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Дается обзор подхода, где общая теория относительности (ОТО) и другие метрические теории

переформулированы в теоретико-полевой форме. Потенциалы гравитационного поля (метрические

возмущения) и другие физические поля распространяются во вспомогательном фоновом пространстве-

времени, которое может быть искривленным без всяких симметрий. Такая переформулировка метрической

теории является точной и эквивалентной исходному геометрическому представлению теории. Формализм

является лагранжевым в том смысле, что уравнения для распространяющихся полей выписываются после

варьирования соответствующего лагранжиана, точно также, как и фоновые уравнения. Обсуждаются

новые предложения о том, как включить в формализм спиноры.

Сохраняющиеся величины после использования теоремы Нётер также следуют из Лагранжиана.

Сохраняющиеся токи выражаются через дивергенции антисимметричных тензорных плотностей

(суперпотенциалов), связывающих локальные возмущения с квази-локальными сохраняющимися

величинами . Зависимость от калибровок, соответствующая разному выбору фоновых метрик,

отражающая так называемую нелокализуемость гравитационной энергии, представлена в точных

математических выражениях. Формально множество выражений для локализованных энергий вместе

с материальной энергией удовлетворяют уравнению непрерывности. Эти точные выражения могут

быть соотнесены к классическим псевдотензорам в ОТО (особенно к выражению Папапетру), где в

качестве фоновой использована метрика (-1,1,1,1), как в работах Нестера с соавторами, основанных на

других принципах. Теоретико-полевой формализм допускает две частично перекрывающиеся возможности

приложений. Первая состоит в практических приложениях в ОТО, где фон представляет просто полезную

фиктивную структуру. Другая возможность - это фундаментальное рассмотрение, где понятие причинно-

следственной связи в фоновом пространстве-времени оказывается полезными для придания физического

смысла одновременным, или пространственно-подобным, коммутационным соотношениям, в которых

выбор фоновой метрики, ограниченный неравенствами, имеет качественный, но не строго количественный

физический смысл.

Решение Шварцшильда является главным объектом для демонстрации возможностей метода.

Представлены различные варианты расчета массы шварцшильдовой черной дыры с использованием

поверхностного интегрирования суперпотенциалов. Представляя решения Шварцшильда в виде той или

иной полевой конфигурации в пространстве Минковского, мы описываем искривленное пространство-

время от пространственной бесконечности до горизонта и под горизонтом до истинной сингулярности,

которая представлена непротиворечивым образом в виде точечной частицы с использованием дираковской

дельта-функции. Продемонстрировано, что траектории пробных частиц в шварцшильдовой геометрии

калибровочно зависимы на фоне до такой степени, что разрывы на горизонте могут быть ликвидированы

(или порождены) соответствующими калибровочными преобразованиями. Этот факт иллюстрирует

вспомогательную природу фонового пространства-времени и необходимость ввести представление о

максимально возможных преобразованиях, точно также, как с координатными преобразованиями в

геометрической ОТО. В рамках теоретико-полевого метода смоделирован непрерывный коллапс к точечно-

подобному состоянию с использованием дираковской дельта-функции.

Теоретико полевой метод обобщен для произвольных метрических теорий в произвольных

измерениях. Результаты развиты для лавлоковской гравитации и использованы для расчета масс

шварцшильдо-подобных черных дыр. Обсуждаются возможные приложения. Формализм оказывается

естественным для обоснования того, чтобы придать массы гравитонам. Сделан обзор работ Бабака-

Грищука, проведенных частично численными методами без возмущений, затрагивающих традиционные
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вопросы непрерывности безмассового предела в массивной теории спина 2 и стабильности классической

теории, включающей массивные гравитоны спина 2 и спина 0.

Ключевые слова: законы сохранения, общая теория относительности, модифицированные метрические тео-

рии.
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The representation of General Relativity (GR) and other metric theories of gravity in field-theoretic form on

a background is reviewed. The gravitational field potential (metric perturbation) and other physical fields are

propagated in an auxiliary background spacetime, which may be curved and may lack symmetries. Such a

reformulation of a metric theory is exact and generally equivalent to its initial formulation in the standard

geometrical form. The formalism is Lagrangian-based, in that the equations for the propagating fields are

obtained by varying the related Lagrangian, as are the background field equations. A new sketch of how to

include spinor fields is included.

Conserved quantities are obtained by applying the Noether theorem to the Lagrangian as well. Conserved

currents are expressed through divergences of antisymmetric tensor densities (superpotentials), connecting local

perturbations with quasi-local conserved quantities. The gauge dependence due to the background metric is

studied, reflecting the so-called non-localizability of gravitational energy in exact mathematical expressions

formally, an infinity of localized energy distributions that, combined with the material energy, satisfy the

continuity equation. The exact expressions can be related to pure GR pseudotensors (especially Papapetrou’s)

employing the matrix 𝑑𝑖𝑎𝑔(−1, 1, 1, 1), as Nester et al. consider on independent grounds.

The field-theoretic formalism admits two partially overlapping uses. The first one is practical applications of

pure GR, where the background presents merely a useful fiction. The second one is foundational considerations

in which a background notion of causality, 𝜂-causality, is useful for making sense of equal-time or space-like

commutation relations, in which case the background metric via inequalities has qualitative but not strict

quantitative physical meaning.

The Schwarzschild solution is the main object for demonstration of the power of the method. Various

possibilities for calculating the mass of the Schwarzschild black hole using surface integration of superpotentials

are given. Presenting the Schwarzschild solution as a field configuration on a Minkowski background, we describe

a curved spacetime from spatial infinity to the horizon and even to the true singularity, which is represented

in consistently as a point particle using the Dirac 𝛿-function. Trajectories of test particles in the Schwarzschild

geometry are gauge-dependent in that even breakdowns at the horizon can be suppressed (or generated) by

naive gauge transformations. This fact illustrates the auxiliary nature of the background metric and the need

for some notion of maximal extension—much as with coordinate transformations in geometric GR. A continuous

collapse to a point-like state modelled by the Dirac 𝛿-function in the framework of the field-theoretic method is

presented.

The field-theoretic method is generalized to arbitrary metric theories in arbitrary 𝐷 dimensions. The results

are developed in the framework of Lovelock gravity and applied to calculate masses of Schwarzschild-like black

holes. Future applications are discussed. The formalism also makes it natural to consider adding a graviton

mass. The works of Babak and Grishchuk, which are partly numerical and hence nonperturbative, are reviewed,

shedding light on the traditional questions of a (dis)continuous massless limit for massive pure spin-2 and the

(in)stability of a classical theory including massive spin-2 and spin-0 gravitons.

Keywords: conservation laws, general relativity, modified metric theories.

