where
gravitational field (metric perturbation) together with other physical fields are propagated in a specified
(curved or flat and not necessarily symmetric) background space-time. Such a reformulation of a metric
theory is equivalent to its initial geometrical formulation, apart, perhaps, from global considerations,
though the freedom to make the background metric not too different from the effective metric provides
the freedom to minimize global issues. Review materials related to the field-theoretic method have
been published previously [1-3]. However, the approach continues to be developed; see, for example, a
description of a continues collapse to a point in the framework of the field-theoretic approach [4] and the
field-theoretic formalism in Einstein-Gauss-Bonnet gravity [5] and in Lovelock gravity of an arbitrary
order [6]. Important properties of the method gradually become clearer. To further popularize the field-
theoretic formalism, the present paper gives a review of its development and current applications.

The mature form of special relativity explained why all the attempts to detect the luminiferous
‘ether’ failed. The ether as a ‘true physical background’ was discarded as physically idle [7]. Instead the
notion of Minkowski space has been introduced: a flat 4-dimensional space-time in which physical bodies,
particles and fields propagate, evolve and interact. Could gravity be included within the framework of
special relativity? Einstein’s attempts were unsuccessful [8], though his criticism of the approach was
not correct [9]. Gunnar Nordstrom later largely succeeded with a relativistic scalar gravity theory with
some help from Einstein; as Einstein and Fokker showed, Nordstrém’s theory was in effect that of a
curved, conformally flat space-time [10]. The Minkowski volumes are clothed with the gravitational
potential so that (one might say) volumes are universally distorted by gravity. Using universal coupling
of gravitational and non-gravitational energy-momentum (or rather its trace), one can derive the
Nordstrom-Einstein-Fokker theory and various massive scalar graviton theories [11-14], according to
which free gravity (that is, disregarding the nonlinearities describing self-interaction) satisfies the Klein-
Gordon equation. Massive scalar gravity, though fully developed very belatedly or ‘postmaturely’ (to
borrow a word [15]), has clear non-relativistic antecedents in the 19th century work of Carl Neumann and
Hugo von Seeliger and the first half of Einstein’s A paper before the false analogy to the cosmological
constant A is introduced [16-18]. Given the smooth massless graviton limit, massive scalar gravity—
actually there are infinitely many such theories—approximates the Nordstrom-Einstein-Fokker theory
arbitrarily well, exemplifying permanent underdetermination from approximate but arbitrarily close
empirical equivalence [19]. Of course the nonzero graviton mass has no evident empirical support, while
the scalar character makes massive scalar gravities just as refuted by the 1919 light-bending observations
as is the Nordstrom-Einstein-Fokker theory. Massive scalar gravities, like their massless relative [20],
remain a useful conceptual testbed for the foundations of space-time, such as helping to adjudicate
whether space-time geometry explains the Euler-Lagrange equations or vice versa [21-23] and even
assessing the non-viability of Kantian views about space and time given modern science [24].

Given a symmetric rank 2 tensor gravitational potential (as the bending of light evidently requires),
attempts to develop viable theories that do not have “ghosts” (negative-energy degrees of freedom and
hence presumably instability, especially under quantization) lead to gauge freedom (at any rate for the
kinetic term), and the introduction sources leads to universal coupling and hence to the coalescence
of the graviton potential and background metric into an effective curved metric [11,25-29]; the flat
background is unobservable, except perhaps via an extra scalar degree of freedom [29] or a graviton mass
term. Graviton mass terms, however, seemed to have two key devils in the details in the early 1970s [30]:
either a scalar ghost (but see [31-34]) or a discontinuous massless limit [35-38] (but see [39,40]). Thus
it is either impossible or at least difficult to construct a viable theory of gravity that bends light
and does not closely resemble GR, even if one avoids any a priori appeal to curved space-time, the
equivalence principle, general covariance, generalized relativity of motion, Mach’s principle, etc. It is
worth noting that the particle physics approach to GR bears a strong resemblance (albeit considerably
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improved) [41,42] to Einstein’s recently reappreciated “physical strategy” that he pursued in the first half
of the 1910s alongside his subsequently endorsed “mathematical strategy” [43-50]. (Einstein later retold
his own history in a way that suppressed the physical strategy and credited success to the mathematical
strategy, at least partly in order to justify his decreasingly appreciated unified field theory quest [51].)
Indeed one can see that the particle physics “spin 2” derivation just sketched is powered by Noether’s
converse Hilbertian assertion that the energy-momentum for gravity consists in a piece vanishing using
the field equations and a piece with automatically vanishing coordinate divergence [42,52]. Hence most or
all roads, wherever they start, lead to or at least near to GR. As a result, effectively space-time becomes
a dynamic structure with metric components as dynamical variables. Thus in GR, space-time, while
continuing to be an arena for evolution of non-gravitational physical fields, gives gravity an exceptional
position and cannot be interpreted as a ‘background’ in the sense of a fixed structure.

Nevertheless, many problems in GR, both theoretical and as applied, require considering
perturbations, including metric perturbations, in a given (fixed) space-time. In such an interpretation,
the fixed (not necessarily symmetric) space-time is to be a solution to the Einstein equations and
plays the role of a background. One could list some examples. Einstein himself, just after constructing
GR, studied weak gravitational waves as metric perturbations propagating in Minkowski space. Later
gravitational waves and other perturbations have been considered on backgrounds of the Friedmann
solution and other cosmological solutions. Isolated gravitating systems both at spatial and at light-like
infinities are considered as perturbed systems on backgrounds of Minkowski space, anti-de Sitter space,
or another background geometry. The stability of many GR solutions, including but not limited to black
hole solutions, is examined by studying the evolution of metric perturbations on the background of these
solutions. B. DeWitt’s background field method of quantization of gravity makes systematic use of a
(curved) background [53].

However, many of the aforementioned studies (excluding DeWitt’s) are carried out under
restrictions, which are determined by the problem under consideration. Frequently a linear
approximation is considered without taking into account backreaction. Thus, one has to make a
separate study because the background is changed by the backreaction; see the pioneering work on
this relation [54]. This topic has been developed in Efroimsky’s works [55, 56], where weak gravitation
waves in vacuum and in media in a cosmological context are studied. Attention is paid to the role of
nonlinearity provided by the energy-momentum of metric perturbations while taking into account the
low-frequency cut-off. In [57], the Efroimsky approach is corrected and developed. In recent years (see,
for example, [58,59] and references therein) the Efroimsky method has gained popularity, but it also
becomes quite specific.

Frequently only flat or strongly simplified curved backgrounds are considered, so it is not clear
how to develop a theory of perturbations if a background becomes more complicated, general and non-
symmetric. Frequently additional assumptions are used; then it is not always clear how the results depend
on these assumptions, etc. Keeping in mind all the above, one concludes that a generalized and unique
description of perturbed systems in GR on a given background is necessary. The main requirement is to
be that such a description of perturbations in GR has to be equivalent to GR. itself. (There could in some
cases be global issues. However, the admission of an arbitrary background, rather than a one-size-fits-all
approach with, say, a Minkowski background, minimizes the expectation of significant global differences
between the effective and background metrics.) This description has to be in the form of a field theory,
where fields present exact (without approximations) perturbations in a fixed background space-time.
We call it a field-theoretic presentation of GR. Its desired properties are:

e Unlike the standard geometrical presentation where a space-time is a dynamic structure, in the
framework of the field-theoretic approach the field configuration consists of dynamic fields (which
represent perturbations) propagating in a ‘fixed’ background space-time. This background can be
curved and hence in some sense dynamical, but is specified somewhat independently of the effective

metric.
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e The field-theoretic approach is to be Lagrangian-based. This means that a) a Lagrangian density
is defined for the field configuration; b) field equations are defined by varying the action; c)
conserved quantities such energy and momentum (and their densities) are defined by applying
Noether’s theorem to the symmetries of the action.

e Equations and conserved quantities are to be covariant under coordinate transformations. This
property, being desirable in itself (although partially offset by a new gauge dependence), gives the
possibility to study the field configurations on arbitrary curved backgrounds which are themselves
solutions to the GR field equations.

e Gauge (non-coordinate) transformations are to be defined explicitly with well described properties
convenient in applications.

e Because the field configuration is to be exact (without approximations), gauge transformations and
conserved quantities are to be exact as well. All of these features give the possibility to construct
approximations of all important expressions up to an arbitrary order more naturally and easily.

Let us discuss in a more detail a problem of defining energy and other conserved quantities in
GR. As well known, in many theoretical studies and in applications, notions of conserved quantities,
like energy, momentum, angular momentum and their densities, play essential role. However, conserved
quantities are usually said to be “not localizable” in GR [60, p. 467]. Sticking closer to the facts rather
than interpretations, one can say that it is impossible to construct densities of conserved quantities in GR
in a unique way. If one introduces by hand as usual the tacit assumption that there should be a unique
density of gravitational energy-momentum, then one infers that the local descriptions lack physical
meaning and hence that gravitational energy-momentum is not localizable. If, on the other hand, one
simply takes the mathematics at face value [61,62], then one notices that any time-like vector field
locally takes the form (1,0,0,0) and so is formally a rigid time translation. Hence GR has uncountably
infinitely many formally rigid symmetries of the action (not symmetries of the geometry, an issue of no
direct relevance to Noether’s first theorem). Noether’s first theorem associates to each formally rigid
symmetry of the action a conserved current and wice versa [52,63]. Thus one can infer that there are
infinitely many conserved energies and momenta [62]. Such a result is not very familiar and is somewhat
inconvenient for accountants, but seems otherwise plausible enough; gravitational energy, instead of
being non-localizable, is infinitely plural and thus has no single objective localized 10- or 16-component,
description. Within the field formulation, one can arrive at such an inference by taking the gravitational
energy-momentum tensor in all gauges. Within pure geometric GR with no background, the analogous
entity is a pseudotensor in all coordinate systems, potentially with some dependence on an auxiliary
matrix diag(—1,1,1,1) as a reference configuration [64-66]. Pseudotensors, besides being supposedly
coordinate-dependent in a vicious way (which the interpretation in terms of infinitely many energies
suggests is a virtue rather than a vice), are also worrisomely nonunique; Nester and collaborators claim
to find physical meaning in this multiplicity in terms of differing boundary conditions. On the other
hand, the energy-momentum expression employed in this paper in section 4 seems especially virtuous.
Either view could address the nonuniqueness problem. While the supposed nonlocalizability issue is
logically independent of the field formulation, the field formulation was in fact apparently the first
occasion of the proposal of taking the formal infinity of gravitational energies seriously [62]. Also the
field formulation might more readily suggest (gauge) transformations connected to the identity rather
than large (coordinate) transformations under which gravitational energy localizations behave badly [67].
Thus the field formulation may be of some heuristic relevance in relation to the localization question [62].

This problem of defining localized energy-momentum (energies-momenta?) arises because GR is a
geometrical theory in which space-time has a double role: as an arena on which physical fields evolve
and a dynamical object. This double role of a space-time follows from the equivalence principle (see, for
example, [60]). Some take the view that a definition of conserved quantities in GR is meaningless except
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in special cases. There seems to be increasing interest, however, in revisiting the question in the last
two decades or so. In spite of the pseudotensoriality of the Noether-based conserved quantities in GR,
gravitational interaction gives a contribution to total conserved quantities of gravitating systems [60].
Here are some familiar examples. To describe a binary system, one has to include a notion of gravitational
energy as a binding energy [60]. Concerning gravitational waves, first, a bounded domain of empty space
filled by gravitational waves has to have a total positive energy, see [60]; second, observations of double
pulsars show that the orbit’s axis becomes smaller by gravitational radiation because gravitational waves
carry away positive energy, see, for example, [68]; third, the recent direct detection of gravitational
waves, see, for example, [69-71], tells the same story. Thus, energy and other conserved quantities in
GR are naturally construed as physically real. Thus the formal description of such quantities and their
spatio-temporal localization merits continued investigation, especially once the traditional objections
from pseudotensoriality and nonuniqueness have come to seem less decisive. The problem of conserved
quantities can be considered conveniently in the framework of the field-theoretic approach in GR.

There is another topic concerning energy-momentum and its relations to space-time: in recent
decades one associates energy-momentum and angular momentum with a finite spatial domain (whether
or not gravitational radiation is present) and its boundary. Such conserved quantities are called quasi-
local; see the nice review by Szabados [72] and references therein. Such a treatment can be useful, for
example, in studies of cosmological problems, where more frequently local properties of perturbations
are examined. Thus a study of the connection of local characteristics with quasi-local quantities could
be very fruitful. Pseudotensors naturally yield quasi-local quantities [65,66] and depend on coordinates
only on the boundary, not in the interior. In the field-theoretic formulation, one would expect a tensorial
but gauge-dependent energy-momentum distribution to yield quasi-local conserved quantities that are
tensorial but depend on the gauge at the boundary.

Thus, for the purposes of studying conserved quantities in the field-theoretic formulation of GR, it
is desirable:

e to have consistent definitions of conserved quantities,
e to derive their properties that can be useful in applications,

e to give a mathematical (exact and concrete) derivation of the so-called non-localization (i.e., the
lack of a unique localization due to gauge dependence), and

e to connect local and quasi-local quantities.

The field-theoretic formulation is intended to be equivalent to the geometrical formulation, so some
version of the spirit of GR as a geometrical theory has to be preserved in the field-theoretic formulation
as well. Thus, e.g., elevating some gauge or coordinate system to a physical law is not appropriate. In the
geometrical formulation, there is no background, so of course none can be observed. The field-theoretic
formulation thus has to have the same empirical property of no observable background. If one studies
the movement of test particles and light rays, one cannot connect it (quantitatively) with the geometry
of the background space-time. The metric perturbations considered as a gravitational field on a given
background play a role of a refractive medium so that the background is screened (perhaps one should
say clothed) totally. An analogous interpretation, for example, can be found in the paper [73]. This means
that the background space-time in the framework of the field-theoretic formulation can be interpreted
as an auxiliary and nonphysical (fictitious) concept, at least in its precise quantitative properties.

In the last two decades much attention has been paid to modifications of GR. An arbitrary field
theory can be represented in the field-theoretic form, as will be shown in sections 9 and 10. A special
place among modified theories is taken by metric theories including theories in more than 4 dimensions.
Among them f(R) theories [74], quadratic-in-curvature theories, and Einstein-Gauss-Bonnet theory and
its generalization for arbitrary order (Lovelock theory [75]), are among the most popular. Because the
equivalence principle can be considered as the basis for an arbitrary metric theory, such theories must
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have field-theoretic representations similar to that of GR. Thus, the field-theoretic approach to other
metric theories can be desirable for the aforementioned reasons.

Below we will demonstrate important and interesting properties of the field-theoretic approach by
presenting very well known solutions in the form of exact field configurations on a given backgrounds.
We will also pay attention to exotic applications to consider the possibility of a physical interpretation
of some qualitative features of the background. For example, we derive the Schwarzschild black hole
solution as a field configuration on a Minkowski background up to the horizon, beyond the horizon, and
even all the way to the true singularity. This exhibition demonstrates the power of the method and its
less-explored possibilities as well. Concerning natural applications of the field-theoretic approach, we
refer the reader to the original papers, 1) where cosmological perturbations on the Friedmann-Lemaitre-
Robertson-Walker (FLRW) backgrounds are studied [76-79], 2) where asymptotically flat space-times
are examined at spatial infinity [80-82], etc. Finally, we show some ways for a development of the method
and its new applications.

The paper is organized as follows:

In section 1, we give the mathematical foundation of the field-theoretic formulation of GR in detail.
This gives a basis for the remainder of the article. This section also sketches how to include spinor fields
in the field formulation, a topic rarely considered.

In section 2, we study the gauge invariance properties of the Lagrangian, field equations and
conserved quantities in the framework of the field-theoretic approach to GR.

In section 3, we review various possibilities for how the field-theoretic representation of GR can be
constructed starting from a fixed background space-time. We demonstrate also that ultimately such a
background metric is not observable and plays a merely auxiliary role.

In section 4, using the results of previous works we present conservation laws in the field-theoretic
formulation of GR. The conserved currents are constructed on the basis of a symmetric energy-
momentum tensor and express localized conserved quantities. At the same time the currents are derived
as divergences of antisymmetric tensor densities (superpotentials), integration of which just leads to
surface integrals, which are quasi-local conserved quantities.

In section 5, we present various possibilities to calculate the mass of the Schwarzschild black hole
with the use of the surface integration of superpotentials defining the gravitational charge.

In section 6, we presenting the Schwarzschild solution as a field configuration on a Minkowski
background, including not only the horizon but also the true singularity. It is represented as a point
particle via a Dirac d-function.

In section 7, the example of trajectories of test particles in the Schwarzschild geometry illustrates
that the background space-time in the field-theoretic formalism is an auxiliary structure. Trajectories
are gauge dependent in the sense that even break-downs at the horizon can be suppressed or generated
by the gauge transformations. A natural conclusion is that some notion of maximal extension is required,
much as one requires in pure geometric GR.

In section 8, we present a continuous collapse to a point-like state modelled by the Dirac J-function
in the framework of the field-theoretic method.

In section 9, we present a field-theoretic treatment of an arbitrary D-dimensional metric theory of
space-time and gravity.

In section 10, currents and superpotentials are obtained for the more specific example of the
Lovelock class of theories.

In section 11, we find conserved quantities in the Lovelock theories.

In section 12, we study the mass of the Schwarzschild-like black hole and consider future applications
of the method.

In section 13, there is an explicit discussion of some massive gravity theories due to Babak and
Grishchuk. Their work includes numerical simulations and hence is nonperturbative. In these and most
other massive gravity theories, the background metric is now physically real and indirectly observable
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due to the graviton mass term; while rods and clocks do not conform to the background metric, it plays
an essential role in the field equations. The question whether negative-energy degrees of freedom are
bad already in classical field theory, or become bad only when quantization is entertained, is addressed.
The technique of nonlinear group realizations, which Ogievetsky and Polubarinov invented and used to
derive graviton mass terms using arbitrary powers of the metric, is also relevant to spinors.

In appendix A, we derive expressions that follow in an arbitrary field theory after application of
Noether’s theorem.