PACS: 04.20-q 04.20.Cv 04.20.Fy 04.20.Jb 04.50.Kd

DOI: 10.17238/issn2226-8812.2019.4.66-124



68 А.Н. Петров, Дж.Б. Питц

Introduction

In the framework of the field-theoretic approach, a metric theory is represented in the form where

gravitational field (metric perturbation) together with other physical fields are propagated in a specified

(curved or flat and not necessarily symmetric) background space-time. Such a reformulation of a metric

theory is equivalent to its initial geometrical formulation, apart, perhaps, from global considerations,

though the freedom to make the background metric not too different from the effective metric provides

the freedom to minimize global issues. Review materials related to the field-theoretic method have

been published previously [1–3]. However, the approach continues to be developed; see, for example, a

description of a continues collapse to a point in the framework of the field-theoretic approach [4] and the

field-theoretic formalism in Einstein-Gauss-Bonnet gravity [5] and in Lovelock gravity of an arbitrary

order [6]. Important properties of the method gradually become clearer. To further popularize the field-

theoretic formalism, the present paper gives a review of its development and current applications.

The mature form of special relativity explained why all the attempts to detect the luminiferous

‘ether’ failed. The ether as a ‘true physical background’ was discarded as physically idle [7]. Instead the

notion of Minkowski space has been introduced: a flat 4-dimensional space-time in which physical bodies,

particles and fields propagate, evolve and interact. Could gravity be included within the framework of

special relativity? Einstein’s attempts were unsuccessful [8], though his criticism of the approach was

not correct [9]. Gunnar Nordström later largely succeeded with a relativistic scalar gravity theory with

some help from Einstein; as Einstein and Fokker showed, Nordström’s theory was in effect that of a

curved, conformally flat space-time [10]. The Minkowski volumes are clothed with the gravitational

potential so that (one might say) volumes are universally distorted by gravity. Using universal coupling

of gravitational and non-gravitational energy-momentum (or rather its trace), one can derive the

Nordström-Einstein-Fokker theory and various massive scalar graviton theories [11–14], according to

which free gravity (that is, disregarding the nonlinearities describing self-interaction) satisfies the Klein-

Gordon equation. Massive scalar gravity, though fully developed very belatedly or ‘postmaturely’ (to

borrow a word [15]), has clear non-relativistic antecedents in the 19th century work of Carl Neumann and

Hugo von Seeliger and the first half of Einstein’s Λ paper before the false analogy to the cosmological

constant Λ is introduced [16–18]. Given the smooth massless graviton limit, massive scalar gravity—

actually there are infinitely many such theories—approximates the Nordström-Einstein-Fokker theory

arbitrarily well, exemplifying permanent underdetermination from approximate but arbitrarily close

empirical equivalence [19]. Of course the nonzero graviton mass has no evident empirical support, while

the scalar character makes massive scalar gravities just as refuted by the 1919 light-bending observations

as is the Nordström-Einstein-Fokker theory. Massive scalar gravities, like their massless relative [20],

remain a useful conceptual testbed for the foundations of space-time, such as helping to adjudicate

whether space-time geometry explains the Euler-Lagrange equations or vice versa [21–23] and even

assessing the non-viability of Kantian views about space and time given modern science [24].

Given a symmetric rank 2 tensor gravitational potential (as the bending of light evidently requires),

attempts to develop viable theories that do not have “ghosts” (negative-energy degrees of freedom and

hence presumably instability, especially under quantization) lead to gauge freedom (at any rate for the

kinetic term), and the introduction sources leads to universal coupling and hence to the coalescence

of the graviton potential and background metric into an effective curved metric [11, 25–29]; the flat

background is unobservable, except perhaps via an extra scalar degree of freedom [29] or a graviton mass

term. Graviton mass terms, however, seemed to have two key devils in the details in the early 1970s [30]:

either a scalar ghost (but see [31–34]) or a discontinuous massless limit [35–38] (but see [39, 40]). Thus

it is either impossible or at least difficult to construct a viable theory of gravity that bends light

and does not closely resemble GR, even if one avoids any a priori appeal to curved space-time, the

equivalence principle, general covariance, generalized relativity of motion, Mach’s principle, etc. It is

worth noting that the particle physics approach to GR bears a strong resemblance (albeit considerably
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improved) [41,42] to Einstein’s recently reappreciated “physical strategy” that he pursued in the first half

of the 1910s alongside his subsequently endorsed “mathematical strategy” [43–50]. (Einstein later retold

his own history in a way that suppressed the physical strategy and credited success to the mathematical

strategy, at least partly in order to justify his decreasingly appreciated unified field theory quest [51].)

Indeed one can see that the particle physics “spin 2” derivation just sketched is powered by Noether’s

converse Hilbertian assertion that the energy-momentum for gravity consists in a piece vanishing using

the field equations and a piece with automatically vanishing coordinate divergence [42,52]. Hence most or

all roads, wherever they start, lead to or at least near to GR. As a result, effectively space-time becomes

a dynamic structure with metric components as dynamical variables. Thus in GR, space-time, while

continuing to be an arena for evolution of non-gravitational physical fields, gives gravity an exceptional

position and cannot be interpreted as a ‘background’ in the sense of a fixed structure.

Nevertheless, many problems in GR, both theoretical and as applied, require considering

perturbations, including metric perturbations, in a given (fixed) space-time. In such an interpretation,

the fixed (not necessarily symmetric) space-time is to be a solution to the Einstein equations and

plays the role of a background. One could list some examples. Einstein himself, just after constructing

GR, studied weak gravitational waves as metric perturbations propagating in Minkowski space. Later

gravitational waves and other perturbations have been considered on backgrounds of the Friedmann

solution and other cosmological solutions. Isolated gravitating systems both at spatial and at light-like

infinities are considered as perturbed systems on backgrounds of Minkowski space, anti-de Sitter space,

or another background geometry. The stability of many GR solutions, including but not limited to black

hole solutions, is examined by studying the evolution of metric perturbations on the background of these

solutions. B. DeWitt’s background field method of quantization of gravity makes systematic use of a

(curved) background [53].

However, many of the aforementioned studies (excluding DeWitt’s) are carried out under

restrictions, which are determined by the problem under consideration. Frequently a linear

approximation is considered without taking into account backreaction. Thus, one has to make a

separate study because the background is changed by the backreaction; see the pioneering work on

this relation [54]. This topic has been developed in Efroimsky’s works [55, 56], where weak gravitation

waves in vacuum and in media in a cosmological context are studied. Attention is paid to the role of

nonlinearity provided by the energy-momentum of metric perturbations while taking into account the

low-frequency cut-off. In [57], the Efroimsky approach is corrected and developed. In recent years (see,

for example, [58, 59] and references therein) the Efroimsky method has gained popularity, but it also

becomes quite specific.