Notations:
o )4 Pp, ... - sets of tensor densities of arbitrary ranks and weights with the collective indices
A, B,...in a compressed notation;

. w_A - the “bar” above ¥ means a background value of ¢*;

o t,* m ", ... - notations in calligraphic boldface for small letters, if they represent quantities of
mathematic weight +1. For example, £, could be a density expressed with the use of the tensor
tot: t.! = \/—gts", or t,* could be a density itself, etc. Some authors define density weight with
the opposite sign;

o L, U,", ...- the capital calligraphic letters denote geometric quantities of weight +1 analogously
to previous item;

o £ and £° - arbitrary displacement vectors and Killing vectors, respectively, in a space-time;
e g, and g, - the dynamical (also called effective or physical) and background metrics;
e g =detg,, and g = det g,, - the determinants of the dynamical and background metrics;

e the indices of tensor fields on the physical quantities or background quantities are lowered and
raised with the use of g,g or g.s and their inverses, respectively;

e Rf,sp3 and Rpwg, R.p and Rag, and R and R - the Riemann and Ricci tensors and the Ricci
scalars for the physical and background metrics, respectively;

o OYA/0x® = 0,9 = * , - the partial derivative;
o Vo? and V,1p* - the covariant derivatives of ¢ compatible with g,,, and with g, respectively;

e the Lagrange derivative of the quantity 14 = ¥ (¢%; ¢® o; ¢® ap) is

A A A A
B _ouh (0N o (Y
6qB  0qP 94" 4P g

° 1/)‘4|g is a permutation linear operator depending on the transformation properties of 1%, for
example, for the tensor density 94 = t,* one has toh |y = —to" 0+, 05 —ts"dy (with the ‘extra’
density weight-dependent term that appears in Lie derivatives and covariant derivatives [83-85]);

o Lept = g0t L+ E8 , ’(/JA‘Z - the Lie derivative of the quantity ¢ along ¢ defined here. Note
that many authors define the Lie derivative with the opposite sign, see, e.g., [83].
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1. The mathematical basis for the field-theoretic formulation of GR

Perturbations and conservation laws for them have been studied in GR for many years. What
is the simplest and most usual way? The linear terms in metric perturbations are placed on the left-
hand side, whereas all nonlinear terms are moved to the right-hand side and, together with the matter
energy-momentum tensor, are treated as a total (effective) energy-momentum tfﬁf, see, for example,
the book [86]. (Linearity vs. nonlinearity is not altogether invariant under field redefinitions, on which
more below.) Perturbations are considered on arbitrary backgrounds (flat or curved), and equations
for them are in the form of the field theory. However, such equations are derived ‘by hand’. This
line of research has been pursued since the 1940s [64]. Deser in [27], generalizing earlier works (see,
for example, [11, 87, 88]), suggested a Lagrangian-based presentation where perturbations propagate
(at least formally) in Minkowski space-time, yielding an exact (without expansions and approximations)
Lagrangian theory of tensor field with self-interaction. In this framework, the effective energy-momentum
tff,f is obtained by variation of an action with respect to a background metric. Subsequently [89,90], the
Lagrangian-based theory for perturbations in GR on arbitrary curved backgrounds has been developed.
A related bibliography of earlier works particularly can be found in [27,29, 89, 90]. There are also
similarities to DeWitt’s background field formalism for quantum gravity (e.g., [53]).

In this section, building on the results of the papers [89,91] (see also chapter 2 in the book [3]), we
give the mathematical formalism for the Lagrangian based field-theoretic presentation of GR with an
arbitrary curved background space-time. We show the connection with the usual geometrical formulation
of GR explicitly.

Let us start with the Einstein-Hilbert action in the usual form:

| 1 1
g — E/d4a:£EH - —%/&x'R(gu,}) + E/d‘lggLM(q)A, o) (1)

where £M(®4, g,,) is a Lagrangian of matter fields ®* consisting of a set of tensor densities! of an

A7 LM depends on derivatives of variables up second

arbitrary order and rank with the collective index
order. Here x = 87Gc™*. One could of course add an arbitrary divergence to this Lagrangian density.
Considering components of the inverse metric density g = /—gg"", after variation of (1) we derive

the Einstein equations together with the matter ones in the form:

0Lew 1 6R . oLM

dgrv 2K Oghv * dgHrv ’ @)
Loy  OLM
so4 ~ soA - (3)
The equation (2) can be rewritten in the form:
Ry = k(T — %QWT)~ (4)

Now let us make decompositions of the inverse metric density and the matter fields into dynamical
perturbations and background values:

g

g+, ()
4 = o449t (6)

where the metric and matter perturbations h** and ¢* are defined with respect to a background
solution g*” and ®4. This decomposition is, of course, not unique, though for some purposes it is
optimal, such as for writing relativistic wave equations. Field (re)definitions play an important role
in various contexts including showing the equivalence of various massless formulations [92] and for

LAt the end of this section we present a new proposal how spinors/fermions can be included in the field-theoretic
formalism.
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deriving inequivalent massive gravities [11,14,34,93-95]. The possibility of field redefinitions and their
(ir)relevance for definitions of energy-momentum is discussed elsewhere [2,91].

A notion of the background solution can be generalized to the notion of a background system. The
latter is described by the action:

-1 = 1 _ 1 _
5:7/&mmzf—f/ﬁm+f/&mM (7)
c 2Kc c
depending on the variables ¥ and ®“. These quantities satisfy the corresponding background Einstein
equations:
1 0R  oLM LM
-+ = =0, —— =0. (8)
2K oghr  dghv 5PA

The strategy of the field-theoretic method is based on the treating perturbations h* and ¢
as independent dynamic variables. Then a perturbed system has to be described by a corresponding
Lagrangian. Now one substitutes the decompositions (5) into the Lagrangian of the action (1) and
subtracts zeroth-order and linear terms in h*” and ¢* from the functional expansion:

Sgh

ipA

LY = Lpn(g+h, @+ ¢) — b — ¢ — Ly +div= —iﬁg + L™ (9)
Because in (9) perturbations h** and ¢ are treated as dynamical variables, we call L the dynamical
Lagrangian in the terminology of [91]. A divergence is included for the sake of generality.

In (9), the zeroth order term is the background Lagrangian from (7), whereas the linear term is
proportional to the left-hand side of the background equations (8). For finding the field equations for the
perturbation, it makes no difference whether one uses the background equations before or after varying
the perturbation. However, one should not to use the background equations in LY before its variation
with respect to a background metric to find the energy-momentum tensor. The reason is that zeroth
order and linear terms in the perturbations cancel parts of Lz (g + b, ® + ¢) in (9) and thus help to
give a reasonable energy-momentum tensor.

The other important property of the dynamical Lagrangian is related to a role of the divergence
in (9). First, let us define an important tensor, due originally to Levi-Civita, from the difference of two
connections [96, p. 221]:

A%, =T, —T%, = %gap (vugpv +Vilou — v/ngtl/) (10)

that is a difference between dynamic and background Christoffel symbols, and which is linear in h** to
leading order. Then, if one chooses a divergence div = J,k“ with the vector density

ka = QQDA#MV — E’WAQIW , (11)
then a pure gravitational part in the Lagrangian (9) acquires the form:

L9 = (@ +b5")Ru(h+g) — " Ry — 8" Ry + 0, k"

= (AP = AT 00)V 0" 4 (@ +01) (AP AT g = AP g AT py) (12)

Note that it depends on only the first derivatives of the gravitational variables h*”, which is very
economical for boundary conditions under variation, whereas the pure gravitational part in (9) with
div = 0 has second derivatives of h#¥. Notice that in the case of a flat background, the pure gravitational
part in (9) becomes Deser’s [27], whereas the Lagrangian (12) becomes Rosen’s covariant Lagrangian
[97,98]. The matter part of the dynamical Lagrangian (9) is

WSy oLM

m _ pM (= T o
L =1L @+m¢+¢)faéwy 554

- LM, (13)
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Now, let us turn to deriving field equations. The variation of action with the Lagrangian £ with
respect to the gravitational dynamic variables h*? and contraction with

1 ag*?

ﬁ aguu - 6565 - %gaﬂgﬂ’/ (14)
lead to the field equations in the form
Gh +®L, =k (ts, +t) =kt (15)
where the left hand side is linear in h*” and ¢* and consists of both the pure gravitational and matter
parts:
) R
L — po
g/.Ll/(h) - 6@#‘” b 6@/)0-
= % (?Pﬁpbw + guvﬁpﬁahpa - vp?vhup - ?p?uhup) ) (16)
1) oy oy
(I)L = -9 P A _ . 1
L) = gt (oS + 045 ) (17)

Indices on h** are moved with the background metric. The right hand side of (15) is the total symmetric
(metric) energy-momentum tensor density obtained by the variation with respect to the background
metric:

dyn
oL 9 ]

ttOt — —

1
= = ——L9 ml =t t . 1
g 5§uu 5g;u/ ( 2:‘€£ +L ) pv + pv ( 8)

First, because under variation a divergence does not contribute to the field equations, we note that
all the expressions in (15)-(18) do not depend on div in (9). Second, by the construction of the dynamical
Lagrangian £ in (9), we note that the energy-momentum tfﬁf is not less than quadratic in h** and
#*. Thus, the pure gravitational part is

1 _
th, = — [V=0 (<0007 + 39u3") (A% oA ap — A% A 00) + V7Q7 ] - (19)

with
2Q;y 7§/vaaﬁATo¢B + b/u/ATaﬁgaﬂ - h;Aaua - bZAa;L(x
hﬂT (Aauﬂgau + Aauﬂgau) + hg (ATVB - Aaﬁpgm—gau)
hg (ATMﬂ - Aaﬁpnggau) : (20)

+

+
The matter part is expressed through the usual material energy-momentum tensor 7}, defined in the
Einstein equations (4) by the expression:

tw = V=9 [(5553 - %glwgpg) (Tpo - %ngT,r,\g“) - TW]
) oLM oLM
_ po A
25g/w (h ogre +é 5<I>A) ’ (21)

Let us compare the energy-momentum definition in (18) with an attempt to define a symmetrical
energy-momentum using £ /6g" in the usual description of GR. The latter is not reasonable because
it vanishes if the Einstein equations themselves (2) hold. On the other hand, ¢} defined in (18) does
not vanish on the field equations (15). A formal reason is that in the Lagrangian (9) the linear terms
are subtracted off in the Lagrangian (9) and these terms affect the energy-momentum tensor.

Let us simplify the field equations (15). By the definitions (17) and (21), they can be rewritten in
the form:

GL, =k (t9, +6t)) = rtol . (22)

Such a form could be obtained if the construction of equations in the field-theoretic form is provided ‘by
hand’ as is discussed in the Introduction. The left hand side is linear in metric perturbations, whereas
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other terms are moved to the right hand side and united in teﬂr Now we will show that (15), the same
(22), are equivalent to (2). Considering t;, formally we remark that it is the first line in (21) without
the second line, which includes even hnear perturbatlons in the dynamic fields. Note especially that t
does not follow from any Lagrangian, and this is disadvantageous compared to tffyt, which follows frorn
the Lagrangian (9).

At last, we demonstrate the equivalence of the field theoretical equations (15) with the Einstein
equations (2). Let us transfer ¢}°} to the left hand side of (15) and use the definitions (16), (17) and (18)

with (9). As a result one has

L L tot
QW + ‘I);w — Kt

dg”” o 1, Mos -
= g Sy {—273(9+h)+/: (@+¢; 5+b)
i M
+2K5gw( 2HR+£ ) (23)

One easily recognizes that the second line is proportional to the operator in the Einstein equations
(2), whereas the third line is proportional to the operator of the background equations in (8). Thus
we conclude that the equations (15) are equivalent to the Einstein equations (2) assuming that the
background equations in (8) hold. Thus we have the Einstein equations in the field-theoretic form.

The above field-theoretic reformulation of GR permits one easily to construct algorithm for
production of an approximate scheme up to an arbitrary order in perturbations. Assume that Lgy
is smooth enough. Then the Lagrangian Lz (g + b, ® 4+ ¢) can be presented in the form:

> O.(SZEH BéZEH
*CEH:'CEH—’_bp 57[)0 +¢ 5@3
1 Ly oy 1 iy
B A7) po EH po A EH + B A EH .
+ o5 5gaﬁh 55 +bh gpa¢’ 554 T a1? 5<1>B oA Tt div. (24)

The expansion is the Lagrangian derivative form of the functional expansion employed in DeWitt’s
background-field formalism [53]. The main property, which has been used for presentation (24) is that
the Lagrangian derivatives commute up to a divergence, such as

6ZEH
54

o 6LEH

¢ =¢*—=1bh + div. (25)

5gp" 5<I>A

On substituting (24) into the dynamical Lagrangian (9), one finds that it is not less than quadratic
in the dynamical variables and has the form:

1 Ly 5L 1 Wy
dyn - af po EH A _EH 1B A _EH
£ f 5gaﬁb 5gw b 5gp‘7¢ 554 T 21? 5@3 554
1 5L 5L
eV af po O~EH | Ly af A%t pH
+ 3!h gW[J 690‘5’) dgre Z!b g%“/h 5ga5¢ oA
1 5L 1 5L
9224 B AZ~EH e B AO~EH L div. 9
ST (5gW¢ 5(1)B¢ 554 5 5q>c¢ (5(1>B¢ 554 ooty (26)

The remarkable structure of (26) permits one to represent the variation with respect to dynamical
variables, h#”, in the form:

5£dyn o 5 bpo. 5EEH +¢)A52EH 6£dyn
Shrv - 6g;w 5@/}0 SPA 5g;w

—0. (27)

One immediately recognizes the equations (15), which are the gravitational equations in the framework
of the field-theoretic formulation of GR.

The dynamical Lagrangian in the form (26) gives the possibility to construct field equations and the
energy-momentum tensor up to a necessary order of approximation. Thus, the quadratic approximation
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of (26) leads to linear equations

1 09”7 , 1 L g 0Len A0Lgx
— — 3] = pa = = 2
o o Grr () 2o(0:0)) = 5o (077500 + 0% 7 | =0, (28)
and to the quadratic energy-momentum:
) 1 ) Ly 1) Ly 1 ) Y
ot — 9 B %) po EH po AZTEH —4B_= AZ~EH ) 9
p = 5 <2!b 557" ogrr T g ? 5aa T2 5589 534 (29)

The next approximations of (26) give the possibility to construct the field equations and the energy-
momentum in next approximations as well. Thus the presentation of the dynamical Lagrangian in the
form (26) presents a concrete algorithm for constructing an approximate scheme.

We note that the above formalism has been used to develop a so-called nonlinear quantum mechanics
with non-classical gravitational self-interaction [99,100]; it has been applied to study problems regarding
the early universe [101,102]. Besides, the formalism has been used to generalize possibilities to construct
variants of unimodular gravity [103].

Finally, let us suggest a new proposal how spinors/fermions can be included into the above
consideration. Including spinorial /fermionic matter poses additional challenges, some of which have
been mentioned previously [34]. Two possibilities are either a bi-tetrad formalism (e.g., [94]) or a
nonlinear metric-dependent spinor formalism distinguishing spinors with a transformation law dependent
on the background metric and spinors with a transformation law dependent on the total effective metric
(using the Ogievetsky-Polubarinov formalism [95,104,105] twice) and then attempting to define a spinor
perturbation. In the bi-tetrad case, the gravitational perturbation (the difference between the tetrads),
when suitably combined with the background tetrad, forms a locally Lorentz-invariant rank 2 tensor
gravitational potential. This tensor must be symmetric in order to avoid introducing a new antisymmetric
gravitational potential into the theory with no analog in geometrical GR. The local Lorentz gauge
freedom can be fixed by making the background tetrad symmetric, thus yielding the Ogievetsky-
Polubarinov nonlinear spinor formalism in terms of the background metric. In the formalism with two
kinds of Ogievetsky-Polubarinov metric-dependent nonlinear spinors relating to the two metrics, one
faces the problem of attempting to subtract spinors defined relative to two different (more specifically,
not conformally related) metrics. Defining the spinor perturbation thus calls for making a bimetric field-
dependent local Lorentz transformation on the full spinor that was initially defined in relation to the full
metric. Then the full spinor, the background spinor, and consequently the spinor perturbation are all
defined relative to the background metric. Again one has the Ogievetsky-Polubarinov nonlinear spinor
formalism relative to the background metric. Thus presumably these two approaches are equivalent.
This sketch indicates that the background metric formalism discussed in this review also admits spinors
with no essential difficulty. However, one does not expect fermionic matter as such to be relevant
macroscopically for the most common astrophysical and cosmological applications (even if neutrinos
are a dark matter candidate), so a sketch suffices for present purposes. These approaches also indicate
possibilities for spin 2 derivations including fermions (a subject frequently neglected in that decades-long
tradition) and are likely to provide an alternative to Shirafuji’s conclusion [106] that spin 2 derivations
involving spinors require a physically meaningful antisymmetric gravitational potential.

2. Gauge invariance properties

We identify as “gauge transformations” those transformations that act on the dynamical variables
only; they do not act on either the coordinates and on the background (fixed) quantities. Properties of
the field-theoretic formulation of GR under gauge transformations follow from the usual covariance of
GR in the geometrical formulation. Here, we follow the presentation in [89,91]). We also note that the
gauge transformation properties are used for construction of the field-theoretic formulation of GR like
a typical gauge theory; see [107]).
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Let us consider any arbitrary solution to GR in two different coordinate systems: g*”(z) and
g/ (2'). Coordinate systems {z} and {z'}, are connected by the coordinate transformation z’ = z'(x).
Now let us apply a decomposition of the type (5) in both the cases:

g (z) =
g"(@) =

g (x) + b (), (30)
g (') + " (a) (31)
with the specification of the same functional form of the background metric density g+": that is, gh”(z)
depends mathematically on its (unprimed) coordinates in the same way as g'”(a’) depends on its
(primed) coordinates (though the same coordinate values in the two coordinate systems of course pick
out distinct space-time points). This means that for the same geometrical solution, perturbations b’
and h*” are defined in two different ways.

Now, let us express h’*¥ in terms of h*¥. For the solution in the primed coordinates from the
points with coordinate values z’, we go to the points with coordinate values z using the transformation
functions =’ = a’(z). Then, the equality (31) transforms to

g () = g () + b (x) . (32)

Now, comparing (32) with (30), we turn to the right hand sides and do not touch the first terms. Thus,
transformations are related to the perturbations (dynamical variables) h*¥ and '™ only. The same
procedure has to be implemented for the matter variables. Now we are in a position to connect h** and
h* as well as ¢ and ¢’4 by gauge (not coordinate) transformations in explicit form. The coordinate
transformation 2’ = a’(z) can be represented in the form:

1 1
' =+ + afﬁfofﬂ + ggp (fﬁgofﬂ),p LR (33)

with the displacement vector £#. Knowing the connection between gt (x) and g’**(z) on the left hand
sides of (30) and (31), we infer the transformations of the right hand sides and transfer all the changes
to h*¥ and h'#¥. Finally, assuming that £* is sufficiently smooth, we obtain the gauge transformations
in the field-theoretic formulation of GR [89,91] (recalling the definition of the Lie derivative above):

— 1
R S S SRR (34)
k=1
§h = oY (40t (35)
k=1 "

Indeed, they affect neither the coordinates nor the background quantities. As one recalls from Einstein’s
point-coincidence argument, in GR space-time points are physically individuated empirically by the
observable events that happen there [108]; thus the physical meaning of these gauge transformations
is not immediate. One sees that if one adds the background quantities to each side, then these gauge
transformations leave the background metric and matter fields alone while altering the total curved
metric and total matter fields just as coordinate transformations do.