Frequently only flat or strongly simplified curved backgrounds are considered, so it is not clear

how to develop a theory of perturbations if a background becomes more complicated, general and non-

symmetric. Frequently additional assumptions are used; then it is not always clear how the results depend

on these assumptions, etc. Keeping in mind all the above, one concludes that a generalized and unique

description of perturbed systems in GR on a given background is necessary. The main requirement is to

be that such a description of perturbations in GR has to be equivalent to GR itself. (There could in some

cases be global issues. However, the admission of an arbitrary background, rather than a one-size-fits-all

approach with, say, a Minkowski background, minimizes the expectation of significant global differences

between the effective and background metrics.) This description has to be in the form of a field theory,

where fields present exact (without approximations) perturbations in a fixed background space-time.

We call it a field-theoretic presentation of GR. Its desired properties are:

� Unlike the standard geometrical presentation where a space-time is a dynamic structure, in the

framework of the field-theoretic approach the field configuration consists of dynamic fields (which

represent perturbations) propagating in a ‘fixed’ background space-time. This background can be

curved and hence in some sense dynamical, but is specified somewhat independently of the effective

metric.
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� The field-theoretic approach is to be Lagrangian-based. This means that a) a Lagrangian density

is defined for the field configuration; b) field equations are defined by varying the action; c)

conserved quantities such energy and momentum (and their densities) are defined by applying

Noether’s theorem to the symmetries of the action.

� Equations and conserved quantities are to be covariant under coordinate transformations. This

property, being desirable in itself (although partially offset by a new gauge dependence), gives the

possibility to study the field configurations on arbitrary curved backgrounds which are themselves

solutions to the GR field equations.

� Gauge (non-coordinate) transformations are to be defined explicitly with well described properties

convenient in applications.

� Because the field configuration is to be exact (without approximations), gauge transformations and

conserved quantities are to be exact as well. All of these features give the possibility to construct

approximations of all important expressions up to an arbitrary order more naturally and easily.

Let us discuss in a more detail a problem of defining energy and other conserved quantities in

GR. As well known, in many theoretical studies and in applications, notions of conserved quantities,

like energy, momentum, angular momentum and their densities, play essential role. However, conserved

quantities are usually said to be “not localizable” in GR [60, p. 467]. Sticking closer to the facts rather

than interpretations, one can say that it is impossible to construct densities of conserved quantities in GR

in a unique way. If one introduces by hand as usual the tacit assumption that there should be a unique

density of gravitational energy-momentum, then one infers that the local descriptions lack physical

meaning and hence that gravitational energy-momentum is not localizable. If, on the other hand, one

simply takes the mathematics at face value [61, 62], then one notices that any time-like vector field

locally takes the form (1, 0, 0, 0) and so is formally a rigid time translation. Hence GR has uncountably

infinitely many formally rigid symmetries of the action (not symmetries of the geometry, an issue of no

direct relevance to Noether’s first theorem). Noether’s first theorem associates to each formally rigid

symmetry of the action a conserved current and vice versa [52, 63]. Thus one can infer that there are

infinitely many conserved energies and momenta [62]. Such a result is not very familiar and is somewhat

inconvenient for accountants, but seems otherwise plausible enough; gravitational energy, instead of

being non-localizable, is infinitely plural and thus has no single objective localized 10- or 16-component

description. Within the field formulation, one can arrive at such an inference by taking the gravitational

energy-momentum tensor in all gauges. Within pure geometric GR with no background, the analogous

entity is a pseudotensor in all coordinate systems, potentially with some dependence on an auxiliary

matrix 𝑑𝑖𝑎𝑔(−1, 1, 1, 1) as a reference configuration [64–66]. Pseudotensors, besides being supposedly

coordinate-dependent in a vicious way (which the interpretation in terms of infinitely many energies

suggests is a virtue rather than a vice), are also worrisomely nonunique; Nester and collaborators claim

to find physical meaning in this multiplicity in terms of differing boundary conditions. On the other

hand, the energy-momentum expression employed in this paper in section 4 seems especially virtuous.

Either view could address the nonuniqueness problem. While the supposed nonlocalizability issue is

logically independent of the field formulation, the field formulation was in fact apparently the first

occasion of the proposal of taking the formal infinity of gravitational energies seriously [62]. Also the

field formulation might more readily suggest (gauge) transformations connected to the identity rather

than large (coordinate) transformations under which gravitational energy localizations behave badly [67].

Thus the field formulation may be of some heuristic relevance in relation to the localization question [62].

This problem of defining localized energy-momentum (energies-momenta?) arises because GR is a

geometrical theory in which space-time has a double role: as an arena on which physical fields evolve

and a dynamical object. This double role of a space-time follows from the equivalence principle (see, for

example, [60]). Some take the view that a definition of conserved quantities in GR is meaningless except
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in special cases. There seems to be increasing interest, however, in revisiting the question in the last

two decades or so. In spite of the pseudotensoriality of the Noether-based conserved quantities in GR,

gravitational interaction gives a contribution to total conserved quantities of gravitating systems [60].

Here are some familiar examples. To describe a binary system, one has to include a notion of gravitational

energy as a binding energy [60]. Concerning gravitational waves, first, a bounded domain of empty space

filled by gravitational waves has to have a total positive energy, see [60]; second, observations of double

pulsars show that the orbit’s axis becomes smaller by gravitational radiation because gravitational waves

carry away positive energy, see, for example, [68]; third, the recent direct detection of gravitational

waves, see, for example, [69–71], tells the same story. Thus, energy and other conserved quantities in

GR are naturally construed as physically real. Thus the formal description of such quantities and their

spatio-temporal localization merits continued investigation, especially once the traditional objections

from pseudotensoriality and nonuniqueness have come to seem less decisive. The problem of conserved

quantities can be considered conveniently in the framework of the field-theoretic approach in GR.

There is another topic concerning energy-momentum and its relations to space-time: in recent

decades one associates energy-momentum and angular momentum with a finite spatial domain (whether

or not gravitational radiation is present) and its boundary. Such conserved quantities are called quasi-

local; see the nice review by Szabados [72] and references therein. Such a treatment can be useful, for

example, in studies of cosmological problems, where more frequently local properties of perturbations

are examined. Thus a study of the connection of local characteristics with quasi-local quantities could

be very fruitful. Pseudotensors naturally yield quasi-local quantities [65,66] and depend on coordinates

only on the boundary, not in the interior. In the field-theoretic formulation, one would expect a tensorial

but gauge-dependent energy-momentum distribution to yield quasi-local conserved quantities that are

tensorial but depend on the gauge at the boundary.

Thus, for the purposes of studying conserved quantities in the field-theoretic formulation of GR, it

is desirable:

� to have consistent definitions of conserved quantities,

� to derive their properties that can be useful in applications,

� to give a mathematical (exact and concrete) derivation of the so-called non-localization (i.e., the

lack of a unique localization due to gauge dependence), and

� to connect local and quasi-local quantities.

The field-theoretic formulation is intended to be equivalent to the geometrical formulation, so some

version of the spirit of GR as a geometrical theory has to be preserved in the field-theoretic formulation

as well. Thus, e.g., elevating some gauge or coordinate system to a physical law is not appropriate. In the

geometrical formulation, there is no background, so of course none can be observed. The field-theoretic

formulation thus has to have the same empirical property of no observable background. If one studies

the movement of test particles and light rays, one cannot connect it (quantitatively) with the geometry

of the background space-time. The metric perturbations considered as a gravitational field on a given

background play a role of a refractive medium so that the background is screened (perhaps one should

say clothed) totally. An analogous interpretation, for example, can be found in the paper [73]. This means

that the background space-time in the framework of the field-theoretic formulation can be interpreted

as an auxiliary and nonphysical (fictitious) concept, at least in its precise quantitative properties.

In the last two decades much attention has been paid to modifications of GR. An arbitrary field

theory can be represented in the field-theoretic form, as will be shown in sections 9 and 10. A special

place among modified theories is taken by metric theories including theories in more than 4 dimensions.

Among them 𝑓(𝑅) theories [74], quadratic-in-curvature theories, and Einstein-Gauss-Bonnet theory and

its generalization for arbitrary order (Lovelock theory [75]), are among the most popular. Because the

equivalence principle can be considered as the basis for an arbitrary metric theory, such theories must
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have field-theoretic representations similar to that of GR. Thus, the field-theoretic approach to other

metric theories can be desirable for the aforementioned reasons.

Below we will demonstrate important and interesting properties of the field-theoretic approach by

presenting very well known solutions in the form of exact field configurations on a given backgrounds.

We will also pay attention to exotic applications to consider the possibility of a physical interpretation

of some qualitative features of the background. For example, we derive the Schwarzschild black hole

solution as a field configuration on a Minkowski background up to the horizon, beyond the horizon, and

even all the way to the true singularity. This exhibition demonstrates the power of the method and its

less-explored possibilities as well. Concerning natural applications of the field-theoretic approach, we

refer the reader to the original papers, 1) where cosmological perturbations on the Friedmann-Lemâitre-

Robertson-Walker (FLRW) backgrounds are studied [76–79], 2) where asymptotically flat space-times

are examined at spatial infinity [80–82], etc. Finally, we show some ways for a development of the method

and its new applications.

The paper is organized as follows:

In section 1, we give the mathematical foundation of the field-theoretic formulation of GR in detail.

This gives a basis for the remainder of the article. This section also sketches how to include spinor fields

in the field formulation, a topic rarely considered.

In section 2, we study the gauge invariance properties of the Lagrangian, field equations and

conserved quantities in the framework of the field-theoretic approach to GR.

In section 3, we review various possibilities for how the field-theoretic representation of GR can be

constructed starting from a fixed background space-time. We demonstrate also that ultimately such a

background metric is not observable and plays a merely auxiliary role.

In section 4, using the results of previous works we present conservation laws in the field-theoretic

formulation of GR. The conserved currents are constructed on the basis of a symmetric energy-

momentum tensor and express localized conserved quantities. At the same time the currents are derived

as divergences of antisymmetric tensor densities (superpotentials), integration of which just leads to

surface integrals, which are quasi-local conserved quantities.

In section 5, we present various possibilities to calculate the mass of the Schwarzschild black hole

with the use of the surface integration of superpotentials defining the gravitational charge.

In section 6, we presenting the Schwarzschild solution as a field configuration on a Minkowski

background, including not only the horizon but also the true singularity. It is represented as a point

particle via a Dirac 𝛿-function.

In section 7, the example of trajectories of test particles in the Schwarzschild geometry illustrates

that the background space-time in the field-theoretic formalism is an auxiliary structure. Trajectories

are gauge dependent in the sense that even break-downs at the horizon can be suppressed or generated

by the gauge transformations. A natural conclusion is that some notion of maximal extension is required,

much as one requires in pure geometric GR.

In section 8, we present a continuous collapse to a point-like state modelled by the Dirac 𝛿-function

in the framework of the field-theoretic method.

In section 9, we present a field-theoretic treatment of an arbitrary 𝐷-dimensional metric theory of

space-time and gravity.

In section 10, currents and superpotentials are obtained for the more specific example of the

Lovelock class of theories.

In section 11, we find conserved quantities in the Lovelock theories.

In section 12, we study the mass of the Schwarzschild-like black hole and consider future applications

of the method.

In section 13, there is an explicit discussion of some massive gravity theories due to Babak and

Grishchuk. Their work includes numerical simulations and hence is nonperturbative. In these and most

other massive gravity theories, the background metric is now physically real and indirectly observable
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due to the graviton mass term; while rods and clocks do not conform to the background metric, it plays

an essential role in the field equations. The question whether negative-energy degrees of freedom are

bad already in classical field theory, or become bad only when quantization is entertained, is addressed.

The technique of nonlinear group realizations, which Ogievetsky and Polubarinov invented and used to

derive graviton mass terms using arbitrary powers of the metric, is also relevant to spinors.

In appendix A, we derive expressions that follow in an arbitrary field theory after application of

Noether’s theorem.

Notations:

� 𝜓𝐴, 𝑃𝐵 , . . . - sets of tensor densities of arbitrary ranks and weights with the collective indices

𝐴, 𝐵, . . . in a compressed notation;

� 𝜓𝐴 - the “bar” above 𝜓𝐴 means a background value of 𝜓𝐴;

� 𝑡𝜎
𝜇,𝑚𝜎

𝜇𝜈 , . . . - notations in calligraphic boldface for small letters, if they represent quantities of

mathematic weight +1. For example, 𝑡𝜎
𝜇 could be a density expressed with the use of the tensor

𝑡𝜎
𝜇: 𝑡𝜎

𝜇 =
√
−𝑔𝑡𝜎𝜇, or 𝑡𝜎𝜇 could be a density itself, etc. Some authors define density weight with

the opposite sign;

� ℒ, 𝒰𝜎𝜇, . . . - the capital calligraphic letters denote geometric quantities of weight +1 analogously

to previous item;

� 𝜉𝛼 and 𝜉𝛼 - arbitrary displacement vectors and Killing vectors, respectively, in a space-time;