Now, it is important to show why transformations (34) and (35) are called gauge transformations.
Then, it is necessary to show how under substitution of them the dynamical Lagrangian, equations in
the field-theoretic form of GR and energy-momentum complexes are changed. First, let us turn to the
Lagrangian (9) and substitute (34) and (35):

FM
— (¢ - qu)% + div. (36)

5£_EH

Eldyn — Edyn _ (h/uu _ h;,u/) 6guy

One can see that £ is invariant under the transformations (34) and (35) up to a divergence if the
background equations (8) hold. Second, turn to the equations (15) and consider their operator in the
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form (23), which enables finding how they are changed under the substitution of (34) and (35). One
easily finds

[gﬁu +§L o IittOt] [gﬁy +@L o KlttOt]

nv % nv

95" ot 5
+ ag,w Z k! {3 oo (géw + ‘I>57r — Kt ) - Zﬁ(sgﬁﬁm{ . (37)

One can see that the field-theoretic equations in GR are invariant under the transformations (34)
and (35) if a) they themselves hold, and if b) the background equations (8) hold. Thus, the gauge
transformations (36) and (37) reflect the gauge invariance properties of the field-theoretic formulation
of GR. One could also notice that the Lagrangian density changes by only a divergence. Third, let us
consider the gauge invariance properties of the energy-momentum tensor density (18) (or (22)). Keeping
in mind the field-theoretic equations, one has only

REC = Rt 4G (0 )+ L0~ b, ¢ —9), (38)
W = G ) %9

that is, the energy-momentum complexes are not gauge invariant. The mathematical reason is by the
presence of second and third terms in (36) and by a requirement that the background equations must
not be used before variation of (36) with respect to gh”.

The longstanding (1910s+) problem known as the non-localizability of gravitational energy is
illustrated by the non-covariance of pseudotensors and related superpotentials; see chapter 1 in the
book [3]. A covariantization of pseudotensors and superpotentials can be achieved using an auxiliary
background metric. However, in this case, the non-localization problem transforms into an ambiguity in
the choice of the background. But such a formalism does not suggest any unique mathematical derivation
for a concrete description of such an ambiguity. We close this gap here: the gauge transformations
(38) and (39) for the total energy-momentum and the effective energy-momentum show how the non-
localization initiated by different choices of backgrounds is expressed mathematical terms. It is one of
the advantages when the field-theoretic formulation of GR is applied.

It is important to note that in the case of a Ricci-flat background, R,, = 0, one has &% = 0,

ng

therefore the energy-momentum ttOt is not gauge invariant up to G% , a covariant divergence. Note

v
again that the energy-momentum tfff/ is not gauge invariant up to a lzzovariant divergence even in the
case of arbitrary curved backgrounds. These facts could be important for determining gauge invariance
of conserved charges because divergences just contribute surface integrals.

It is also important to consider equations and gauge transformations in linear, quadratic and
other approximations. Assume that perturbations are small (h** < g, ¢* < ®4), and so are
their derivatives (low-frequency approximation). Assume also that the background equations (8) give a
solution g ~ f(k)®4 with a coefficient f(x) of the order of the Einstein’s constant. Then one can set
b ~ f(k)p?, ete. To understand better the main properties of the approximation scheme, we derive

the equations (15) up to second order:

GL,(h) + @k, (h, ¢) — 8matiol(bh, ho, d¢) =0. (40)

The perturbations can be expanded as usual, h** = hy” + b5 + ... , and ¢* = ¢7' + ¢ + ... . Then
one can obtain a solution to the equations (15) step by step. Thus, to obtain the solutlon of (40)
one has to find, firstly, h; and ¢; and, secondly, hs and ¢o. Besides, assume & = &' + &5 + ... with
[~ 0all ~ o~ B~ f(R)7 and €5 ~ Oall ~ ... ~ 05 ~ f(K)¢3

After these assumptions are made, the linear version of the equations (40) is

Gra(01) + @501, ¢1) =0. (41)
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The linear approximation the transformations (34) and (35) is

W B L @ = B — GV + g (VR + Ve (42)
N @1 + L, @A “3)

Substituting (42) and (43) into (37) and retaining the linear approximation, one has

[GE,(51) + L, (b1, ¢1)]" = [GE, (1) + @L, (1, ¢1)]
+ (6007 = 398%) £ [Roo — 87 (Tpo — 5350 T)] - (44)

Thus, the linear equations are gauge invariant on the background equations only; it is not necessary to
require that the fields h; and ¢, satisfy (41). In the simplest case of the Ricci-flat background, the linear
transformations have the form (42) only, without (43). Then the formula (44) transfers to the formula
G/L — GL

1% uvo
books. Thus (44) the generalization of the well known gauge invariance in the linear gravity.

which expresses the gauge invariance of the linear spin-2 field that can be found in the text

The equations (40) rewritten in the quadratic order are

GLa(ba) + @hs(ba, 02) — 87 (o155(0101) + 2825 (habr, bio1, 9161)) = 0. (45)
The gauge transformations (34) and (35) in the quadratic order are
ns v — v 1 — v v
3= B+ L0+ 5 L 8 + Le b (46)
_ 1 _
§o= 00+ L@+ g O 4 L o1 (47)

Substitution of (46) and (47) into (37) gives for the quadratic approximation:

[GL,(h2) + ®L, (b2, ¢) — 87 ot™S (011, b1, 161)]

= [Gﬁu(hQ) + (bﬁl/(hQ? ¢2) — 8 Qtzolf(hlhla h1¢1a ¢1¢1):|

1 g 1 _ _ o
Nt (-f&z + Q!i’é) [Roo =87 (Tpo — 3900T)] +

1 o _ogr
© gogete [“_g o5

One can see that equations (45) are gauge invariant on the background equations (8) and on the linear

(G5 (b1)) + @5, (b1, é1)] |- (48)

equations (41). The procedure in the next orders is similar.

One can compare coordinate transformations, gauge transformations, and a partially compensating
combination of coordinate and gauge transformations to appreciate how the background metric is gauge
dependent [29,89]. Coordinate transformations connected to the identity take the form

=1

g => e, (49)
k=0 "

=~ v - 1 =117

g =) e (50)
k=0
=1

A k&A

P’ :ZH"Q@ : (51)
k=0

- 1 -

=3 y,e’gcbﬁ (52)
k=0

with the Lie derivative acting on all the field variables including the background metric and background
matter. Gauge transformations, such as were described above, can be presented as acting on the total
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effective curved metric and matter fields, while leaving the background metric and background matter

alone:
Iuy — 1 k pv
o= e (53)
k=0 """
g =g, (54)
=1
A=) gf’gqﬁ‘, (55)
k=0 "
4 = o4, (56)

What happens if one combines these two transformations with equal-but-opposite descriptor vector
fields? The resulting combined transformation alters the background metric and background matter
while leaving the effective/total curved metric and effective/total matter fields alone [29]:

g =g", (57)
=~ v - 1 UV
gr= gttt (58)
k=0
A = o4, (59)
_ > 1 _
A k A
P4 = Zﬁi‘_f@ . (60)
k=0

Thus dependence on the background metric and/or background matter makes an expression gauge-
dependent under these transformations. Thus some of the advantage for describing gravitational energy
using a background metric and hence tensorially is offset by the additional gauge dependence [109].

To conclude the section we note that on the basis of gauge invariance properties of the field-theoretic
formalism, in recent papers [76-79] a gauge invariant theory of the cosmological perturbations has been
elaborated. In order to ascertain the gauge invariance of global conserved quantities for isolated systems,
the weakest fall-off for gravitational potentials at spatial infinity has been determined [80,81].

3. Gravitational field on fixed backgrounds

What has been presented above is a construction of the field-theoretic formulation of GR when from
the start in the framework of the geometrical formulation of GR the decompositions (5) and (6) have
been provided. Then, the dynamical Lagrangian (9) has been suggested, and, next, all the structures
of the theory have been obtained like in an arbitrary Lagrangian-based field theory. This presentation
gives an evident connection of geometrical and field-theoretic representations of GR. However, in order
to appreciate the properties of the theory more clearly, it is useful to outline other ways (not only on the
basis of decompositions (5) and (6)) of constructing the field theory of gravity on flat or fixed curved
backgrounds.

Firstly, we recall briefly how to construct GR as a field theory of gravity in Minkowski space, keeping in
mind that we are working in the framework of special relativity. (Also see above.)

To construct such a gravitational theory usually one follows natural requirements:
e Such a theory has to be Lagrangian-based.
e All the fields including gravitational field are to be propagated in Minkowski space.
e The main observable tests have to be explained.

e In limit of weak fields and low velocities the gravitational theory under construction has to go to
the Newtonian theory.
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As main candidates for gravitational fields in special relativity, researchers considered scalar, vector
and the tensor fields. In scalar gravitational theories (see [60, 88]), the deflection of light in the
gravitational field of the Sun is not described correctly, because a scalar theory does not bend light
due to the conformally flat geometry of space-time (exactly for the massless case, or to an arbitrarily
good approximation for a small graviton mass) and the conformal invariance of Maxwell’s equations
in 4 space-time dimensions. In the vector theories (see [60,87,88]), in the case of positive energy of
gravitational waves, massive bodies are repulsive, contrary to the most basic features of gravitation.
Thus, pure scalar or pure vector gravitational theories in Minkowski space are not interesting candidates
for the real world. On the other hand, (symmetric rank 2) tensor variants of the gravitational theory can
satisfy the aforementioned requirements. Scalar and vector admixtures, nevertheless, can be considered
as corrections for tensor theories, see, for example, [110-112]. We consider the tensor variant only, which
leads to the field-theoretic formulation of GR.

When a construction of the pure tensor theory is provided, one assumes the following. The first
requirement is that in Minkowski space-time with Cartesian coordinates in the field equations, the source
of the part linear in gravitational variables h** is to be the symmetric energy-momentum tensor of the

matter variables ¢*. The next requirement is the positivity of the energy of the gravitational waves,

2

leading to the unique quadratic Lagrangian L7,

(h). The last describes the massless spin two field;
a mass terms disappears if one assumes the correspondence to the Newtonian potential in the weak
field limit. (Massive spin 2 gravity famously has multiple theoretical challenges involving nonlinear
negative-energy degrees of freedom typically [30,113] (but see [31-33] and many subsequent works) and
a discontinuous massless limit under a perturbative treatment [36,37] (but see [39,40,114] and many
subsequent works; two reviews are [115,116]). Thus the relativistic equations for the tensor gravitational

field acquire the form:
GL,(h) = £T(6,m) . (61)
At this step, the linear in h* left hand side of (61) is a result of varying £2,, . (h) with respect to h*¥,

grav
whereas the right hand side of (61) is the symmetric (metric) energy-momentum tensor of the matter

variables ¢*. Because identically GL ¥ = 0 one has the conservation law T," = 0. The last, however,

L
nz
contradicts to field equations for ¢4, which interact with ¥, see [60]. To improve the equations (61)
one has to change the right hand side:

GL,(0) = 1 [T (6.0 + ) + 12 ()] (62)

where t,(f,,)(b) is the symmetric energy-momentum tensor obtained from Egmv(h) by the ordinary

variation with respect to background (Minkowski) metric. After that the Lagrangian corresponding
to (62) has to be cubic, that is £2,,,(h) + £2,,,(h), etc. The contradiction vanishes when iterations are

provided an infinite number of times:

Gp(h) =&

n=2

Ty (b +n) + Ztﬁfb)(h)] : (63)

Notice that now 7}, depends on h*” in the sum g"** = h*” +n*”. Then, one can show that the equations
(63) are equivalent to the Einstein equations in the usual form, see [87,95,117].

Secondly, a construction of GR in the field-theoretic form in Minkowski space is generalized to a tensor
theory in a curved space-time.

In spite of considerable efforts, up to the beginning of the 1980s, there was not a completed version
of the field-theoretic formulation of GR with all the properties of a field theory in an arbitrary curved
background space-time. In the works [89,91,107] this formulation was provided. It took inspiration from
Deser [27], who suggested a covariant formulation on a flat background where the results given in the
(61) - (63) have been suggested in closed form without expansions. In [89], we have generalized the Deser
principle. It could be formulated as:
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e In an arbitrary curved fized space-time, the total energy-momentum tensor of all the fields,
including gravitational one, has to be the source of the linear massless field of spin 2 (tensor
gravitational field) and linear perturbations of matter fields.

On the basis of this principle the formulation in [89] presented above in sections 1 was constructed.

Thirdly, another principle for constructing the field-theoretic formulation of GR can be formulated
as a generalization of the Newtonian theory. This means a transformation from a gravistatic law to

gravidynamics (Einstein equations).

Steps of the construction are as follows.

e To follow the relativistic requirement one has to replace the mass density p in the Newtonian law
by the ten components of the matter energy-momentum tensor.

e Then, the number of the gravitational potentials should be increased from 1 component ¢ to 10
components h*¥,

e After that the Laplace operator in the Newtonian law should be replaced by the d’Alembert
operator.

e Besides, the relativistic theory of gravity should be a theory with self-interaction, that is the
gravitational field has to be a source for itself. Then the gravitational equations become

b0 = K, +t0,) = Kt (64)

e In these equations the gauge condition h*” , = 0 is already chosen. The condition when the
conservation law (t7, + t},)"” = 0 holds automatically leads to a necessity to add the terms
(M h*? 08 = D% upa — D% ua] to the left hand side of (64). Finally, (64) transforms to the
Einstein equations in the form (63).

For more detail see the work [90].

Fourthly, because GR in the field-theoretic form has gauge freedom, it can be constructed as a gauge
theory itself.

The gauge principle of constructing the field-theoretic formulation of GR has been presented and
analyzed in the work [107]. A non-standard way of localization is postulated. From the very start, the
existence of a fixed background space-time (it can be even curved) with symmetries presented by Killing
vectors is assumed. It is also assumed that initial dynamic fields in this space-time are propagated and
their action is under consideration. Then, one notices that the initial action is invariant up to a surface
term under the addition of Lie derivatives (with respect to aforementioned Killing vector) to the initial
fields to themselves. Then, the Killing vector in this transformation is replaced by an arbitrary vector.
Next we require the same invariance of a sought-for action for the same dynamic fields under the localized
transformation. In the process the coordinates and the background metric do not change. All of this
plays a role of a local invariance. We note that our concept of ‘localization’ should not be taken literally.
Indeed, it turns out that in our case a background space-time can have no symmetries. It is enough to
require the aforementioned invariance of the initial action for Lie derivatives with respect to arbitrary
vectors only. As a result of ‘localization’ the compensating (gauge) field appears. The requirement to
have this gauge field as a universal one with the same (as the other fields) gauge transformation law
leads to the theory with the Lagrangian (9) and the field equations (15) where the gauge field is just
b,

All the above methods begin from a concrete background. However, finally it becomes the
background in the field-theoretic formulation of GR. Already, we have noted that the Einstein equations
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in field-theoretic form are equivalent to Einstein equations in the standard geometrical form. But the
latter have no any background structure at all.? Therefore, it is quite important to clarify the role,
physical or auxiliary, of the background. Indeed, after the identification (5) and (6) the fixed metric
gy and the fixed fields ®4 disappear from the equations (15). This means that a fixed background
appearing in the field-theoretic expressions cannot in fact be observed. Let us demonstrate it from the
physical viewpoint for a Minkowski background space-time.

Consider the intermediate equations (61) of the field-theoretic formulation with Cartesian
coordinates for the flat background. The latter cannot be observed with the use of the light signals,
see the works [88,90]). Indeed, the propagation of light in gravitational field can be interpreted as a
propagation in a refractive medium [73]; the velocity of light changes in this medium. Besides that,
the energy of relativistic particles depends on the gravitational field h*¥ as well, and, consequently, the
frequency of photons depends on gravity also. Then, the ratio of physically measured time to coordinate
time changes in the theory with the equation (61). Finally, one concludes that distances are decreased
and the Minkowski space-time is not observed when the gravitational field h** propagates.

What can a study of propagation of gravitational waves (not only relativistic particles) in Minkowski
space-time yield? Recall that the characteristic part of the left hand side of the equations (63) is the
d’Alembert operator, like in (64) for the flat background in the Lorentzian gauge. Only in the linear
approximation do the gravitational waves propagate along the null geodesics of the Minkowski space.
But we consider equations with self-interaction, for example, see (63), where the right hand side contains
the second derivatives of h*” in the terms like [)O‘Bb‘“’ﬁ,g. As a result, the flat d’Alembert operator is
modified. Then, of course, gravitational waves cannot feel a flat background. The related idea of a
geometry that is entirely masked by a universal distortion force goes back to the 19th and early 20th
centuries in discussions of universal distortion forces and the question whether Euclidean geometry is
privileged [24,124-126].

To illustrate further the auxiliary character of the background space-time, it is instructive to
consider how the gauge transformations influence trajectories of a test particle on this background.
Again, it is enough to consider a flat background. Let us derive the related dynamical Lagrangian:

1
L£dvm — _ﬂcg +Lm. (65)

The related matter Lagrangian in the field-theoretic form has a general form: £™ = LM (n+ b, ¢),
where h*¥ is the gravitational field, n*¥ is the background Minkowski metric density. To define £ one
has to recall the action for a free matter point in GR [127]:

JS— / dr (66)

where dr? = —ds® = g,,dz"dz”. To represent (66) in the field-theoretic form one has to express
G = Gur(n®P,5P7) with the use of (5). The variation of S™ with respect to the coordinates gives
the equations of motion for a test particle. It is assumed that their solutions exist and are the vector
components of the particle 4-velocity u® = dz®/dr; we note that dr depends on g, dz*dx”.
Let us present S™ in a more suitable form:
md(r—71o) d
S = /d4xﬁm = 7/d4x\/jgpgw,u”u”; p mo(r—19) 0)—7—,
vV —9%900 dt
where &(7 — 7) is the Dirac 6-function, g is the spatial part of the tensor g,s and g = det gqp. Thus,
matter fields in (67) are ¢* = {p,u*}.

(67)

2In the case of spinor fields, the matrix diag(—1,1,1,1) appears (as do ' matrices). One might call this quantity a
confined object rather than an absolute object [118,119] because it does not change at all order coordinate transformations.
Some authors use this matrix (or the identity matrix with z* = ict) as a background for a perturbative expansion of the
effective curved metric [95,104,120-123]. Then the gravitational potential has an inhomogeneous coordinate transformation
law and no new gauge freedom arises. Thus the idea of a background is more common and potentially ‘thinner’ than one
might have thought.
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Of course, the theory with the Lagrangian (65) has to be gauge invariant with respect the gauge
transformations (34) and (35). In the case of the flat background the transformations (34) and (35) for
all the variables in (65) are

@) = B+ L (@) + 5 (), (63)
k=1
P@) = pla)+ Y 1 Lhole) (69
k=1
W (z) = u¥(z)+ Z% £§uo‘(x). (70)
k=1

Of course, both the set h*”(z), p(z), u*(x) and the set h*(z), p'(x), w'*(x) satisfy the equations
of the field-theoretic formulation of general relativity. However, in general, u®(z) and u'®(x) defines
different trajectories in the same background space-time. This conclusion again stresses the fact that a
background space-time has an auxiliary character. However, in spite of backgrounds’ lacking physical
meaning (at least quantitatively) in the field-theoretic formulation of General Relativity, they can be
very useful for deriving important characteristics of various solutions, including interpretations of exact
solutions in GR and other metric theories.