� 𝑔𝜇𝜈 and 𝑔𝜇𝜈 - the dynamical (also called effective or physical) and background metrics;

� 𝑔 = det 𝑔𝜇𝜈 and 𝑔 = det 𝑔𝜇𝜈 - the determinants of the dynamical and background metrics;

� the indices of tensor fields on the physical quantities or background quantities are lowered and

raised with the use of 𝑔𝛼𝛽 or 𝑔𝛼𝛽 and their inverses, respectively;

� 𝑅𝜌𝛼𝜎𝛽 and 𝑅̄𝜌𝛼𝜎𝛽 , 𝑅𝛼𝛽 and 𝑅̄𝛼𝛽 , and 𝑅 and 𝑅̄ - the Riemann and Ricci tensors and the Ricci

scalars for the physical and background metrics, respectively;

� 𝜕𝜓𝐴/𝜕𝑥𝛼 = 𝜕𝛼𝜓
𝐴 = 𝜓𝐴,𝛼 - the partial derivative;

� ∇𝛼𝜓𝐴 and ∇̄𝛼𝜓𝐴 - the covariant derivatives of 𝜓𝐴 compatible with 𝑔𝜇𝜈 and with 𝑔𝜇𝜈 , respectively;

� the Lagrange derivative of the quantity 𝜓𝐴 = 𝜓𝐴(𝑞𝐵 ; 𝑞𝐵,𝛼; 𝑞
𝐵
,𝛼𝛽) is

𝛿𝜓𝐴

𝛿𝑞𝐵
=
𝜕𝜓𝐴

𝜕𝑞𝐵
− 𝜕𝛼

(︂
𝜕𝜓𝐴

𝜕𝑞𝐵,𝛼

)︂
+ 𝜕𝛼𝜕𝛽

(︂
𝜕𝜓𝐴

𝜕𝑞𝐵,𝛼𝛽

)︂
;

� 𝜓𝐴
⃒⃒𝛼
𝛽
is a permutation linear operator depending on the transformation properties of 𝜓𝐴, for

example, for the tensor density 𝜓𝐴 = 𝑡𝜎
𝜇 one has 𝑡𝜎

𝜇|𝛾𝛽 = −𝑡𝜎𝜇𝛿𝛾𝛽+𝑡𝜎
𝛾𝛿𝜇𝛽−𝑡𝛽𝜇𝛿𝛾𝜎 (with the ‘extra’

density weight-dependent term that appears in Lie derivatives and covariant derivatives [83–85]);

� $𝜉𝜓
𝐴 = −𝜉𝛼𝜓𝐴,𝛼+ 𝜉𝛽,𝛼 𝜓

𝐴
⃒⃒𝛼
𝛽
- the Lie derivative of the quantity 𝜓𝐴 along 𝜉𝛼 defined here. Note

that many authors define the Lie derivative with the opposite sign, see, e.g., [83].
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1. The mathematical basis for the field-theoretic formulation of GR

Perturbations and conservation laws for them have been studied in GR for many years. What

is the simplest and most usual way? The linear terms in metric perturbations are placed on the left-

hand side, whereas all nonlinear terms are moved to the right-hand side and, together with the matter

energy-momentum tensor, are treated as a total (effective) energy-momentum 𝑡𝑡𝑜𝑡𝜇𝜈 , see, for example,

the book [86]. (Linearity vs. nonlinearity is not altogether invariant under field redefinitions, on which

more below.) Perturbations are considered on arbitrary backgrounds (flat or curved), and equations

for them are in the form of the field theory. However, such equations are derived ‘by hand’. This

line of research has been pursued since the 1940s [64]. Deser in [27], generalizing earlier works (see,

for example, [11, 87, 88]), suggested a Lagrangian-based presentation where perturbations propagate

(at least formally) in Minkowski space-time, yielding an exact (without expansions and approximations)

Lagrangian theory of tensor field with self-interaction. In this framework, the effective energy-momentum

𝑡𝑡𝑜𝑡𝜇𝜈 is obtained by variation of an action with respect to a background metric. Subsequently [89,90], the

Lagrangian-based theory for perturbations in GR on arbitrary curved backgrounds has been developed.

A related bibliography of earlier works particularly can be found in [27, 29, 89, 90]. There are also

similarities to DeWitt’s background field formalism for quantum gravity (e.g., [53]).

In this section, building on the results of the papers [89,91] (see also chapter 2 in the book [3]), we

give the mathematical formalism for the Lagrangian based field-theoretic presentation of GR with an

arbitrary curved background space-time. We show the connection with the usual geometrical formulation

of GR explicitly.

Let us start with the Einstein-Hilbert action in the usual form:

𝑆 =
1

𝑐

∫︁
𝑑4𝑥ℒ𝐸𝐻 ≡ −

1

2𝜅𝑐

∫︁
𝑑4𝑥ℛ(𝑔𝜇𝜈) +

1

𝑐

∫︁
𝑑4𝑥ℒ𝑀 (Φ𝐴, 𝑔𝜇𝜈) (1)

where ℒ𝑀 (Φ𝐴, 𝑔𝜇𝜈) is a Lagrangian of matter fields Φ𝐴 consisting of a set of tensor densities1 of an

arbitrary order and rank with the collective index ‘𝐴’ ; ℒ𝑀 depends on derivatives of variables up second

order. Here 𝜅 = 8𝜋𝐺𝑐−4. One could of course add an arbitrary divergence to this Lagrangian density.

Considering components of the inverse metric density g𝜇𝜈 =
√
−𝑔𝑔𝜇𝜈 , after variation of (1) we derive

the Einstein equations together with the matter ones in the form:

𝛿ℒ𝐸𝐻

𝛿g𝜇𝜈
= − 1

2𝜅

𝛿ℛ
𝛿g𝜇𝜈

+
𝛿ℒ𝑀

𝛿g𝜇𝜈
= 0 , (2)

𝛿ℒ𝐸𝐻

𝛿Φ𝐴
=
𝛿ℒ𝑀

𝛿Φ𝐴
= 0 . (3)

The equation (2) can be rewritten in the form:

𝑅𝜇𝜈 = 𝜅(𝑇𝜇𝜈 − 1
2𝑔𝜇𝜈𝑇 ) . (4)

Now let us make decompositions of the inverse metric density and the matter fields into dynamical

perturbations and background values:

g𝜇𝜈 ≡ ḡ𝜇𝜈 + h𝜇𝜈 , (5)

Φ𝐴 ≡ Φ̄𝐴 + 𝜑𝐴 (6)

where the metric and matter perturbations h𝜇𝜈 and 𝜑𝐴 are defined with respect to a background

solution ḡ𝜇𝜈 and Φ̄𝐴. This decomposition is, of course, not unique, though for some purposes it is

optimal, such as for writing relativistic wave equations. Field (re)definitions play an important role

in various contexts including showing the equivalence of various massless formulations [92] and for

1At the end of this section we present a new proposal how spinors/fermions can be included in the field-theoretic
formalism.
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deriving inequivalent massive gravities [11, 14, 34, 93–95]. The possibility of field redefinitions and their

(ir)relevance for definitions of energy-momentum is discussed elsewhere [2, 91].