4. Conservation laws in GR

Here we follow the results and methods of the papers [89,128-131]. In section 2, we have connected
the non-localization of the energy and other conserved quantities in GR with the gauge non-invariance
of the energy-momentum tensor of perturbations. Before applying the formalism to any concrete models,
one has to fix the gauge freedom. In the usual geometrical formulation of GR, this procedure corresponds
to fixing a coordinate system. By gauge fixing one suppresses the ambiguities related to non-localization
and can construct unambiguous conserved quantities related just to this gauge. Thus, in this section we
construct conserved quantities and conservation laws assuming that a gauge fixing was made.

From the start let discuss differential conservation laws on Ricci-flat (including flat) backgrounds,
Ry, = 0. Then, one has to take into account &4 =0, £ =0, ®Z, = 0 and use

SR
ogHv

=0 (71)

as the degenerated form of the background equations (8). Then, the dynamical Lagrangian (9) is
simplified to
1 1
LI — 9 pm— 94 M (pA g 4 p 7
5L+ 5L+ LY (67 7 + 1), (72)
and the field equations (15) transform to the form of the equations (23):

Gh, =k, +t0) =kt (73)

nv pnv

Thus for Ricci-flat backgrounds the energy-momentum tensor densities tff,f and tfflf, coincide.
Furthermore, in the case of Ricci-flat backgrounds the left hand side of (73) is conserved identically,

—vorL _ .

VYG,, =0; (74)
then taking the divergence of equation (73) leads to a differential conservation law:

—vgtot

Vi, =0. (75)

All the above permits us to construct differentially conserved current. Contracting tffyt with a
Killing vector £ defined in a background space-time, one obtains such a current:

JUE) =E, VLIV (€) = 0,77 (§) =0. (76)
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Integration of this equality leads to a definitions of integral (not local) conserved quantities. Consider a
background 4-dimensional volume Vj, the boundary of which consists of time-like ‘surrounding wall’ S
and two space-like sections: ¥g := tg = const and ¥; := t; = const. Because the conservation law (76)
is a scalar density under coordinate transformations, it can be integrated in a coordinate-independent
way over the 4-volume Vj:

/ 2, J"(€)d*r =0. (77)
Vy
By the generalized Gauss theorem, it can be rewritten as
Pzg%&) - | PxgE) + f ds, J"(£) =0, (78)
2 3o S

where ds,, is the element of integration on S. If the integral over ‘surrounding wall’ in (78) becomes
zero,

# s, o, (79)
s
then the quantity
PE) = [ 2@ (50)
b

is conserved on space-like sections X restricted by 0%, intersection with S. It can be also assumed that
0% — oo. In the case, when the condition (79) does not hold, the equation (78) describes a change of the
quantity (80), that is its flux through 9%. The differential conservation laws (75) and all the following
constructions also apply for backgrounds that are Einstein spaces in A. Z. Petrov’s definition [132] with
a vacuum R, = Ag,,, where A is a constant (see [89,128,129]).

Below we will apply the formalism to study various solutions in GR using flat backgrounds only.
Therefore, the above theoretical results are quite enough for such goals. However, for arbitrary curved
backgrounds there are no conservation laws of the form (75). That is because, in the general case for
the linear operators in (15) and (22) one has

V., (G + @) #£0, VrGE, #0 (81)

instead of (74). The reason is that the system (9) interacts with a complicated background geometry
determined by the background matter fields ®“. Cosmological solutions, for example, are not flat or
Einstein’s spaces.

Nevertheless, in spite of the inequalities (81), one expects conservation laws for arbitrary curved
backgrounds and arbitrary displacement vectors £%. (This fact follows from Noether’s first theorem
and the fact that the laws (not the geometry, which as such is irrelevant to Noether’s theorems) have
continuous symmetries [52,61,63].) We find such laws making use of the canonical Noether procedure
developed in [130] and applied to the Lagrangian (9). This technique is developed in detail in the
framework of an arbitrary metric theory of the Lovelock class in section 10. At the end of this section
we derive formulae of section 10 simplified to GR and necessary here.

Thus, let us derive the identity (197) adopted to GR:

" =V, " = 0,4M . (82)
Here, the current and superpotential are, respectively,
() = LOHE Ry + M) (53)
Q) = T, P = - (19,6 4 T,y - e Tin) L (s)
The last term in (83) is

26CH(€) = 2(2P7V, b — 577V, 2E) — (206 VHBPT — §P7V 2,,)
+ (h"V,z = 2V, ") (85)
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where 2z,, = —£¢7,,, and, thus, disappears if {* = €2, that is, if the displacement vector is a Killing
vector of the background. Here z = z¢, with the index moved using the background metric.

The main property demanded of superpotentials, 9,,i*"(§) = 0, holds. The expression (84)
generalizes the Papapetrou superpotential [64], which depends on a background matrix diag(—1,1,1,1)
or the like. Indeed for the case of a Minkowski space-time background and rigid coordinate translations
= 5(% (in Cartesian coordinates), one gets

UV puv 1 Vo VLUO  =OUpV | =0V

z(p)—P p—%&, (5p[) — 0 "7 — b, +9 f)p) . (86)
The same superpotential (84) was constructed in [131] by another means, namely, by the Belinfante
symmetrization of the canonical system in [130].

To provide physically sensible conservation laws from the identity (83), one needs to use the field
equations. We substitute G, in the form (22) into the current (83) and obtain

JH(§) = 8,1 + ¢"(§).- (87)
The generalized total energy-momentum tensor density is
1 _ 1 _
O," = tI* + 5tMr 4 gt Ry, =t 4 ZpHAR,y, (88)
K K

where the interaction with the background geometry, h**Ry,, is taken into account. Because on the
right hand side of (87) there is a divergence of the superpotential (84), the current (87) is conserved:
vuJ“ = 9,J" = 0. Thus, ©,* plays the same role as t'°** in the equation (76) on the flat background
if Killing vectors exist. Thus, the current (87) generalizes (76) to arbitrary backgrounds and arbitrary
displacement vectors. It can be important, for example, for models with cosmological backgrounds where
not only the Killing vectors are used (see, e.g., [133-135]).

For a concrete solution the superpotential ##*(£) in (84) is rewritten in a new notation, J*¥(§),
although it has the same form. Finally, the identity (82) acquires the form of a physically meaningful

conservation law:

JHE) = V,T" (&) = 0,.T"(€) - (89)

Because the current (87) is conserved, the integral conserved quantity, like (80), can be constructed.
Due to antisymmetry of the superpotential in (89), this conserved quantity is expressed over a surface
integral in the form of the charge:

Pe) = /Z PrT0() = fe@ A TE). (90)

where doy, is the element of integration on 9X. It is a significant expression because it connects a
quantity P(£) obtained by integration of local densities with a surface integral playing a role of a quasi-
local quantity (see discussion in the Introduction).

5. The total mass of the Schwarzschild black hole in GR

Already in the Introduction, we have noted that it is important to describe exact solutions in
GR in terms of the field-theoretic formalism. This means that the solution is represented by the field
configuration propagating on a fixed background. In the present and next sections, we concentrate on the
first exact solution of GR, which is the Schwarzschild solution. It is simplest yet most relevant solution
in GR, and its properties interpreted in the framework of the geometrical description are well known. In
the present section (based on the results of the papers [89,136,137], see also chapter 4 in the book [3]),
we calculate the total mass of the Schwarzschild black hole presented by various field configurations
connected by gauge transformations.
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For the Schwarzschild solution, which is asymptotically flat, it is quite natural to admit the flat
space-time at spatial infinity as a background space-time. Therefore we choose a flat metric coinciding
with the asymptotic metric as the background metric. In spherical coordinates, the metric is

ds* = —*dt® + dr* + r* (d6? + sin® 0d¢?) , (91)

where, as usual, the coordinates are numerated as z° = ct, ' = r, 2 = § and 2® = ¢. (The freedom to
use Cartesian coordinates distinguishes the field-theoretic formulation even with a flat background from
the use of a numerical matrix background diag(—1,1,1,1).) We denote the background metric of the
Minkowski space in curved coordinates as §., = Yu,. Non-zero components of the Christoffel symbols
corresponding the metric (91) are

1
Clay = —r, Claz=—rsin’f, C%p=C%3=—,
r
C?335 = —sinfcosf, C353 =coth. (92)
From the start let us consider the Schwarzschild solution in the typical Droste coordinates:

ds? — — (1 _ 7‘79) Adt? + dr? 4 r? (d92 + sin? 9d¢2) , (93)

1
1= (rg/r)
where r, = 2mG/ c?. Below we consider other presentations of the Schwarzschild solution important for
our considerations. First, we change the radial coordinate by what one might call a radial translation:

r—>r(1+2—i). (94)

Then, the metric element (93) is represented in the so-called isotropic coordinates [127]:

(1 —r,/4r)
(1+7,/4r)

Tg
4r

ds? = — Adt? + (1 ¥ )4 [dr? + r2(d6? + sin® 0dg?)] . (95)
Of course, the coordinate ‘r” here is not the same as the coordinate ‘v’ in (93). This is because the same
background metric in the form (91) is used to derive the field configuration in both the above cases.
While the detailed quantitative features of the background metric are not observable, the background
metric still helps to delimit places that actually exist. While the world does not have edges that one
could fall off, values such as » = 0 and infinite values of the coordinates for a well-chosen background
metric do have the significance of delimiting the furthest reaches of the world. As will appear below, one
aims to stuff as much of a curved metric’s observable events onto the background as possible (giving a
bimetric notion of maximal extension), without leaving any bare spots. The non-internal character of
gravitational gauge transformations makes such questions disanalogous to Maxwell or Yang-Mills and
analogous to questions of extending space-times in geometrical GR.
Next we only change the time coordinate

ct%ct—rgln’l—r—g
r

; (96)

whereas the other coordinates {r, 8, ¢} are not changed. As a result one has

2 2
as? = — (1- %") Pt 42 %’ cdtdr+ (1+ %") (1 + :g) dr? + 1% (d6? + sin? 0dg?) . (97)

Of course, the coordinate ‘¢’ here is not the same as the coordinate ‘¢’ in (93). The important properties
of this solution are that a falling test particle approaches the horizon r = rg in finite coordinate time ¢.
Below the horizon, it is always falling towards the singularity, it gets arbitrarily close to it, but only hits
it, at, t = oo. Finally, let us provide the time transformation for the Schwarzschild time in the form:

ct = ct—rgln

r
——1f.
" ‘ (98)
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As a result, the metric element (93) is represented as
ds? = — (1 - %‘7) Adt? +2 Tr—g cdtdr + (1 + 7;—9) dr® — r? (d6* + sin® 0d¢?) . (99)

Again, the coordinate ‘¢’ here is not the same as the coordinate ‘¢’ in (93). One has to remark that the
metric (99) is the well known Eddington-Finkelstein (EF) metric for the Schwarzschild geometry [60].
Only one has to make a transformation from the null coordinate V to the time coordinate t: ¢t = ¢V —r.

Now, let us derive field configurations corresponding the above geometrical representations of
the Schwarzschild solution. We use the decomposition (5) adopted to these solutions. Thus, for the
background (93) one has

g = G G = M B = = (Y B (100)

where /=7 = 72 sin §. The equation above defines the non-densitized (non-Gothic letter) gravitational
perturbation A*”, which is freed of the strong coordinate effects manifest in 72sinf in spherical
coordinates by the use of /=7 to de-densitize.

Then, the field configurations related to (93), (95), (97) and (99), respectively, are as follows,

1 r
LR — pt= 1o, 101
r 1= (rg/7) v (101)
7
B0 (1+ry/4r) Bl 22 33— (7;9)2 . (102)
(1—ry/4r)”’ 4r)

B0 Tg ﬁ ﬁ 101 ﬁ Bl — 79, 103
n r+r2+r3 ’ o2’ o (103)
h///OO — _7;9’ h///Ol — &7 h///ll — _7;9- (104)

r r T

Let us outline a connection of variables in (101)-(104) to gauge transformations. The transformations
(94), (96) and (98) lead to the metric elements (95), (97) and (99), respectively. The last three are united
in the general formula (32). Thus, h*¥, A" K" and h"'* are connected by gauge transformations
(34), only in (101)-(104) displacement vectors £* are not derived explicitly.

One can see that the field configurations (101)-(104) have breaks and singularities at r = r, and/or
at 7 = 0. The breaks at r = r, reflect the coordinate problems at the horizon in the framework of the
geometrical description. Because it is not a physical singularity, it can be suppressed by a (naive) gauge
transformation. Indeed, after related gauge transformations a break at r = r, in (101) and (102) is
cancelled in (103) and (104). The singularity at » = 0 corresponds to a true singularity of a black hole,
so it cannot be suppressed, whether by coordinate transformations or by gauge transformations.

In the present section all the field configurations (101)-(104) (combined with the background metric)
are asymptotically flat. What does this mean? To show this explicitly, it is best to use Cartesian
coordinates, z' = z, 22 = y, 23 = 2, instead of spherical ones. After that the background metric
element (91) goes to Minkowski form and the Christoffel symbols (92) disappear. As a result, at spatial
infinity, r — oo, all the components of the configurations (101)-(104) acquire the fall-off not weaker than
h#¥ ~ 1/r. Then, by the conclusions presented in [138], one concludes that configurations (101)-(104)
have to give the same total mass for the related isolated system. Below, we illustrate it explicitly.

To calculate the total mass/energy of the Schwarzschild black hole, we use the surface integral
(90) at » — oco. The superpotential (84) in this integral is universal and is valid for arbitrary curved
backgrounds, including a flat one. In our case we have to consider covariant derivatives in (84) defined
by the Christoffel symbols (92). To calculate the energy we choose the Killing vector of the background
in the form: £* = {—1,0,0,0}. Then for all the kinds of configurations (101)-(104) the total mass is

P(€) = f{ dOde T (&) = mc®. (105)
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Let us explain why one has the unique result (105) for the different aforementioned configurations.
Because we use the simplest (flat) background, one can use the current defined in (76). Because we
consider a concrete solution to GR, the field equations (73) hold. Then, the total energy-momentum in
(76) can be expressed through the left hand side of the field equations:

(o) 1 1 o) « [e% (03
tiwt = Egﬁy = % (b;w’ He' +7uub ﬁ;aﬁ 7h niva b u;pa) ) (106)

where ‘,,” means the covariant derivative with respect to <,,. Substituting this expression into the

current (76) one can transform it into a divergence of the superpotential (84) with the displacement
vector £ = £ only. Finally, one obtains again the charge (the total energy) in the form and with the
result in (105).

Now, recall that the field configurations are connected by gauge transformations. Then, for the flat
background the transformation for the total energy-momentum (38) acquires the form:

Kt =ty + G, (b = b). (107)

The difference gﬁ,j(b’ —b) is a double divergence, and is, of course, incorporated in the integrand in
(105). One can easily check that all the differences, like ¥ — h#v h”"F* — h# etc., do not contribute
to the charge (105). Thus the total energy (105) is invariant with respect to gauge transformations
connecting the configurations (101)-(104). One can, of course, interpret this result in terms of either a
gauge-dependent localization of an objectively non-localizable quantity or as the sameness of the total
amounts of distinct localized energies.

6. The Schwarzschild black hole in GR as a point mass

The Schwarzschild solution, being a surprisingly a non-trivial solution, has well-known problems
with regard to its interpretation in the geometric language. These problems have been discussed in
many papers and textbooks and in most cases are resolved. Many of the problems have analogs in the
field-theoretic formalism. One of these problems is a description of the point mass in GR. Here we take
inspiration from a paper by Narlikar [139]. In Newtonian gravity the problem is resolved simply: one can
describe the point mass with the Newtonian potential ~ m/r everywhere, including the point » = 0. To
satisfy this, one has to assume that the mass distribution has the form p(r) = md(r), where the Dirac
d-function satisfies the ordinary Poisson equation

1 > 2d\1
- () _ (drz + d) L= i), (108)

Then, both for a regular distribution p(r) and for a point mass
p(r) = md(r), (109)

the total mass of the gravitating system is calculated with the use of the same integral:

m:/dx?’p(r) (110)
>

with p(r) = /=7p(r). Thus, the point particle located at » = 0 is included in a unique standard way in
Newtonian gravity by making use of the J-function.

At first glance, it might seem that one can simply use the Schwarzschild solution in order to describe
a point mass in GR. However, a conceptual difficulty arises. If one tries to consider an ideal point mass in
the framework of the geometrical description, the point mass is shrouded by its own horizon. Under the
horizon the coordinate r becomes a time-like coordinate and r = 0 describes a space-like hypersurface,
not a point. Therefore it is impossible to model it by é-function at » = 0 as one might have hoped
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naively. However, we will show how this problem is resolved using the field-theoretic formalism. Already
we have shown that the black hole geometry can be interpreted as a reasonable field configuration even
at the horizon and behind the horizon down to the true physical singularity r = 0; see (101)-(104).
Then, one anticipates that the problem of a point mass can be solved by using the volume integration
(80) with the time-like Killing vector £€* = {—1,0,0,0} defined for the coordinates in (91):

PE) = / P2 0(E) = / PrtdE, = / P/, (111)

over the whole Minkowski space including r = 0 with the energy density (energy distribution) . The
problem of the point mass can be resolved if the §-function representing the singularity is included into
29 in a consistent way. Thus, (111) has to generalize the Newtonian formula (110). We develop this
proposal below.

Recall that tY), is changed by gauge transformations. So, we will check the configurations (101)-
(104) just connected by gauge transformations and define an appropriate gauge fixing. We employ the

following criteria:

(i) Breaks in the field configurations and the energy density at each points of the Minkowski
background space-time (except at r = 0) are inadmissible.

(ii) A point particle at rest in the whole Minkowski space-time must be represented. Therefore it must
be natural to describe the true singularity by the worldline r = 0.

(iii) The mass-energy should be concentrated at point r = 0 only without distribution of energy outside,
as in the Newtonian case (109).?

(iv) The Schwarzschild solution in appropriate coordinates should be asymptotically flat.

(v) A falling test particle should penetrate the horizon without obstacles and reach the point » = 0
at a finite time relative to the Minkowski background.*

(vi) The requirement of ‘n-causality’, to be explained presently, is satisfied.

The property of ‘n-causality’ is that the physical light cone of the effective metric g,, is tangent
to or inside the flat ‘light’ (null) cone of the flat background metric 7, at all points of the Minkowski
background space-time [29,137,140,141].> This requirement avoids interpretive difficulties in the field-
theoretic presentation of GR. Given this requirement, all the causally connected events in the physical
(dynamical) space-time g,, are acceptably related to the causal structure of the Minkowski space.
Hence any g-time-like vector is n-time-like and any g¢-null vector is n-time-like or n-null. Thus the
effect of gravity is to narrow and perhaps gently tip the physical light cone relative to the background
null cone, but not to make anything physical (g-time-like or g-null) ‘go faster than light’ as defined
by the background (along which, admittedly, electromagnetic radiation does not travel). The proper
relationship of the null cones is not automatically gauge invariant in the sense of the exponentiated
Lie derivative formulae [88]. Properties of n-causality and gauge transformations conserving it were
studied in some detail [140]. In effect one aims to restrict the naive mathematical notion of gauge
transformations because gauge transformations should relate physically equivalent solutions and thus
should preserve the proper relation between the two null cones. Employing a new set of variables, a

3This condition is imposed here not because its violation is physically absurd, but because one wants to see how fully
the ideal of a point mass can be realized.

40One might instead consider the alternative requirement that the test particle only approach the true singularity as
Minkowski background time goes to infinity. A reason for doing so will be mentioned later.

5 One might reasonably generalize this requirement to use for a background a maximally symmetric space-time of
constant curvature (A)dS or perhaps a pure conformal geometry with vanishing Weyl curvature tensor. In all such cases
a flat null cone is retained and the geometry in question is maximally symmetric.
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generalized eigenvector formalism, can be useful so that the inequalities hold automatically. A major
motivation for the n-causality criterion is to provide a justification for quantization with equal-time or
space-like commutation relations [29,140,142], which otherwise are often used in both covariant and
canonical quantization programs with no evident justification.

The requirement of the n-causality can be strengthened by the requirement of stable n-causality
[29,140,141]. The latter condition means that the physical light cone of g,,,, has to be strictly inside the flat
light cone of 7,,,,. This relation could be important when quantization problems are under consideration.
Indeed, in the case of tangency, a field is on the verge of n-causality violation and would be pushed
into violation under some infinitesimal gauge transformations [140]. Assuming stable n-causality, any
infinitesimal gauge transformation will change an n-causal configuration into an n-causal configuration;
only for finite transformations restrictions on the descriptor vector field arise.

We note that the representation of the Schwarzschild solution by the field configuration (101) does
not satisfy the requirements (i), (iii), (v) and (vi) in the above list. The field configuration (102) has to
be excluded as well because it cannot satisfy all the requirements; indeed, the coordinates in (95) do
not cover the area under the horizon, so the configuration (102) cannot describe the true singularity at
all. The configuration (103) does not satisfy the requirement (iii) and a test particle cannot reach the
true singularity in finite Minkowski time.

Unlike (101)-(103), the field configuration (104) satisfies all the requirements in the above list.
Finally let us present the components of the total energy-momentum. After making use of the expression
(106) for the configuration (104) we obtain

ey = me(r),
1 = —mc(r),
tih = —dunmc);  A..=23. (112)

Indeed, all these energy-momentum components are concentrated only at r = 0. The volume integration
(111) of ¢ from (112) again gives E = mc?. Recall, the surface integration with the configuration
(104) gives E = mc? also. This result follows with an arbitrary radius, ro, of 2-sphere in a surface
integration; it is not necessary to set rq — oo. It is an exact analog for calculating the electric charge
in electrodynamics, or calculating the point mass in Newtonian gravity, as in (110) for the point mass.
The other components ¢5" and ¢'?% in (112) are proportional to d(r) as well, thus, could describe the
“inner radial” and “inner tangent” stresses. Formally these quantities could be related to the intrinsic
properties of the point. Thus, finally one concludes that the field configuration (104) indeed represents
a point-like object in Minkowski space, though it is more complicated than in Newtonian gravity.
Finally let us remark that we are considering only the total energy-momentum. The matter source,
iy, that contributes into (112) is ‘localized’ at r = 0 only. One can find how it can be separated formally
from the free gravitational field, see [136]. However, it is in the spirit of GR that ¢, cannot be considered
separately from t9

pv

7. Particle trajectories in the Schwarzschild space-time and the harmonic gauge fixing

To find solutions to the Einstein equations, one usually makes an appropriate choice of coordinates.
Harmonic coordinates are among the most popular ones. Concerning the Schwarzschild solution, Fock
[143] has suggested such harmonic coordinates. However, the latter, like the Schwarzschild coordinates,
are singular at the horizon. Many coordinate systems without this defect are known but are not harmonic.
Here, following [138], we discuss coordinates that are both harmonic and regular at the horizon.

Thus, continuing to illustrate the field-theoretic method, we apply it to interpret the transition from
the Fock coordinates to the new harmonic coordinates in terms of gauge transformations. In both of the
gauge fixings, we consider trajectories of test particles falling into a Schwarzschild black hole. We find
that trajectories in the Minkowski space are gauge dependent, as was remarked in the Introduction and
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as one expects from the combined coordinate and gauge transformation that alters only the background
entities. Because gauge transformations do not change the physical meaning, we see once more that the
background Minkowski metric is an auxiliary structure. Thus, a breakdown in the trajectories at the
horizon for the field configuration in the Fock picture is interpreted as physically unreal. Indeed, such a
breakdown is averted for the field configuration corresponding to the new harmonic coordinates. These
problems, of course, are resolved clearly in the framework of the usual geometrical formalism of GR.
Here we illustrate the utility of the field-theoretic formalism.
We start with the Schwarzschild metric in the Fock harmonic coordinates:

ds? = T T %2g2  THQ e (r + )?(d6? + sin? 6 dg?) , (113)
r+ r—«

where o = ry4/2. Going to asymptotically Cartesian coordinates in standard way, one finds that the
solution (113) satisfies the harmonic (de Donder) conditions

d (V=99") = 0. (114)

For the sake of simplicity, we consider a test particle falling radially into a black hole. We restrict
ourselves to the ‘parabolic orbit’ case, when a particle begins its motion from the rest at infinity r = oc.

1/2
r4+
1
(%)

The existence of the term —2alIn|r/a — 1| leads to the situation that a particle falling to the event

Then, the equation of motion of the test particle becomes

3/2 1/2

2

ct:—2a[(T+a> +2(r+a> —Hn‘ﬁ—l‘—an
«

. 11
3\ 2 50 + const (115)

horizon r = « takes infinitely long in the coordinate time ¢ that is the time of a distant observer.
The problem of breakdown at the horizon using the de Donder harmonic conditions has been
resolved [138]. Finally its results lead to the transformations:

r—

cr = ct + 2aln

O", r=r, 0=0, $=6b. (116)
«

Applying them, one obtains the Schwarzschild solution in the form:

2 2 2 20 3
1+ ——+ +
r+« r+a r+«

+ (1 + a)?(dh?* + sin® 0 d¢?) . (117)

r—aa

2
2
ds®> = ———2dr?+2 (a) cdrdr + dr?
r+a« r+«

Note that with the use of the shift r — r — « in the transformation (116) and the metric (117), they
go to (96) and (97), respectively. One can check that after transferring to asymptotically Cartesian
coordinates, the metric (117) satisfies (114) also. Finally, the metric coefficients in (117) are finite
everywhere except of the true singularity r = —a.

The trajectory of the test particle that is on the ‘parabolic orbit’ is given by the equation:

3/2 1/2 1/2
c7'2a[2<r+a> +2<T+a> +1n‘1+1‘72ln (r;ra) +1
o o

3 2ce 2c0
Here, unlike (115), there is no divergent logarithmic term. Hence, in the coordinate system (7,r), a

+const.  (118)

falling particle trajectory without breakdowns goes through the horizon.
The metric (117) and the structure of the light cones

dr

2 2
AT (r+a)? + (2a) CdT
dr

r+ 3a
1 r2 —a? ’ dr

=7 s (119)
2

show that in the domain r < « both r and 7 become space-like, as in the Finkelstein coordinates [144].
This is permissible, because the metric signature in the domain r < « remains correct. Only when r < «
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is the description of the particle motion somewhat unusual: evolution of the space-like coordinate r is
presented as r = r(7), where 7 is another space-like coordinate. The sections 7 = const are space-like
both outside and inside the horizon. If some events belong to the surface 7 = const, then in this sense,
one can speak about their simultaneity everywhere from infinity up to the true singularity.

Now, let us consider particle trajectories in terms of gauge transformations. Because gauge
transformations act on the gravitational variables together with the matter variables, they have to
act on the particle trajectories as well. Therefore, trajectories in a fixed background space-time are not
gauge invariant. We consider ‘parabolic orbits’ for the Schwarzschild solutions in harmonic coordinates,
both in (113) and in (117). We consider also the ezact transformations without using the &#-vector used
to build finite transformations by exponentiation as above.

First, we construct the field configurations related to the solutions (113) and (117). For the latter
we make a mapping 7 — t. After that for each of the solutions we choose the same background metric
in the form (91). However, we exclude from the consideration the domain —a < r < 0. Doing so is
permissible here because we consider the trajectories in the neighborhood of the event horizon only.
Thus, using the decomposition (100), one finds the field configuration for the solution (113):

1+a/r)? a?

poo — 1 UFa/m” M= —— 120
o = (120)
and the field configuration for the solution (117):

2 2 2a \* 20 \°
h/OO = 1_<1+g) 1+7a+ @ + & ,
r 1+« 1+« 1+«
402 a?
01 _ ni _

As with the configurations (101) -(104), the above configurations are connected by gauge transformations

(neglecting the notion of n-causality). Now, they are induced by the coordinate transformations (116).

Let us discuss properties of the configurations (120) and (121), which are quite similar. First, they

do not depend on time ¢ (stationary). Second, both of them represent asymptotically flat space-time.

Third, the total energy calculated for both of the cases is E = mc?. Finally, the tensorial de Donder
condition is rewritten as

h*., =0, and A", =0 (122)

for both of the configurations in spherical coordinates. The background metric permits the use of
spherical coordinates while imposing a Fock-like generalized harmonic condition.

To describe the trajectories of test particles, one has to vary the action (67) with respect to the
coordinates. One obtains the equations for 4-velocities u® and u'®; formally they are the equations for
the geodesics. Maintaining the restriction to ‘parabolic trajectories’, for the configuration (120) one has:

1/2
2
w =" ulz_(TfQ) C w—wioo (123)

Integrating cdt = (u°/u')dr one obtains the equation (115). Thus, now the particle approaches the
event horizon, r = «, for an infinitely long time ¢; it fails to penetrate the horizon. However, for the field
configuration (121), one has

o 1 20 \'?  2a 2a \*/? 20 \?
v = — 1+ [ — + + + ,

20 \1/2 1+« 1+« 1+« l1+a

1+ 1+«
1/2

2c0
ut = — , u?=u?=0. (124)

T+

After integration of cdt = (u/°/u/')dr one obtains the equations (118) by changing 7 for ¢. Unlike
(123), now the particle approaches the event horizon and penetrate it at a time ¢. Thus, by a
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gauge transformation, trajectories are saved from a ‘catastrophic’ discontinuity at r = ry,. Much as
one extends the solution in geometrical GR, one should extend the field configuration so that the
interior of the horizon is included. While infinitesimal gauge transformations remain arbitrary, finite
gauge transformations require suitable boundary conditions to implement a suitable notion of maximal
extension.

8. Continuous gravitational collapse to a point mass in GR

In this section, we recall some recent results [4]. The Schwarzschild solution represented as a point
particle with a Minkowski background is only a static model (at least outside the horizon). A dynamical
model, that is a description of the process by which the final point mass is formed, is desirable. In the
framework of the geometrical description, the gravitational collapse was studied by Oppenheimer and
Snyder [145]; see also the textbook [60]. The interior solution presents the Friedmann solution with dust
in synchronous comoving coordinates, whereas the exterior is represented by the vacuum Schwarzschild
solution. However, the interior region and the exterior region are described by different coordinates.
To make the nature of the matching region more perspicuous, it would be more natural to describe
both of the regions in the same coordinates. Recently [146] such a task has been accomplished using a
generalization of the well known Painlevé-Gullstrand (PG) coordinates. Below we outline the results.

Painlevé [147] and Gullstrand [148] discovered their coordinates independently. An instructive
derivation of the PG coordinates and their discussion can be found in [149] and references therein. The
original form of the Schwarzschild vacuum solution in the PG coordinates is

1/2 2
ds? = —chtf7 + (dr + (%g) cdtp> + r2(d6? + sin? 0d¢?) . (125)

For the sake of definiteness, we discuss in this section the type of time coordinate, for example, here, t,,
that is related to PG coordinates. Its main property is that each of the sections defined as ct, = const
presents a flat Euclidean space. Recently interest in these coordinates has increased; many authors,
retaining this property, have generalized the PG coordinates for more complicated black holes than the
Schwarzschild one; see, for example, [146].

To obtain the PG coordinates, one can find the transformation from the Schwarzschild coordinates
in (93) in this way:

(g )2 | |
= cdty + 2y = cdt, - : 12
cdt, = cdts + T —ry/r dr = cdts + T=rofr 14 (rg/r) 12 dr (126)

By this transformation one removes the break in the geodesic trajectories on the space-time diagram.
This fact can be seen more explicitly after analyzing the components of the 4-velocity for test particles.
The transformation (126) permits us to recalculate the components of 4-velocity for test particles (123)
falling radially from infinity:

0 1 g\ /2 2 3
u, =1, up:—<7> , u’=u’=0. (127)

The authors of the paper [146] have generalized the vacuum PG solution (125) to the dust case. Here
we consider the model where the surface of the star is at rest at infinity. It corresponds to our assumption
of parabolic orbits. Collapse from a finite radius has been suggested in [146] as well. However, we do not
consider it here because conceptually it is similar, but formulae are significantly more complicated. It
is assumed that the radius of the star, R(¢,), monotonically decreases from ¢ = —oo to zero as t, — 0.
Thus, the dust interior region is contracted monotonically to the true singularity. Let us list the steps
provided in [146].

First, they have assumed that the metric element has the form

2
[2m G
ds* = —c*dt} + (dr + :'anCdtp> + r2(d6* + sin® 0dp?) (128)
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where m = m(t,,r). Second, the Einstein equations permit to express the matter energy-momentum
T,* at the right hand side through the function m(¢,,r) unknown from the start. Third, as usual, in
the dust case it is assumed that the matter energy-momentum has the form:

_ 2
)W = pciupu, , (129)

where for the 4-velocity of matter particles moving radially it is assumed that: ufy = {1,v(tp,7),0,0}.
Fourth, the requirement of the consistency of the Einstein equations permits to find v(¢,,r). Thus

om G\ /2
ud =1, ul = — (;nc2> , u? =u® = 0. (130)

Fifth, the integration of the 00-component of the Einstein equations yields the function

T
m(ty,r) = 47r/ pty,r)rdr. (131)
0
Sixth, after assumption that p(t,r) = ¢(r)y(t) and imposing the natural conditions m|,_, = 0 and
pli—o = o0, the 10-component of the Einstein equations gives:

_le 1
67 G (ctp)?

p (132)

for —oo <t < 0. Thus, a combination of (131) with (132) gives

2mG 2 r
— = == . 133
r ¢z 3cty (133)

Substituting it into (128), one obtains

4 72 4 r
2 _ 2 7,2 2 2( 102 s 2 2

ds* = — (1 - 9(ctp)2> cdt, — g@drcdtp + dr® 4 r2(d6° + sin” 6do?) . (134)

A single non-zero component of the matter energy-momentum tensor is

ct 1
To=—F—5- 135
7 6rG (ctp)? (135)
Contracting it with ¢ = —1 that easily can be found by (134), one finds the trace of the energy-
momentum tensor:
o 1 (136)
676G (ctp)?’

Thus, (132)-(136) describe a homogeneous distribution of dust in the interior PG coordinates.
However, only the interior solution is presented above. It is more interesting to describe a collapse

of a star with the radius » = R(¢,), connecting the interior dust region, r < R(t,), with the exterior

vacuum region, r > R(t,), described by (125). Of course, the total mass M of the star is to be a constant;

it is calculated by
4
r=R(tp) - ?

We stress that the interior and exterior regions defined in the aforementioned way are smoothly matched

M = mfty, )| R%p. (137)

to each other.

It might seem that we could directly apply the above geometrical derivation to represent the
continuous gravitational collapse in the framework of the field-theoretic formulation. However, the
exterior metric (125) does not satisfy the requirement of asymptotic flatness. To satisfy this requirement
for the total model presented by the exterior metric (125) and the interior metric (134), we can apply
the transformation in both the regions,

(rg/r)*/?

= AL JARS— 1
cdt, = cdte + T4 (g /r) 12 dr (138)
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This change transfers the coordinates from the PG time ¢, to the EF time ¢, in the external region
initially. Then the exterior metric (125) is transformed to the EF metric (99). Following the field-
theoretic prescription, we make the shift t, — ¢ and obtain the field configuration (104) with ¢/7 = 0
at v > R(t), see (112). The next step is to be the field-theoretic reformulation for the interior solution
at r < R(t). Because the function (138) is differentiable and monotonic at 0 < r < oo, a smooth
matching between the exterior and interior solutions is obtained. Because the surface R(t,) goes to zero
monotonically at ¢, — 0, choosing a vanishing constant after integration of (138), one easily finds that
R(t.) — 0, when t, — t — 0 with the final state (112).

One can easily check that in the case of the generalized EF frame for the interior and exterior
regions, the above requirements (i)-(vi) of section 6, including the 7-causality condition, are satisfied.
Now, for the sake of generality, excluding only the requirement (iii) while preserving all the other
aforementioned requirements, we will show how this picture can be generalized. To achieve this goal we
use the transformation with arbitrary f combined with (138):

(T.q/r)l/2

dt, = cdt —
et f+(1+<rg/r>1/2

- f(rg/r)> dr = cdty + F(rg/r)dr. (139)
First, we consider the exterior region r > R(t). Then, we obtain the metric
as? = — (1-"2) a4 2[4 (1-12) f] catyar
r r r
+ [(1 n r—g) _olap_ (1 - ig) f2] dr? + 1202 . (140)
T r r

After applying a shift ¢ty — ¢, choosing the flat background again in the form (91), and making the use
of the decomposition (100), one obtains for the field configuration corresponding to (140)

hy = —T—9+2r—9f+(1—r—9)f2,
T r r
i = (1=,
T T
T
hy't = —79. (141)

This field configuration has to satisfy the Einstein equations in the whole Minkowski space. Because
it contains an arbitrary function f = f(ry/r), the technique has to be generalized. Formally, one can
derive for an arbitrary such function f = f(r,/r):

2
v (") = (f - 4ng’6(7~>) , (142)

r

where f' = 9,f(z). The definition (142) has been derived by making use of the formula (108),
assuming that f () in enough smooth. Application of the theory of generalized functions requires

careful consideration; therefore formula (142) tends to restrict the choice of f (rg/r). Then, calculating

the components of ¢/5

momentum tensor®:

making use of (106), we obtain non-vanishing components of the total energy-

) me2 | f'r z
téot = mCQé(T) + N [47”2 - f/(S(T)‘| ;
~ r T
f=2lp+(1-2) 1, (143)
thot = —mc?(r), (144)
h = —duapmir)  A.=23. (145)

6Note that in [4] in the formula related to (143) a misprint exists.
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One can see that the energy-momentum is especially concentrated at » = 0 and is expressed making use
of the §(r)-function representing the point particle, but there is also a distribution of energy outside
r=0.