A notion of the background solution can be generalized to the notion of a background system. The

latter is described by the action:

𝑆 =
1

𝑐

∫︁
𝑑4𝑥ℒ̄𝐸𝐻 ≡ −

1

2𝜅𝑐

∫︁
𝑑4𝑥ℛ̄+

1

𝑐

∫︁
𝑑4𝑥ℒ̄𝑀 (7)

depending on the variables ḡ𝜇𝜈 and Φ̄𝐴. These quantities satisfy the corresponding background Einstein

equations:

− 1

2𝜅

𝛿ℛ̄
𝛿ḡ𝜇𝜈

+
𝛿ℒ̄𝑀

𝛿ḡ𝜇𝜈
= 0,

𝛿ℒ̄𝑀

𝛿Φ̄𝐴
= 0 . (8)

The strategy of the field-theoretic method is based on the treating perturbations h𝜇𝜈 and 𝜑𝐴

as independent dynamic variables. Then a perturbed system has to be described by a corresponding

Lagrangian. Now one substitutes the decompositions (5) into the Lagrangian of the action (1) and

subtracts zeroth-order and linear terms in h𝜇𝜈 and 𝜑𝐴 from the functional expansion:

ℒdyn = ℒ𝐸𝐻(𝑔 + h, Φ̄ + 𝜑)− h𝜇𝜈
𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜇𝜈
− 𝜑𝐴 𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴
− ℒ̄𝐸𝐻 + div = − 1

2𝜅
ℒ𝑔 + ℒ𝑚 . (9)

Because in (9) perturbations h𝜇𝜈 and 𝜑𝐴 are treated as dynamical variables, we call ℒdyn the dynamical

Lagrangian in the terminology of [91]. A divergence is included for the sake of generality.

In (9), the zeroth order term is the background Lagrangian from (7), whereas the linear term is

proportional to the left-hand side of the background equations (8). For finding the field equations for the

perturbation, it makes no difference whether one uses the background equations before or after varying

the perturbation. However, one should not to use the background equations in ℒdyn before its variation

with respect to a background metric to find the energy-momentum tensor. The reason is that zeroth

order and linear terms in the perturbations cancel parts of ℒ𝐸𝐻(𝑔 + h, Φ̄ + 𝜑) in (9) and thus help to

give a reasonable energy-momentum tensor.

The other important property of the dynamical Lagrangian is related to a role of the divergence

in (9). First, let us define an important tensor, due originally to Levi-Civita, from the difference of two

connections [96, p. 221]:

∆𝛼
𝜇𝜈 ≡ Γ𝛼𝜇𝜈 − Γ̄𝛼𝜇𝜈 = 1

2𝑔
𝛼𝜌
(︀
∇̄𝜇𝑔𝜌𝜈 + ∇̄𝜈𝑔𝜌𝜇 − ∇̄𝜌𝑔𝜇𝜈

)︀
(10)

that is a difference between dynamic and background Christoffel symbols, and which is linear in h𝜇𝜈 to

leading order. Then, if one chooses a divergence div = 𝜕𝛼𝑘
𝛼 with the vector density

𝑘𝛼 ≡ g𝛼𝜈∆𝜇
𝜇𝜈 − g𝜇𝜈∆𝛼

𝜇𝜈 , (11)

then a pure gravitational part in the Lagrangian (9) acquires the form:

ℒ𝑔 = (ḡ𝜇𝜈 + h𝜇𝜈)𝑅𝜇𝜈(h+ g)− h𝜇𝜈𝑅̄𝜇𝜈 − ḡ𝜇𝜈𝑅̄𝜇𝜈 + 𝜕𝜇𝑘
𝜇

= −(∆𝜌
𝜇𝜈 −∆𝜎

𝜇𝜎𝛿
𝜌
𝜈)∇̄𝜌h𝜇𝜈 + (ḡ𝜇𝜈 + h𝜇𝜈) (∆𝜌

𝜇𝜈∆
𝜎
𝜌𝜎 −∆𝜌

𝜇𝜎∆
𝜎
𝜌𝜈) . (12)

Note that it depends on only the first derivatives of the gravitational variables h𝜇𝜈 , which is very

economical for boundary conditions under variation, whereas the pure gravitational part in (9) with

div = 0 has second derivatives of h𝜇𝜈 . Notice that in the case of a flat background, the pure gravitational

part in (9) becomes Deser’s [27], whereas the Lagrangian (12) becomes Rosen’s covariant Lagrangian

[97,98]. The matter part of the dynamical Lagrangian (9) is

ℒ𝑚 = ℒ𝑀
(︀
𝑔 + h, Φ̄ + 𝜑

)︀
− h𝜇𝜈

𝛿ℒ̄𝑀

𝛿ḡ𝜇𝜈
− 𝜑𝐴 𝛿ℒ̄

𝑀

𝛿Φ̄𝐴
− ℒ̄𝑀 . (13)
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Now, let us turn to deriving field equations. The variation of action with the Lagrangian ℒdyn with

respect to the gravitational dynamic variables h𝛼𝛽 and contraction with

1√
−𝑔

𝜕ḡ𝛼𝛽

𝜕𝑔𝜇𝜈
= 𝛿𝛼𝜇𝛿

𝛽
𝜈 − 1

2𝑔
𝛼𝛽𝑔𝜇𝜈 (14)

lead to the field equations in the form

𝒢𝐿𝜇𝜈 +Φ𝐿
𝜇𝜈 = 𝜅

(︀
𝑡𝑔𝜇𝜈 + 𝑡𝑚𝜇𝜈

)︀
≡ 𝜅𝑡tot𝜇𝜈 , (15)

where the left hand side is linear in h𝜇𝜈 and 𝜑𝐴 and consists of both the pure gravitational and matter

parts:

𝒢𝐿𝜇𝜈(h) ≡ 𝛿

𝛿𝑔𝜇𝜈
h𝜌𝜎

𝛿ℛ̄
𝛿ḡ𝜌𝜎

≡ 1
2

(︀
∇̄𝜌∇̄𝜌h𝜇𝜈 + 𝑔𝜇𝜈∇̄𝜌∇̄𝜎h𝜌𝜎 − ∇̄𝜌∇̄𝜈h 𝜌

𝜇 − ∇̄𝜌∇̄𝜇h 𝜌
𝜈

)︀
, (16)