The requirement for a definition of the permissible weakest fall-off for asymptotically flat space-
time (see [80,81] and references there in) presented by the field configuration h’]”ﬁ” in (141) restricts the
asymptotic behavior of f as

Fro/m)l, oo ~ (rg/T)% > 1/2. (146)

Consider the requirement of continuity of geodesics in the vacuum region. The transformation
(139) permits us to recalculate the components of the 4-velocity for test particles (127) in the generic

coordinates:
0 _ ro/T e Lgl/Q 1__7;91/2 2 _ .3 _
uf_1+1+(rg/r)1/2 ! (r) U (r) , w=u =0 (147)
This gives
cdt u(} 1/2 (rg/r)1/2
= -9 . 148
dr u}c (r/rq) L+ (ry/r)1/2 +f (148)

The requirement for geodesics to be continuous after such transformations gives a restriction on f:
lfl <N (149)

for some finite arbitrary large positive N, at least for » > 0. Indeed, failure of (149) means that
lim,_,, | f| = oo and indicates a breakdown of the geodesic at 7. Besides, to have an appropriate form
for the ingoing geodesics, one needs a monotonic smooth function f when cdt/dr < 0. Then the concrete
expression (148) gives

(7”/7"9)1/2
T+ (g /1)

After integration of (148), one obtains the equation of the radial parabolic orbits on the space-time

¢ = —or, Ll)) <%)73/2+ (73)1/2_111’(?)1/2_’_1’}

+/ f (:—Z) dr* + const . (151)

f<l+ (150)

(t x r) diagram:

Summarizing, we conclude that the requirement of the continuity is satisfied by the restrictions (149)
and (150) for monotonic smooth f at 0 < r < co.

Let us turn to the question of n-causality. Deriving the light cone expressions from ds? = 0 for
the quite complicated form of the metric (140), one obtains surprisingly simple formulae. Thus for the
ingoing light ray one has

cdt
—| =f-1, 152
= (152
whereas for the outgoing light ray it is
cdt 1+rg/r
—| = —_— 153
dr |, U 1—rg/r (153)

The requirement of 7-causality” for (152) and (153) can be realized as

f-1<-1, (154)
1+7r,/r
f+1—7r:j/r > 1. (155)

"Note that the requirement of ‘p-causality’ can be changed by the requirement of the ‘stable n-causality’ by exchanged
{<} and {>} by {<} and {>} in (154) and (155).
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The restriction (154) gives f < 0 everywhere (0 < r < o0). Then if we impose the requirement of
n-causality, it is not necessary to consider (150). The restriction (155) has to be analyzed in more detail.
Considering asymptotic behaviour at » — oo in (155), we are restricted by

<~ (156)

Hrse <~ =

which is even stronger than the restriction (146). From (155) for the domain r, < r < 0o, one has

2ry /17
1fl < T—r/r (157)
This restriction is in addition to (149). Finally, for the case r = r, with the restricted f, see (149),
the expression (153) describing the event horizon becomes +oo, as it must for the horizon. Thus, for
a monotonic, restricted and negative f, the expression (153) for the outgoing light ray is positive for
ry <1 < oo.
The case r < rq4 requires special attention. The expression (153) becomes negative, automatically
satisfying the requirement (v) with the natural relation between ingoing and outgoing light rays:

1+4rg/r

f_lzf—'_l—rg/r'

(158)
The equality in (158) holds at the true singularity, which is where the light cone becomes degenerated.
Again, this fact signals the continuity of the geodesic all the way to the true singularity. Finally, it could
be interesting to require that after finalizing the collapse the test particle approach the true singularity
at a finite time ¢.8 Then, it is necessary to add the restriction (149) by

[fllmo <N (159)

Let us turn to the exterior region including the surface of the star r < R(t). To achieve a smooth
matching between exterior and interior regions, one has to require that the function F(ry/r) in (139) be
differentiable and monotonic on the interval 0 < r < co. Another requirement for the function F(ry/r)
in (139) is formulated as follows. After integrating (139) and replacing r by a surface radius R(t,), one
can choose the constant of integration so that if the surface R(t,) goes to zero monotonically at t, — 0,
then R(t;) — 0 when ¢y — ¢ — 0. Then the final state (143)-(145) is achieved at ¢ — 0 at a finite time
t. After satisfying these requirements, the model of the continuous collapse (125) plus (128) presented
in the PG frame is rewritten in the generic frame with the use of the transformations (139). Then, all
the requirements hold; only the n-causality problem remains to be addressed.

After transformation (139) and the shift ¢; — ¢, the metric (134) for the interior region acquires

the form:
2 2 2
PRI (1m>dtz+2[/m(1m>F drdt
T T T
2m 2m 9 9 9 32
o1/ - (1= ) P2 dr? 4 r2a02. (160)
T T

For the sake of simplicity in formulae, here and below, we set G = ¢ = 1. A standard calculation gives
the expression for the ingoing ray of the light cone

@
dr

1
1 __1+\/2m/7“ -

8 As noted above, one might also consider the alternative requirement that the test particle only approach the true
singularity as Minkowski background time goes to infinity. In that case there might be less worry about black hole
information loss, which might never occur.

Frg/r), (161)




TeopeTuKo-ToeBoH MOAX0/ B 00MIel Teopun OTHOCHTEILHOCTH U APYTHX MeTpudeckux teopusix. O630p 101

whereas the outgoing ray is determined by

dt 1

drgfl_\/mfF(rg/r)'

The necessary requirement for (161) is that it has to be negative in all the regions. Then the 7-causality

(162)

condition, dt/dr|; < —1, implies the restriction

NeTk
Pz JamTr (163)

Let us consider three cases for (162), each of which corresponds to a concrete instant ¢,:

e The first case corresponds to the PG instant of time when the star boundary R(t,) > r, = 2M/r.
Because m < M and m in (133) decreases as  — 0 at the instant ¢,, one finds that

2
i) (164)
.

Next, the outgoing expression (162) has to be positive in order to be matched with the exterior
smoothly. Then the n-causality condition, dt/dr|, > 1, implies the restriction

VI sy (165)
1—+/2m/r

Combining (163) and (165) gives a unified restriction on F(ry/r)

V2m/r V2m/r
1+\/WSFS1— om/r (166)

e The second case is classified by the position of the star surface at the horizon R(t,) = r,. Then
(162) gives dt/dr|, = +o00. It matches the exterior region continuously, see (153). For the interior
region, where again the condition (164) holds, the result (166) of the first case is repeated.

e The third case that is classified by the position of the star surface, R(¢,) < r,, is more complicated.
The interior region is decomposed into the three subregions: a) 2m/r > 1, b) 2m/r = 1 and ¢)
2m/r < 1. In the case a) for the outgoing ray defined by (162) one has dt/dr|, < 0. Then, because
the light cone must not to be degenerate, dt/dr|, > dt/dr|,, one obtains

1 1
- 1++/2m/r ~ 1—+2m/r

so the restriction for case a) holds automatically. Analyzing subregions b) and c), one finds easily

(167)

that the results correspond exactly to the results of the second case and the first case, respectively.
Thus again one obtains only the restriction (166).

To conclude the description of continuous collapse in the field-theoretic formulation, it is instructive
to analyze the matter part t};;, of the total energy-momentum. Thus, applying the transformations (139)
to the metric, gy, represented by (134), we obtain gﬁl, in (160); applying the transformations (139) to
the energy-momentum, T},,,, presented in (135), we obtain TJ,,. Then, formula (21) takes the form:

0 = Ty = 0T — ™ (T4, = hal77) (169

Thus we conclude that the interior region defined by the energy-momentum (168) is in fact contracted
at t — 0 to a point-like state described by the J-function.

Keeping in mind that the Schwarzschild black hole and its collapse to this stage are physical
realities as described by Einstein’s equations, one can view the description in the field-theoretic formalism
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as merely an alternative equivalent mathematical language. On the other hand, physically reasonable
criteria such as n-causality make it possible to take the background geometry to be not purely fictitious,
but rather to have a qualitative physical meaning that makes sense of quantization techniques that
are often used anyway. Thus our treatment of gravitational collapse can be useful both for practical
calculations and fundamental considerations.

9. The field-theoretic method in an arbitrary D-dimensional metric theory

Here, following [89,91], see also [3], we generalize the Lagrangian-based field-theoretic method in
arbitrary D-dimensional metric theories. Consider a theory with the action:

1 1 1
s [aPutole.®) = 5o [deLolgu)+ [ aPeL (g, 8%, (169)

where L is the pure gravitational Lagrangian in an arbitrary metric theory and & is the D-dimensional
Einstein’s constant. Here, unlike section 1, we consider just the components of g,,, as dynamical variables.
They are more appropriate in this section than are the g'” = \/—gg"” components used earlier. For a
different choice of dynamic variables from the set

9=A49"", g, V=99"", V=990, (—9)g"", ...} (170)

see [3,6]. The matter part £ in (169) depends on ®“ — generalized matter variables interacting with
Guv, the same as (1). Varying (169) with respect to g,s3, one obtains
0L LM R 0L

= 2 ad<l
69(1[3 5gaﬂ 6‘9“”

=Cu = kKT . (171)

The last equality gives the gravitational equations in the standard form obtained after contracting the
first one with dgas/09"" = —ga(u9v)s; see the analogous coefficient in (14). Variation of (169) with
respect to ®4 gives corresponding matter equations, the same as (3). The background gravitational
equations are in the form

6L 5 LM 6L

— = 2K— — - Cow = KT, 172
59(15 59&6 69“” ! a ( )

where the background Lagrangian is defined by the barred procedure in (169): £, = L (gas, ®*). The
background matter equations are derived analogously. It is assumed that background fields g.s and oA
are specified and satisfy the background equations.

A physical system described by equations (171) can be considered as a perturbed one with respect
to a background system with the equations (172). Just as in (5) and (6), we decompose metric and
matter variables in (169) into the background (barred) parts and the dynamic variables (perturbations)
s, and ¢4

Juv = g;w + Auv (173)
4 = M4t (174)

We note that h*” in (5) and s, in (173) one differ (aside from moving indices and densitizing with the
background metric) both in trace at lowest order and in second and higher order terms, see [3,6]. Now,
analogously to the definition (9), we derive the dynamical Lagrangian:
_ - 6L 6L - 1
dyn (= . _ — D A D .

ﬁy(ga¢a%a¢)*ﬁD(g+%a@+¢)7%,uumf¢ (S(iﬁi *7%£g+£m (175)
Thus, the field-theoretic method applied in an arbitrary metric theory is based on the dynamical
Lagrangian (175).
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To obtain the gravitational equations related to the Lagrangian (175), one needs to vary it with
respect to 4. Using the property 6L5(g+ 3, ® + ¢)/0Gas = 0Lp(§ + 5, ® + ¢)/d50p5, We present
them in the form:

sLdvm ) _ - _

m:@[ﬁD(9+%,¢+¢)—ED}:0. (176)
It is clear that the field equations for sz, are equivalent to the gravitational equations in the standard
form (171) if the background equations (172) are satisfied.

Let us define the metric energy-momentum for perturbations defined in (173) and (174). Let us

rewrite the equation (176) as

sLn ) Lp A0Lp
= — - = . 177
6§aﬁ 6gaﬁ (”p 6gpo— +¢ 6(PA ( )
Note that the background equations should not be taken into account before variation of £%" with
respect to gop and ®4. Then, contracting (177) with 260Gap /" = —2KJa(uJv)s, OnE obtains another
form of the equations (176):
L L tot
Cup +Fu =Kt (178)
equivalent to the equations (171) if the background equations (172) hold. The linear operators on the
left hand side of (178) are defined by the expressions:

) oL
L G
= — o, ].
Cuv 55 #, Sie (179)
) sLM sLM
) P (VS A Seadii B 1
FL Kdg#” (%p 550 + ¢ 354 (180)

Finally, the right hand side in (178) becomes the total symmetric (metric) energy-momentum tensor
density for the fields (perturbations) .5 and ¢ defined as usual,

tot gL m

iy = 25 =t (181)
see also (18). Here, t7, is the energy-momentum related to a pure gravitational part of the Lagrangian
(175); ¢, is the energy-momentum of matter fields ¢“ in (175) interacting with the gravitational field
Hap-

To conclude this section, let us note the following. As a general rule, a difference between definitions
of metric perturbations is not important for calculating conserved quantities for static solutions. It does
not influence calculations in quantum gravity either [92]. A difference in the second order becomes
important, however, in a real calculation for radiating isolated systems in 4D GR. It turns out that
only the choice of the metric perturbations h#¥ = gh¥ — gh¥ gives (see [131]) the standard Bondi-Sachs
momentum [150]. All the other decompositions (including the popular >, = gu, — Guv, used in this

section and, for example, in [128]) do not lead to the right result.

10. Currents and superpotentials in an arbitrary field theory of the Lovelock type

Here we construct currents and superpotentials for generic theories presented in the field-theoretic
description, as in the above section. We restrict ourselves to Lovelock-like theories; see [6] for a detailed
treatment. For such constructions we use many results from the Appendix. Before constructing conserved
quantities for perturbations in the Lovelock theory, we consider the Lagrangian (264) in the Appendix
in a more concrete form:

L = L& (%ap; gros B upv) , (182)

although it is still quite abstract. The fields in (264) is now ¥ = {543, gro}. The Lagrangian (182)
is an arbitrary enough smooth algebraic function of s.s, gro and the Riemann tensor R%,z,. We note
especially that derivatives of the metric g, are included only in R“,g,, not anywhere else.
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It is very useful to define the quantity

WPy — ai (183)
agp)\,;w
It has the evident symmetries
WPy — Apluw — pAlvn (184)

Recalling that the Riemannian tensor is linear in second derivatives of g, we conclude that the quantity
(183) is covariant automatically. Turning again to the Appendix and making use of the definitions for
the coeflicients (267) - (269) and (275) - (277), the identities (273) and (284), the quantity (183) and
its symmetries (184), we can rewrite (275) - (277) for the Lagrangian (182) as

oL
ur = Lady 4 g v - M R (18)
mPH — QV)\WPV\U)\; mPH — 'rn,”“‘p7 (186)
nPMY pr,uu; wp)“l“’ = le|P)\ . (187)

The concrete expressions (185) - (187) are covariant, and, of course, they satisfy the identities (282) -
(284) of the general form derived in the Appendix.

Keeping in mind the expressions (185) - (187), we rewrite the current (279) - (280) and the
superpotential (286) of the general form for the Lagrangian (182) in the concrete form:

m 6‘CG A|H ro

" = '—<5G3“+5wA7P105 +2zM ), (188)
2t = 2V WP gAYy e (189)
P — % <2§”V,\wa[“"’]’\ _ wg[”‘”]’\VAg") . (190)

Here 2(,; = —£¢gpo = 2V (,65) - We note that due to the symmetry in (186), the m-term disappears
from the current; compare (279) with (188). Furthermore, the expression for the superpotential (190)
only depends on the quantity w?*** defined in (183).

Keeping in mind the abstract definitions (185)-(190) related to the system (182), we can construct
currents and superpotentials in metric theories in the field-theoretic formulation (175). We use the
structure of the Lagrangian £%" defined in (175). Consider this purely gravitational part that is linear
in metric perturbations:

1 0Lc

-
! QK%B(S@IB

(191)
It plays a role of an auziliary Lagrangian (182), where we can set ¥ = {5¢,3, Gro}. The index ";"is
used because Lagrangian (191) is of the first order in s, in expansion of L. To apply the above
technique to the Lagrangian (191), we assume that £; = £1(%ag;gm;}_%auﬁ,,). Then, because £ in
(191) is proportional to the Lagrange derivative of L, the gravitational part of the Lagrangian (169)
can present a theory of the Lovelock type, see, for example, [6]. However, here we consider generic
expressions only. Analysing (191) itself, we can obtain only identically conserved quantities. However,
because the Lagrangian (191) induces the construction of the linear operator (179) in (178), making
the use of the field equations (178), we can transform the identically conserved quantities to physically
conserved quantities.

The explicit expression for the linear operator C;, in (178) defined in (179) is quite important in
numerous applications. Let us derive it. For the Lagrangian (191) that is of the type (182) and for the

expressions (185) - (187), one finds from the related identity (282) of the Appendix:

16L,

CcLtn— _Z
2 (5§aﬁ

_ Clon = 1 _
(ap0k + %ag“:) + 2K (Vmwla“p)‘ + wh ‘p/\RJATp + Swla)‘TpR”Tpk> . (192)
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Note that this formula can be obtained following the method in [151]; however, the use of the identities
(281) - (284) in the Appendix is more economical.

Now, let us proceed to constructing concrete quantities. Substituting the expression for the
Lagrangian (191) into the current expression (188), one obtains

i = 0,17 — 2l (193)

where the coefficient 8, of £7 is interpreted as the energy-momentum in the standard way:

1 16L
0," == (CEr + 2= (50,50" + 308]") ), 194
K<U+26gaﬁ(%ﬁa+%ﬁg) (194)
and z-term 2" has exactly the form (189) with w?** defined in (183) and related to £;. Combining
the last expression with (192), one finds a quite simple formula for the energy-momentum:

_ - _ 1 _
00'# =2 (vawIUMP)\ + w/f |p)\RO')\T/J + 3w10>\|TpR#Tp/\> . (195)

Formally the energy-momentum (195) is related to the auxiliary and arbitrary Lagrangian (191). We
note again the nice property of the expression (195) that, being quite general, depends essentially on

AlTp

the quantity wy”"”, not on any other quantities.

We recall that the current (193) is identically conserved:
Vi =0, =0. (196)

As a consequence, the current in this identity, making use of the Klein-Noether identities, can be
rewritten as a divergence of a superpotential,

i =V, = 0, (197)

where 4" has exactly the form (190) with w? A related to the Lagrangian £ in (191).

Both (196) and (197) are merely identities. To make them physically meaningful conservation laws,
one has to use the field equations. Substituting the part linear in metric perturbations from (178) into
the energy-momentum (194), one obtains

1 6Lc

0 = T =t7,, +tm—ffL o 53s

(e + 540l o ) - (198)
Here, the first term is the energy-momentum for a free gravitational field related to the gravitational
part of the Lagrangian (175). The second term is the energy-momentum for matter fields related to
the matter part of the Lagrangian (175). The last term describes interaction of the gravitational field
a3 With a curved background described by the metric g,,,. However, the role of the third term is not
clear. Let us clarify it. Using the definitions (180) and (181), combining the second and third terms, and
taking into account (171) and (172), one transforms (198) to

1 6Lc

U/:t 0 v
T, + T, +2 5gaﬁ

(%aﬁg/w + %aﬁ| gua) s (199)

where §7,, = T, — T describes a perturbation of the matter energy-momentum of the gravity theory
n (171) with respect to the background one in (172). If we examine a concrete solution to the field
equations (178), we can turn to the energy-momentum (195), instead of (198) or (199). Thus, it is

= v T SU 1 vAITP B
T =2 (vaf IPX LTI Ry gwl” PR m) (200)

(178)

After that let us consider the current (193) and transform it to

= Ih =T, — 2l (201)
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Then the identity (196) becomes the physically sensible conservation law:

vV, I"=09,I"=0. (202)

At last, substituting potentials of a concrete solution into the superpotential expression (197), we denote
it as

= I (203)

Then the identity (197) turns into the physically sensible conservation law:

I =V, I" = 0,IT" . (204)

All the above has been constructed for arbitrary curved backgrounds, even non-vacuum ones.
However, the case of a vacuum background,
_ 5L _
L, =0— =0, T =0, FE =0, 205
69;“/ H pnv ( )

is of special interest; we describe this below. The field equations (178) go over to
L m
Cp,=r(tl, +tn,) . (206)

Under the conditions (205) the expression (192) becomes
_ o = 1 _
Cﬁ“ = 2K (vp)\wlaﬂpA + wf lp)\RoATp + 3w10ATpRHTP>\> : (207)

In this case, the total energy-momentum (198) becomes

T =0, +5, . (208)
Again we highlight the nice property that the expression (207) depends on the quantity wf)‘lm only,
defined as in (183) for the Lagrangian £;. Next, in the case (205), making use of the Killing vectors
€% = £, the current (201) transforms to the standard form:

Ir =TMeE, . (209)
Assuming arbitrary Killing vectors £¢* = £% in the identity (196), one obtains the identity

vrek =0 (210)

uy =

under the conditions (205). Then, from the field equations (206) one obtains the differential conservation
law for the total energy-momentum tensor density (208):

VvV, =0. (211)

11. Conserved quantities in the Lovelock theory

In this section, based on the results of the previous two sections, the Lagrangian based field-theoretic
reformulation of Lovelock gravity is provided; for more detail see [6]. After that we construct conserved
currents and superpotentials. Let us concretize Lagrangian (169) for the Lovelock theory:

1
L9, @) = =5 -Lo(gpw) + LY (g, @), (212)

where kK = 2Qp_>Gp > 0 with Gp being the D-dimensional Newton’s constant and 2p_o being the
area of a (D — 2)-dimensional sphere with unit radius. Lovelock [152| has required the following for
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the Lagrangian: it must describe a covariant metric theory in D-dimensional space-time and the field
equations from varying £, (g,.,) must be of second order only. The unique possibility to satisfy these
requirements is a sum of polynomials in the Riemann tensor in the form:

Va— P [J1J2 “J2pl piti i2p—1%2
(g”” Z 1112 P R;ig T Rjzzfu'zl; ’ (213)

“i2p]

where o, are coupling constants, m = [(D — 1)/2], and the totally-antisymmetric Kronecker delta is

L S
v,
[viwvg] 5#11; 6,&1:% (ng (214)
[t1-pq] " : - '
Sy S A
The term of zeroth order, p = 0, gives a ‘bare’ cosmological constant Ay with g = —2A(. The first

order term p = 1 is the Hilbert (Ricci scalar) term with oy = 1. The second order term p = 2 is the
Gauss-Bonnet term with a coupling constant ay unspecified.
The Lovelock field equations obtained by varying (212) with respect to g,, are

5£L

S ‘n'p [0H1H2 H2p] vive |, V2p—1v2p __ po
- ZQ;{)—}-l [rvive--vop] R#lﬂz R/‘?P—I/‘?P =—KT". (215)

It is just an instance of the equations (171).

Now let us derive a Lagrangian linear in metric perturbations (191) for the Lovelock theory. We use
the background version of the Lovelock Lagrangian, £, and the background version of the Lagrange
derivative in (215). Then, the auxiliary Lagrangian (191) becomes

1 5ZL g [(7 SV2p—1V
_ _ 2P K12 M2p vive |, 2p—1V2p
Lrr = 2K o 0Gpo N 2K Z 217+1 [prive-vap] R#11HQ2 R“2P—1“21’ : (216)

Another key quantity of the type (183) calculated for the Lagrangian (216) is

pAlpr _ pbay ﬁWUILSHAL k2p] Braw Vap—1V2p —d1 =) Auv
Y T 2/1 7p Z 2p+1 0‘4511”/3”4 V2pp] Rﬂgui o RM}; 112 g7 G DR (217)
The quantity
DY = 5 (6007 + 0467 (0167 + 616Y) (218)

is obtained after differentiating the Riemannian tensor R.orr With respect to Jpx,uv and using the index
symietry.

The linear operator (192) in the Lovelock gravity acquires the form
1 (5£ L, oL

L9 v, UMP)\ /J‘Tlp)‘Ro'
29 §ng +5§p0%p+ fi( AW, + wy, Arp T

o __
C/l' =

3w"*‘”’R“ > . (219)

Keeping in mind the quantity (217), we derive the conserved quantities in the Lovelock gravity. The

conserved current (201) becomes
vt =71y — 21, (220)

where the energy-momentum (200) has the form:

7 (221)

T =2 (Vp,\wgﬂp’\ +w’”‘p>‘R‘7 o+ 3wg’\|TpR“Tp,\)
(178)

and z-term is

ZL - 2Cp)\v prlw — 2w p)\\/,w VCp)u 26,0)\ = _££§p/\ = Qv(pgk) . (222)
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The superpotential (203) related to the Lovelock theory is
7 = 4 (26, VWil — w0 ) (223)

We again note the remarkable property:

e For the Lovelock gravity the conserved current (220) and the superpotential (223) constructed for
arbitrary perturbations on arbitrary curved backgrounds depend on the quantity (217) only.

It is quite important to present conserved quantities for perturbations on arbitrary curved
backgrounds. However, let us turn to vacuum backgrounds. Recall that the linear operator (219) in
the case of vacuum background depends on (217) only; the two first terms disappaer. Besides, the
energy-momentum (221) is conserved for a vacuum background, see (211).

Among vacuum backgrounds one of the more popular solutions of Lovelock gravity is the global
maximally symmetric space-time with a negative constant curvature - anti-de Sitter (AdS) space.
Therefore, it is important to construct conserved quantities for arbitrary perturbations on such
backgrounds. Let us consider the equations (215) as background equations under the vacuum condition
(205):

0L, _ "oy e I e v
g = V=99 Z QPil 5[[7r511522£?])] Ry Rl‘ézflli?i =0. (224)
po p=0
Let the AdS space be with the Riemannian tensor
_ 1
A (pA]
Ry, = —@(my] , (225)

where the quantity f.r¢ is called the effective AdS radius and defines a length scale. To find f.;; one
has to substitute (225) into (224), obtain

i D —3)! _9\P

and resolve it with respect to £.¢¢. The effective cosmological constant is defined as usual,

D-1)(D-2
eff
A space-time with the curvature tensor (225) can be described by the metric:
1 D—2 7’2
ds* = —fdt® + =dr? + r* Z qapdz®dz®; fry=1+ 5 (228)
f " Ceys

where the last term describes (D — 2)-dimensional sphere of the radius r, and g, depends on coordinates
on the sphere only.

As has been emphasized, the key expression in constructing conserved quantities for perturbations
#,,, on vacuum backgrounds in Lovelock gravity is (217). Let us derive it explicitly making use of the
condition (225) for the AdS background. First, we calculate the first term from the sum in (217) that
corresponds to the Hilbert part of the Lovelock Lagrangian, oy = 1,

wPM/W _ N -9 aa[ﬂ"”f] —¢T§wnDp)\;u/ _

H1 - W B [Dtd”,/)]g TOTK —
_ V4;g guv%pA + gpA%;w _ gpm%m _ gh(u%mﬂ — (g#”gpA _ gp(ugu)k)} ) (229)

Using this expression and the condition (225), and making use of the standard relation,

[v1-varvaks1vep] cpokia Hop (D —2k)! (1]
6[#1'“#2k#2k+1"'u2p] vak+1 T .6V2” - (D — 2]))! w1 pok]” (230)
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we obtain for (217):

pAlpy _ pz\lu p—1 (D —3)!
Wiy Zpap eff (Di— 2% — 1>! . (231)

The expression in square brackets is deﬁned by the differentiation of (226)

D —3)!
(02 = R ) S 232
Vilbers) = @eV@)logz, = ;p% )" D=2 (22
Thus, the expression (231) shows that all the quantities (219) - (223), if they are constructed for the
AdS background, are proportional to the factor (232). The role of the coefficient (232) is discussed in
detail in [6,153].

One now finds that the linear operator (219) under the condition (225) becomes

ng _ 7\/2 (E 2 ) [vpu%up + vpl/%;ip _ va%MV _ gﬂ”?p)\%l")‘

eff
_— o,y v 2hepr  Aherr
+g""'V )P e — VHY e + g# D—2%7D—2%M (233)
The same expression (233) divided by & is, in fact, the energy-momentum 7, in (221). Of course, it is
conserved (see (211):
vV, =0. (234)

For (231) with (229) the conserved current (220) is calculated by making use of 75" and with z-term
(222) that can be easily found. For (231) with (229) the superpotential (223) becomes

W = Y V’(Q)?f) [g,,v[ﬂﬂﬂ A P R e Vi I PAvA Sl I (235)

Recall that here, in the framework of the Lovelock gravity, we apply the Lagrangian-based method
only. To see its advantages, one has to compare our method with others. Possibly the most fruitful and
popular method is the approach by Deser and Tekin and their coauthors. They apply the Abbott and
Deser procedure in 4D GR [128] in metric of higher curvature gravity theories in D dimensions; this is
called as the ADT approach. Its development and many applications have many very important results;
for example, in the framework of any generic f(Riemann), including Lovelock theory, ADT charges have
been constructed [154]. For a broad outline see the recent review [155]. Concerning the Lovelock theory,
the ADT method has been developed for AdS backgrounds and using the Killing vectors only. Our
approach permits construction of conserved quantities for arbitrary curved backgrounds and arbitrary
displacement vectors. It is important to stress that the superpotential (235) constructed for arbitrary
displacement vectors coincides with the ADT related superpotential. However the ADT method does
not permit one to construct (235) because there is no a possibility to construct the current of the type
(220). Indeed, for Killing vectors z-term does not exist, unlike in (220). For a detailed comparison with
the ADT method, see [6].

12. The mass of the Schwarzschild-like black hole and future applications

In the present section, to apply the above results we calculate the mass for static black holes in
the Lovelock gravity. We use the formulae given in the paper [156]. Let us derive the Schwarzschild-like

metric:
D-2

dr?® + r? Z qapdz®da® . (236)
a,b

s2 = — fdt?
ft+f

The function f must satisfy the equation

- Ap 1-f pi 14
Z(D—Qp—l)!( r? ) - (D -3)lyD-1" (237)

p=0
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It is a result of integration of the rr-component of the Lovelock vacuum equations with the constant
of integration p. For the black hole solution one has to find the event horizon r, that is the largest
solution of the equation f(r;) = 0. We assume that such a solution exists. In [156] it is shown that the
asymptotic behaviour of f at r — oo,

r2 1 W

fry~1+ eiff - V’(Ke_fo) D3 (238)
occurs. Comparing it with (228), one has
Af = 1) = Jr) ~ o (259)
Vi) T
As a result, one has for the behaviour of perturbations,
sgo ~ —Af, s~ —=Af/F, (240)

in the necessary order of approximation.

To calculate the mass for the black hole solution (236) with the AdS asymptotic (228), one has
to use the Killing vector £ = {—1,0,0,0} and Ol-component of the superpotential (235) with the
appropriate order of approximation for the perturbations (240):

V-9 o D=2
70~ — - V’(Eej?f)TAf. (241)
Substituting (239) and taking into account \/—g = rP=2,/det gij, one obtains
D -2 D-2
. D— D—2 [ .
M = Tll)l’l;.lo dxr QIgl = TILL dzx 2 det qij = E/Iz, (242)

which is the standard result for the mass obtained by various methods.

In future work, the above-listed advantages (use of arbitrary displacement vectors and arbitrary
curved backgrounds), not available using other methods, motivate the study of solutions in Lovelock
gravity using a background metric. The Lovelock theory, currently quite popular, is the most natural
generalization in higher dimensions. There are also arguments that only a so-called pure Lovelock gravity
leads to acceptable equations in higher dimensions, see, for example, [157-159]. Pure Lovelock gravity
is characterized by only one term from the sum of all the terms in the total Lovelock Lagrangian (213),
say, ap+ # 0 with the unique p* only, whereas all other a;, = 0, including oy = 0 and ay = 0. Keeping
in mind the interest in pure Lovelock gravity, we plan to apply our results to study solutions of this
theory obtained in [158]. The first one represents collapsing inhomogeneous dust. In our opinion, it is
quite important to examine the stability problem for this solution. In other words, one needs to study
perturbations and their characteristics and evolution using this solution as a background. Because this
background is non-vacuum (with matter), our approach looks very appropriate. On the other hand,
approaches constructed for maximally symmetric backgrounds, such as ADT, cannot be used in this
case. The second solution in [158] represents the Vaidya-type collapsing/radiating model with light-like
matter (null dust). To understand this model more deeply, it is important to study densities of conserved
quantities measured by a system of observers. Our method is quite appropriate for such a study. Indeed,
the field-theoretic method has been elaborated from the start for studying local characteristics; second,
in constructing the aforementioned local densities, proper vectors of observers (which are not Killing
vectors in general) have to be used—which is just what our formalism permits.

Finally, it has been noted in [157-159] that pure Lovelock gravity in even dimensions has properties
very close to those in 4-dimensional Einstein theory. Therefore, it could be interesting to represent, for
example, 6-dimensional pure Lovelock theory with as # 0 only in the field-theoretic form and to compare
it with the field-theoretic reformulation of 4-dimensional Einstein theory that already has been developed
in detail [3, chapter 2].
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13. Modifications of the field-theoretic method, massive gravitons, and spinors

The field-theoretic method is developed for both in GR and other metric theories. It also permits
and perhaps suggests the construction of alternative theories of gravity. From the standpoint of particle
physics, in which one routinely thinks of relativistic field theory terms of a taxonomy of particle/field
spins and masses (associated with Wigner and others), perhaps the most natural modification of General
Relativity might seem to be the introduction of a graviton mass term. An early effort was due to Fierz
and Pauli [160-163]. They recognized that the massless case gives the linear approximation to General
Relativity, permitting the identification of Einstein’s theory as a theory of interacting massless spin 2
particles/fields. They also noted a connection between masslessness and gauge freedom for spins > 1,
found the spin 2 energy density to be gauge dependent though the total energy was gauge invariant (akin
to results familiar from GR), noted the mathematical possibility of distinct masses for the expected spin
2 and perhaps unexpected spin 0 gravitons included in the formalism, and showed that avoiding negative
energy for the spin 0 (spatial scalar) degree of freedom required tuning the relative coefficients so that
the mass of the spin 0 degree of freedom became infinite. This occurs not by putting an infinite coefficient
in front of the trace? term (which would seem not to make sense), but by making the derivative terms
in the would-be Klein-Gordon equation satisfied by the trace of the gravitational potential disappear
due to a vanishing coefficient. From that point it was often (though not always [16,95]) concluded
that only the pure spin 2 theories were of physical interest, because the negative-energy spin 0 degrees
of freedom would be expected to imply catastrophic instability under quantization: the conservation
of energy-momentum would not prevent the spontaneous development of nothing into something and
anti-something.

The development of massive gravity made considerable progress in the 1960s [16,95]. Unfortunately
much of this work was largely forgotten and hence was reinvented in the 2010s. Ogievetsky and
Polubarinov considered a spin limitation principle that eliminated wrong-sign spin 1 and one spin
0 degree of freedom and inferred Einstein’s equations for the massless case and a 2-parameter
family of inequivalent massive generalizations thereof. In the process they also invented nonlinear
group realizations (using non-integral powers of the metric tensor, which have nonlinear coordinate
transformation laws; the non-integral powers were defined using a binomial series expansion) and
subsumed spinors (almost) into the realm of entities with coordinate transformation properties and
no additional local Lorentz gauge freedom [95,104,105]. This supposedly impossible result—which was
partly anticipated by Bryce Seligman DeWitt [164, 165], who seemed not to grasp the depth of his
own work on this point—can be understood in a way that many people continue in effect to reinvent
it by the back door, namely, by imposing a symmetric gauge condition on the tetrad, thus fixing the
local Lorentz gauge freedom and turning the spinor’s coordinate scalar, Lorentz spinor behavior into a
nonlinear metric-dependent coordinate spinor transformation rule [105,166-169].

As Bilyalov notes in effect,” there are non-perturbative coordinate issues. Such issues can hardly
be noticed if one works perturbatively using x* = ict as Ogievetsky and Polubarinov do; this fact might
tend to vindicate the proposal to put z* = ict “to the sword” [60, p. 51]. Imaginary time coordinates
are clearly not optimal for introducing null coordinates ~ ¢ + x. If one works nonperturbatively and
introduces the signature matrix nap = diag(—1,1,1,1), most but not all such limitations disappear.
One can isolate those that remain into the transformations that simply swap a time coordinate and
a space coordinate along the lines of (¢, z,y, z) < (x,t,y, z). The nonlinear spinor formalism does not
readily permit such transformations, because they tend to create (or destroy!) negative eigenvalues of
the matrix ) _ g,“,nN 4 negative eigenvalues being the obstruction to taking the principal square
root [171,172], which becomes symmetric when an index is moved with diag(—1,1,1,1). If one takes for
granted that arbitrary coordinates including (z,t,y, z) must be admissible, then this nonperturbative

9Bilyalov actually introduces a matrix T that swaps a pair of coordinates and flips the sign of one of them [170].
Interpreting T as a coordinate transformation brings the formalism more nearly into the realm of classical geometrical
objects. Flipping the sign of a coordinate seems unnecessary for our purposes.
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issue looks significant [173]. Alternatively, one can allow the extent of coordinate freedom to be sensitive
to the presence or absence of spinors [105]. Clearly no one would énvent tensor calculus in order to
permit the transformations (¢, x,y,2) < (z,t,y,z), so a formalism that omits some of this freedom
seems satisfactory. The use of a background metric tensor, rather than the matrix diag(—1,1,1,1),
permits even coordinates such as (x,t,y, z). Regarding the complications of dealing with spinors and
two different metrics, see the discussion early in this review.

The field-theoretic formalism above provides more than one way to treat massive gravity. One
natural way uses a highly symmetric (often flat) background metric. Another approach makes use of
“clock fields,” which are the preferred coordinates (often Cartesian) turned formally into dynamical
scalar fields through “parametrization” [93,174-179]. (The scalars’ Euler-Lagrange equations impose no
new restrictions.) This technique proves useful in understanding observables in Hamiltonian General
Relativity [180,181] and in making sense of causality with a physically real and indirectly observable
background metric [93,140].1°

One question rarely considered in the literature but of considerable interest is whether the
viciousness of a negative-energy spin 0 field/particle is a distinctly quantum result, or is it already
true in the classical theory? A realistic answer to this question is likely to require, and is undoubtedly
assisted by, numerical simulations, in light of the nonlinearity of the field equations. In this light the
work of Babak and Grishchuk [183,184] is of considerable value. One also notes work by mathematicians
on Hamiltonian field theory that conspicuously fails to exclude negative energies and avoids expecting
catastrophe (e.g., [185]. Issues of resonance are crucial [186]. In that regard, the ability to tune the ratio
of the scalar and tensor graviton masses [34,93-95,184,187] is significant.