Φ𝐿
𝜇𝜈(h, 𝜑) ≡ −2𝜅 𝛿

𝛿𝑔𝜇𝜈

(︂
h𝜌𝜎

𝛿ℒ̄𝑀

𝛿ḡ𝜌𝜎
+ 𝜑𝐴

𝛿ℒ̄𝑀

𝛿Φ̄𝐴

)︂
. (17)

Indices on h𝜇𝜈 are moved with the background metric. The right hand side of (15) is the total symmetric

(metric) energy-momentum tensor density obtained by the variation with respect to the background

metric:

𝑡tot𝜇𝜈 ≡ 2
𝛿ℒdyn

𝛿𝑔𝜇𝜈
≡ 2

𝛿

𝛿𝑔𝜇𝜈

(︂
− 1

2𝜅
ℒ𝑔 + ℒ𝑚

)︂
≡ 𝑡𝑔𝜇𝜈 + 𝑡𝑚𝜇𝜈 . (18)

First, because under variation a divergence does not contribute to the field equations, we note that

all the expressions in (15)-(18) do not depend on div in (9). Second, by the construction of the dynamical

Lagrangian ℒdyn in (9), we note that the energy-momentum 𝑡tot𝜇𝜈 is not less than quadratic in h𝜇𝜈 and

𝜑𝐴. Thus, the pure gravitational part is

𝑡𝑔𝜇𝜈 =
1

𝜅

[︀√
−𝑔
(︀
−𝛿𝜌𝜇𝛿𝜎𝜈 + 1

2𝑔𝜇𝜈𝑔
𝜌𝜎
)︀ (︀

∆𝛼
𝜌𝜎∆

𝛽
𝛼𝛽 −∆𝛼

𝜌𝛽∆
𝛽
𝛼𝜎

)︀
+ ∇̄𝜏𝒬𝜏 𝜇𝜈

]︀
. (19)

with

2𝒬𝜏𝜇𝜈 ≡ −𝑔𝜇𝜈h𝛼𝛽∆𝜏
𝛼𝛽 + h𝜇𝜈∆

𝜏
𝛼𝛽𝑔

𝛼𝛽 − h𝜏𝜇∆
𝛼
𝜈𝛼 − h𝜏𝜈∆

𝛼
𝜇𝛼

+ h𝛽𝜏 (∆𝛼
𝜇𝛽𝑔𝛼𝜈 +∆𝛼

𝜈𝛽𝑔𝛼𝜇) + h𝛽𝜇 (∆
𝜏
𝜈𝛽 −∆𝛼

𝛽𝜌𝑔
𝜌𝜏𝑔𝛼𝜈)

+ h𝛽𝜈 (∆
𝜏
𝜇𝛽 −∆𝛼

𝛽𝜌𝑔
𝜌𝜏𝑔𝛼𝜇) . (20)

The matter part is expressed through the usual material energy-momentum tensor 𝑇𝜇𝜈 defined in the

Einstein equations (4) by the expression:

𝑡𝑚𝜇𝜈 =
√
−𝑔
[︀(︀
𝛿𝜌𝜇𝛿

𝜎
𝜈 − 1

2𝑔𝜇𝜈𝑔
𝜌𝜎
)︀ (︀
𝑇𝜌𝜎 − 1

2𝑔𝜌𝜎𝑇𝜋𝜆𝑔
𝜋𝜆
)︀
− 𝑇𝜇𝜈

]︀
− 2

𝛿

𝛿𝑔𝜇𝜈

(︂
h𝜌𝜎

𝛿ℒ̄𝑀

𝛿ḡ𝜌𝜎
+ 𝜑𝐴

𝛿ℒ̄𝑀

𝛿Φ̄𝐴

)︂
. (21)

Let us compare the energy-momentum definition in (18) with an attempt to define a symmetrical

energy-momentum using 𝛿ℒ𝐸/𝛿𝑔𝜇𝜈 in the usual description of GR. The latter is not reasonable because
it vanishes if the Einstein equations themselves (2) hold. On the other hand, 𝑡tot𝜇𝜈 defined in (18) does

not vanish on the field equations (15). A formal reason is that in the Lagrangian (9) the linear terms

are subtracted off in the Lagrangian (9) and these terms affect the energy-momentum tensor.

Let us simplify the field equations (15). By the definitions (17) and (21), they can be rewritten in

the form:

𝒢𝐿𝜇𝜈 = 𝜅
(︀
𝑡𝑔𝜇𝜈 + 𝛿𝑡𝑀𝜇𝜈

)︀
= 𝜅𝑡eff𝜇𝜈 . (22)

Such a form could be obtained if the construction of equations in the field-theoretic form is provided ‘by

hand’ as is discussed in the Introduction. The left hand side is linear in metric perturbations, whereas
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other terms are moved to the right hand side and united in 𝑡eff𝜇𝜈 . Now we will show that (15), the same

(22), are equivalent to (2). Considering 𝛿𝑡𝑀𝜇𝜈 formally we remark that it is the first line in (21) without

the second line, which includes even linear perturbations in the dynamic fields. Note especially that 𝑡eff𝜇𝜈
does not follow from any Lagrangian, and this is disadvantageous compared to 𝑡tot𝜇𝜈 , which follows from

the Lagrangian (9).

At last, we demonstrate the equivalence of the field theoretical equations (15) with the Einstein

equations (2). Let us transfer 𝑡tot𝜇𝜈 to the left hand side of (15) and use the definitions (16), (17) and (18)

with (9). As a result one has

𝒢𝐿𝜇𝜈 +Φ𝐿
𝜇𝜈 − 𝜅𝑡tot𝜇𝜈

≡ −2𝜅𝜕ḡ
𝜌𝜎

𝜕𝑔𝜇𝜈
𝛿

𝛿h𝜌𝜎

[︂
− 1

2𝜅
ℛ (ḡ+ h) + ℒ𝑀

(︀
Φ̄ + 𝜑; g+ h

)︀]︂
+ 2𝜅

𝛿

𝛿𝑔𝜇𝜈

(︂
− 1

2𝜅
ℛ̄+ ℒ̄𝑀

)︂
. (23)

One easily recognizes that the second line is proportional to the operator in the Einstein equations

(2), whereas the third line is proportional to the operator of the background equations in (8). Thus

we conclude that the equations (15) are equivalent to the Einstein equations (2) assuming that the

background equations in (8) hold. Thus we have the Einstein equations in the field-theoretic form.