As a preliminary manner, one can recall the state of development of gravitational energy-momentum
pseudotensors in the early 1950s. The Einstein pseudotensor depends on first derivatives of the metric
only, but is not symmetric and yields awkward results in non-Cartesian coordinates. It is awkward,
though possible, to define energy-momentum conservation with it [188]. The Belinfante symmetrized
energy-momentum of Papapetrou [64] was delayed in its appearance by World War 2 and was not
widely known. An energy-momentum pseudotensor with second derivatives might easily lack the
positivity properties that one seeks for the energy density or at least the total energy. The Landau-
Lifshitz pseudotensor, which is symmetric (facilitating conservation of angular momentum), also has no
second derivatives; this was progress. Goldberg noted the possibility of analogs of the Landau-Lifshitz
pseudotensor, which, however, all have second derivatives in the symmetric contravariant case; some
mixed (contravariant-covariant) entities of arbitrary weight lack second derivatives [189]. If one wants to
avoid the use of diag(—1,1,1,1) or some analogous device (such as a background metric), then a mixed
pseudotensor does not readily yield a symmetric contravariant one that is still conserved. Goldberg
discusses some unattractive consequences of the fact that the Landau-Lifshitz pseudotensor is of density
weight 2, not of weight 1 as one would prefer, under affine coordinate transformations.

One way to preserve the virtues of symmetry and the absence of second derivatives in an
energy-momentum complex is to introduce a background metric and use it to re-weight and more
generally covariantize the Landau-Lifshitz entity. This was achieved by Babak and Grishchuk [183]
as a development of the field approach [89]. They consider perturbations in the Minkowski space only,
although in arbitrary curved coordinates. Making use of the definition (5), let us represent the expression
(10) through the gravitational variables h*¥:

1 _ _ _
A — A A A «a
Ap,u = 2\/jg [gupvuh ? + gupvub - Gua9vpg pvph b

+ % (gaﬁdzvuhaﬁ =+ gaﬁébvﬂbaﬁ - gaﬁgyug)\pvphaﬁ)] (243)

where g, g"¥ and \/—g are thought as dependent on the definition (5). Substituting (243) into the

10These works also compare our notion of n-causality to the “causality principle” imposed by fiat in the context of de
Donder harmonic gauge fixing in the tradition of the Relativistic Theory of Gravity (e.g., [182, chapter 6]), which came
to be built around the Freund-Maheshwari-Schonberg field equations [16].



TeopeTuKo-ToeBoH MOAX0/ B 00MIel Teopun OTHOCHTEILHOCTH U APYTHX MeTpudeckux teopusix. O630p 113

definition (19) with (20), we select the part of ¢4, depending on the second derivatives of h*" explicitly.
After making use of the field equations (73) in Minkowski space the second derivatives are left anyway,
however only minimally, like below

ty =t + QY (tl — 3Gapty”) + (2V/=0) " Vap(h* 77 — 5 h0); (244)
Qaﬁlw = (\/fg)*Z [ha(ﬂgl’)ﬁ + bﬂ(“ﬁy)a + ba(uhl/)ﬂ _ %gm’baﬁ _ %hlw (gaﬁ + [’aﬁ)} . (245)
The first term in (244) is the reduced part depending on the first derivatives only,
" 1 _ _ _ _ _ _ _ _
iy = 29,0 Vo — 2Vab V50" + gas (2077 542V 0" + gH V520 7

4k\/—g
- 4gﬂpga(uﬁohy)ﬁ?ahpa + i(zgp&guw - gul’gwa)(zgpagoﬁ - gaﬁgpa)?éhpa?whaﬁ} . (246)

The matter part in (244) has appeared because the field equations (73) have been used.

Babak and Grishchuk [183] have suggested a way to exclude the second derivatives from the energy-
momentum without changing the field equations. Instead of the Lagrangian (12) they have suggested
the modified one,

L9 =L+ AP Reps (247)

Because a background is represented by the Minkowski space, one has to set Rapgg = 0, but not before
defining the energy-momentum [11,190]. Then in (247) the components of A%?#? are an undetermined
tensor density depending on g** and h*¥ without their derivatives. Besides, A®??? has the symmetries of
the Riemannian tensor Rapﬁoc it satisfies A®PP7 = —APPac — _A@opB — ABa9p  Ag g result, the field-
theoretic equations for perturbations in Minkowski space (73) do not change. However, in correspondence
with the modified Lagrangian (247), the modified gravitational energy-momentum tensor density is

Kt 0= thu o vaﬂ (AHVQB + AVILD‘B) (248)

gmo

instead of (19). Let us define the initially undetermined quantities A***8. We desire to choose them
in a way when the remaining second derivatives in (244) are compensated. The unique possibility is
ArveB — (bwhﬁu _ haﬂbw) /4\/Tg

Thus the equations (73), being unchanged, are rewritten in another form:

mra = G = 2Vag Al = ((=g) T Wag [@" + 5" @7 +5°7) — (3 + 5") (5 + 7))
=k (Hhra + ) = bl (249)

We see that the left hand side is no longer linear in h*¥, but its divergence is identically equal to zero.

nv

rq Py making use of the field equations, we rewrite (249) as

Then, of course, V, " . = 0. Reducing ¢
Ghoa = 1 [trea + QM (t5s — 30apt,"") + £, ] = mthey (250)

Thus, finally one can see that the energy-momentum tensor density in (250) has only of first derivatives
of gravitational variables and again V, %, = 0.

Multiplying (250) by /—g, and using the identification (5), the definition (21) for the flat
background and the definition (245), in the Lorentzian coordinates, one easily gets

L1005 (89" — g"*g"P) = K(—g) (¢ +T") . (251)

After substituting <T* from the Einstein equations (4), this equation reduces to the identity. One finds
that (—g)t}7 is the Landau-Lifshitz pseudotensor [127]. Thus ¢!, is the covariantized Landau-Lifshitz’s
pseudotensor (—g)t%7 /v/—3.

Of course, the gauge transformations (34) and (35) with ®4 = 0 are the gauge transformations for
the theory with the equations (250). The energy-momentum tensor is gauge invariant up to a divergence,
however now in the form:

KUY = koY 4+ God(h' — ). (252)
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on the field equations. The same as the transformations (38) and (39) the transformations (252) express
the non-localization problem of energy and other conserved quantities in GR.

This work on gravitational energy-momentum has been in the framework of Einstein’s equations.
However, this reconstruction has been used by Babak and Grishchuk to create a variant of gravity theory
with non-zero masses of gravitons [184]. They have assumed that the Lagrangian may also include an
additional term similar to the one in (247). Let the quantity R,,s, be the curvature tensor of an abstract
space-time with a constant non-zero curvature: Eapgg = K (gap9po — GaoJpp) where the dimensionality
of K is [length]=2. If one adds Aaﬂp"ﬁapgg with Aol = (4,/—g)~! (hovpPr — pPpiv), changing
g*” — gM¥, then the additional term in the Lagrangian (247) is %(\/—T‘;)*lK (baﬁbag — bo‘abﬁg). of
course, the related to such a Lagrangian theory is not GR. However one recognizes in this term the Fierz-
Pauli mass-term [160] at lowest order. Generalizing it, Babak and Grishchuk present a 2-parametric
family of theories with the additional mass terms in the gravitational Lagrangian (247):

Lirass = Linoa + (V=0) " (k15 hap + k2(h%)%) | (253)

where k; and ko have a dimensionality of [length]~2. Studying these theories allows one to ascertain
whether negative-energy field degrees of freedom (such as massive gravity almost always implies without
deliberate tuning) are vicious already at the classical level.

The additional term in (253) gives a contribution both into the right hand side and into the left
hand side of (250); the equations of the new gravity theory symbolically can be rewritten as

Ghnass = Fbinass - (254)

mass

These new equations are not gauge invariant under the gauge transformations (34) and (35) because the
background metric g,, cannot be incorporated in the dynamical metric g, totally. As a result, there
are no transformations like (252). Therefore, there is no problem with the localization of t#7 __: that is,
energy and other conserved quantities are not gauge dependent and hence are localized without infinite
multiplicity. In accord with Noether’s theorem generalized to include fields not varied in the action [191],
the presence of absolute objects shrinks the symmetry ‘group’ to the Killing vectors of the fields that
are not varied, leaving 10 symmetries of the Lagrangian rather than infinitely many.

To compare the new theory to GR, it is convenient to present (254) in the equivalent form as
Guv + My = 6Ty (255)
here the mass term is
My, = (26000 — 9P g) (kihag + kagash’ ) - (256)

Recall that h** = /gh*” and that the Bianchi identity V,G”, = 0 is expressed using the effective
metric. Matter equations (3) lead to V,, 7%, = 0, as usual; then after differentiation of (255) one obtains
VY M,,, = 0. Frequently these conditions are more convenient to use instead of some members of the
original system (255).

We follow the analysis by Ogievetsky and Polubarinov [95] and by van Dam and Veltman [192] to
give a physical interpretation of k; and ky. Consider the linearization of the (255):

L (Vo hyw + GV poh” — Vb — V) + 2kihyy — (k1 + 2k2)Guuha® = 0. (257)

Let us apply the divergence and obtain

VY [2k1hy — (k4 2k2)Guha®] = 0 (258)

that is the linearized version of the equation V¥ M, = 0.
The case with k1 # —kz. Then the system (257) becomes equivalent, to

OH" +o*H" = 0, (259)
Oh®, + B%h%, = 0, (260)
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together with (258). Here, 0 = g*’V .3,

k1 + ko
12k3

itk e kit

HW = piv o
3k 6k3

VA h® o + g ohe,, (261)

with g, H* = 0 and V,, H*¥ = 0. Thus, parameters in the wave-like equations (259) and (260) are

_ 2k (lﬁ + 4k2)

2 = 4k, 2
o 1 B kit ko

(262)
In the standard way, they can be thought as inverse Compton wavelengths of the spin-2 graviton with the
mass mo = afi/c associated with the field H*” and of spin-0 graviton with mass my = 8h/c associated
with the field h%,.

Studying weak gravitational waves in the massive gravity, one finds certain modifications of GR.
Thus the spin-0 gravitational waves, represented by the trace h®, = haﬁnag, and the polarization
state of the spin-2 graviton represented by the spatial trace H**n;, both, unlike GR, become essential.
They provide additional contributions to the energy-momentum flux carried by the gravitational
wave. However, gravitational wave solutions, their energy-momentum characteristics, and observational
predictions of GR are fully recovered in the massless limit o — 0 and 5 — 0.

The case ki + ko = 0 corresponds to the mass term of Fierz-Pauli type. This means that 32 — co
in (262), and the full set of equations (257) is equivalent to

K =0, O™ +4k k™ =0,  V,h* =0. (263)

This case is interpreted as unacceptable [184] because there is conflict with indirect gravitational-wave
observations of binary pulsars [193]. Such claims are in tension with recent claims of success for the
Vainshstein mechanism as a nonperturbative resolution of the van Dam-Veltman-Zakharov discontinuity
and thus might merit further investigation, especially from numerical relativists.

Returning to the case k; # —ko, the full (total) non-linear equations (254), or equivalently (255),
have been analyzed in [184] searching for black hole and cosmological solutions. The study combined
analytical and numerical methods. Thus, static spherically-symmetric vacuum solutions are practically
indistinguishable from those of GR for all 2M <« r < 1/«, where r and M are the radial and mass
parameters of the Schwarzschild solution, and « is infinitesimally small. However, for » > 1/« the solution
is of the Yukawa-type potentials; the event horizon is absent and at r = 0 there is a naked (curvature)
singularity. Concerning the cosmological (homogeneous and isotropic) solutions, it was shown that the
massive solutions have a prolonged time interval where they are practically indistinguishable from the
FLRW solution of GR. Only at early times and very late times differences exist. The FLRW expansion
is replaced by a regular maximum; the origin (Big Bang) singularity is replaced by a regular minimum.
There are also possibilities of an oscillatory regime. These studies provide evidence that the negative-
energy degree of freedom is not vicious classically. Hence the traditional worries about negative-energy
degrees of freedom [30] are best seen as arising from the expectation of quantization rather than as
features of classical field theory. The real world is, of course, described quantum field theory (or perhaps
some successor) rather than classical field theory, so worries motivated by quantization are serious.
Concluding that “ghost” theories are acceptable classically would therefore hardly vindicate them in a
quantum world.

One property of GR [11,27,117] that one might wish to have also in a massive theory is a derivation
by universal coupling. It might appear (e.g., [16,27]) that universal coupling gives a unique result, the
Freund-Maheshwari-Schonberg theory with a negative-energy spin 0 of the same mass as the spin 2.
As discussed above, it turns out that universal coupling can accommodate contravariant or covariant
gravitational potentials of almost any weight, as well as tetrad or cotetrad definitions of almost any
weight, giving 4 one-parameter families using linear field redefinitions [93,94]. Introducing nonlinear
field (re)definitions, so that the effective metric is a nonlinear function of the gravitational potential
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and background metric, lets one regard any massive gravity theory as universally coupled, as long as a
mild condition of invertibility holds [34]. Despite the mass terms’ taking the form of potential?® rather
than /=g — linear previously seen in universally coupled theories, the Babak-Grishchuk theories are
included. Hence universal coupling is not very restrictive after all, once nonlinear field (re)definitions
are admitted.

As was noted with references in the introduction, massive gravity has become a more lively topic
since the 2000s with renewed efforts to address the discontinuous massless limit of pure spin 2 theories and
especially in the 2000s with success in avoiding the nonlinear reappearance of the negative-energy spin 0
degree of freedom tuned away at the linear level by Pauli and Fierz. The contingency of scientific history
appears in the fact that an exact (nonlinear) argument arriving at a pure spin 2 theory was already
provided [33] prior to the discovery that the nonlinear ghost was typical [30,113]—that is, an exception
preceded the rule, though the exception was forgotten and later it and others were reinvented [34], as
discussed above. In any event one should note that arguably difficulties remain even for the so-called
ghost-free theories [184,194-197].

A. Covariant Klein-Noether identities in an arbitrary field theory

In this Appendix, we present identities necessary for the goals in the present review. We follow the
technique developed in [5,6,198,199]; see also the book [3] and related references therein. The conclusions
of the Appendix are technical and can be applied to various problems.

Let us consider a theory of arbitrary covariant fields ¢»* with the Lagrangian:

L=Lh 9" a0 ag) (264)

which depends on partial derivatives up to the second order.!! Because the Lagrangian (264) is a scalar
density of the weight +1, it satisfies the main Noether identity:

L£eL+(E9L),a =0. (265)
After identical transformations it can be represented in the form:

Oa [UsE7 + M,"70.67 + N,*P05,.£7] = 0. (266)

In (266), the coefficients are defined by the Lagrangian (264) without ambiguities in an unique way:

oL oL oL oL
U, = LI + — == =— )| 0¥ — ——0s , 267
op vl [8¢B,a o <8¢B,al3)] vn 51#3,043 5¥5 ( )
oL oL oL oL
M, = -0 | =— I — ——0,%B + 0 0, 268
|:8'(/)B,oz b (81/)B,a6>:| ¢B|a a’LpB,oc‘r {lpB 8'(/)B,oz6 B(wBLT) ( )
oL oL

NP = { T+ 5} : 269
2 a"/}B,aﬁ ¢B|U 8¢B,a7 ’lpB‘o ( )

Because 0, = 030, in (266) is symmetrical in 8 and 7, the same symmetry is reflected in coefficients:
Ngom’ﬁ :Ngaﬁ‘r'

Opening the identity (266), given that £7, 0,£7, 0’ and 0,3,7 are arbitrary at every world
point, we equate to zero the coefficients associated with them and obtain the system of the Klein-Noether

identities:
daldy® =0, (270)
U, + M =0, (271)
M, (@B L g N MeB) = (272)
NLeB) =, (273)

HThese results were derived assuming that the fields were tensor densities of some sort. But the linearity of the
transformation law appears to play little or no role in the derivation. To the degree that that is true, the results would
also apply using the nonlinear metric-dependent spinor formalism [104,105].
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These identities are not independent. Indeed, after differentiating (271) and using (272) and (273) one
easily finds (270).

One can see that expressions (267) - (269) and the identities (270) - (273) are not covariant. On the
other hand, the expression in (266) is covariant as whole, since it is a scalar density; the expression under
the divergence in (266) is a vector density. This signals that the above expressions and the identities
can be covariantized. We achieve this in the following way (see [199]). Let us replace partial derivatives
of €7 in (266) by covariant ones, making the use of the expression 9,67 = V,£7 — 75 I ,. Here, the
Christoffel symbols F;B)a and, consequently, the covariant derivative V, are compatible with g,,,,. At the
moment, g, is included in expressions as an external metric only. Note that g,, can be included in the
set 1), although this is not necessary. The identity (266) is now rewritten as

Va [ue®” + MoV, 7 +n,PV5,£7] =0, (274)
where Vg, = VgV, and
u\® = U = ML+ NP (TR, — 9,15, (275)
myT = My £ NLOPTT ) — 2N, OTPTY (276)
n,\%7" = NP, (277)

One can show explicitly that, indeed, these coefficients are covariant [199]. Note that in [199] we have
shown that there are different ways to define coefficients in (275), (276) and (277). Here, however, we
use the form (275), (276) and (277) only.

The identity (274) can be rewritten in the form of the differential conservation law:

Vai® = 0,1% =0, (278)

where the current is rewritten as
" = = (e AR 0)€7 g8, + 2 (279)
2% = moC+nfP(2VCsp — Vplsy)s 2000 = —Legpo = 2V (pEs) - (280)

Thus, the z-term disappears, 2 = 0, if & = £* is a Killing vector of a metric guv- Then the current
(279) is determined by the energy-momentum (u + nR)-term and the spin m-term only.

Exploring the identity (278) and equating independently to zero the coefficients at &7, V&7,
V(a)€? and V(,50)§7, we get a system of identities that is equivalent to the system (270) - (273),
reformulated as

Vato® + 3ma*" R}, + 0"V R, =0, (281)
u,® + Vamo  + "R}, + 2n, PR, =0, (282)
my @ £ Vyn, @) =0 (283)
nlof = 0. (284)

These identities are also not independent. After covariantly differentiating (282) and using (283) and
(284), one easily finds (281). Since (278) is identically satisfied, the current (279) must be a divergence
of a superpotential i*#, an antisymmetric tensor density, for which 95,i*® = 0, that is

i = Vi = 9537, (285)

Indeed, substituting u,* from (282) into the current (279), using (283) and algebraic properties of
n,*%7 and R?%,,,, we reconstruct (279) into the form (285), where the superpotential acquires the form:

08 — (gvma[aw _ mg[am) ¢ — in, 0PNy . (286)

It is explicitly antisymmetric in o and (3; the differential conservation law (278) follows from (285).
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