The above field-theoretic reformulation of GR permits one easily to construct algorithm for

production of an approximate scheme up to an arbitrary order in perturbations. Assume that ℒ𝐸𝐻

is smooth enough. Then the Lagrangian ℒ𝐸𝐻(ḡ+ h, Φ̄ + 𝜑) can be presented in the form:

ℒ𝐸𝐻 = ℒ̄𝐸𝐻 + h𝜌𝜎
𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜌𝜎
+ 𝜑𝐵

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐵

+
1

2!
h𝛼𝛽

𝛿

𝛿ḡ𝛼𝛽
h𝜌𝜎

𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜌𝜎
+ h𝜌𝜎

𝛿

𝛿ḡ𝜌𝜎
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴
+

1

2!
𝜑𝐵

𝛿

𝛿Φ̄𝐵
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴
+ . . .+ div . (24)

The expansion is the Lagrangian derivative form of the functional expansion employed in DeWitt’s

background-field formalism [53]. The main property, which has been used for presentation (24) is that

the Lagrangian derivatives commute up to a divergence, such as

h𝜌𝜎
𝛿

𝛿ḡ𝜌𝜎
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴
= 𝜑𝐴

𝛿

𝛿Φ̄𝐴
h𝜌𝜎

𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜌𝜎
+ div . (25)

On substituting (24) into the dynamical Lagrangian (9), one finds that it is not less than quadratic

in the dynamical variables and has the form:

ℒdyn =
1

2!
h𝛼𝛽

𝛿

𝛿ḡ𝛼𝛽
h𝜌𝜎

𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜌𝜎
+ h𝜌𝜎

𝛿

𝛿ḡ𝜌𝜎
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴
+

1

2!
𝜑𝐵

𝛿

𝛿Φ̄𝐵
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴

+
1

3!
h𝜇𝜈

𝛿

𝛿ḡ𝜇𝜈
h𝛼𝛽

𝛿

𝛿ḡ𝛼𝛽
h𝜌𝜎

𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜌𝜎
+

1

2!
h𝜇𝜈

𝛿

𝛿ḡ𝜇𝜈
h𝛼𝛽

𝛿

𝛿ḡ𝛼𝛽
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴

+
1

2!
h𝜇𝜈

𝛿

𝛿ḡ𝜇𝜈
𝜑𝐵

𝛿

𝛿Φ̄𝐵
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴
+

1

3!
𝜑𝐶

𝛿

𝛿Φ̄𝐶
𝜑𝐵

𝛿

𝛿Φ̄𝐵
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴
+ . . .+ div . (26)

The remarkable structure of (26) permits one to represent the variation with respect to dynamical

variables, h𝜇𝜈 , in the form:

𝛿ℒdyn

𝛿h𝜇𝜈
=

𝛿

𝛿ḡ𝜇𝜈

(︂
h𝜌𝜎

𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜌𝜎
+ 𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴

)︂
+
𝛿ℒdyn

𝛿ḡ𝜇𝜈
= 0. (27)

One immediately recognizes the equations (15), which are the gravitational equations in the framework

of the field-theoretic formulation of GR.

The dynamical Lagrangian in the form (26) gives the possibility to construct field equations and the

energy-momentum tensor up to a necessary order of approximation. Thus, the quadratic approximation



78 А.Н. Петров, Дж.Б. Питц

of (26) leads to linear equations

− 1

2𝜅

𝜕𝑔𝜌𝜎

𝜕g𝜇𝜈
(︀
𝒢𝐿𝜌𝜎(h) +Φ𝐿

𝜌𝜎(h, 𝜑)
)︀
≡ 𝛿

𝛿ḡ𝜇𝜈

(︂
h𝜌𝜎

𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜌𝜎
+ 𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴

)︂
= 0 , (28)

and to the quadratic energy-momentum:

𝑡tot𝜇𝜈 = 2
𝛿

𝛿𝑔𝜇𝜈

(︂
1

2!
h𝛼𝛽

𝛿

𝛿ḡ𝛼𝛽
h𝜌𝜎

𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜌𝜎
+ h𝜌𝜎

𝛿

𝛿ḡ𝜌𝜎
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴
+

1

2!
𝜑𝐵

𝛿

𝛿Φ̄𝐵
𝜑𝐴

𝛿ℒ̄𝐸𝐻

𝛿Φ̄𝐴

)︂
. (29)

The next approximations of (26) give the possibility to construct the field equations and the energy-

momentum in next approximations as well. Thus the presentation of the dynamical Lagrangian in the

form (26) presents a concrete algorithm for constructing an approximate scheme.

We note that the above formalism has been used to develop a so-called nonlinear quantummechanics

with non-classical gravitational self-interaction [99,100]; it has been applied to study problems regarding

the early universe [101,102]. Besides, the formalism has been used to generalize possibilities to construct

variants of unimodular gravity [103].

Finally, let us suggest a new proposal how spinors/fermions can be included into the above

consideration. Including spinorial/fermionic matter poses additional challenges, some of which have

been mentioned previously [34]. Two possibilities are either a bi-tetrad formalism (e.g., [94]) or a

nonlinear metric-dependent spinor formalism distinguishing spinors with a transformation law dependent

on the background metric and spinors with a transformation law dependent on the total effective metric

(using the Ogievetsky-Polubarinov formalism [95,104,105] twice) and then attempting to define a spinor

perturbation. In the bi-tetrad case, the gravitational perturbation (the difference between the tetrads),

when suitably combined with the background tetrad, forms a locally Lorentz-invariant rank 2 tensor

gravitational potential. This tensor must be symmetric in order to avoid introducing a new antisymmetric

gravitational potential into the theory with no analog in geometrical GR. The local Lorentz gauge

freedom can be fixed by making the background tetrad symmetric, thus yielding the Ogievetsky-

Polubarinov nonlinear spinor formalism in terms of the background metric. In the formalism with two

kinds of Ogievetsky-Polubarinov metric-dependent nonlinear spinors relating to the two metrics, one

faces the problem of attempting to subtract spinors defined relative to two different (more specifically,

not conformally related) metrics. Defining the spinor perturbation thus calls for making a bimetric field-

dependent local Lorentz transformation on the full spinor that was initially defined in relation to the full

metric. Then the full spinor, the background spinor, and consequently the spinor perturbation are all

defined relative to the background metric. Again one has the Ogievetsky-Polubarinov nonlinear spinor

formalism relative to the background metric. Thus presumably these two approaches are equivalent.

This sketch indicates that the background metric formalism discussed in this review also admits spinors

with no essential difficulty. However, one does not expect fermionic matter as such to be relevant

macroscopically for the most common astrophysical and cosmological applications (even if neutrinos

are a dark matter candidate), so a sketch suffices for present purposes. These approaches also indicate

possibilities for spin 2 derivations including fermions (a subject frequently neglected in that decades-long

tradition) and are likely to provide an alternative to Shirafuji’s conclusion [106] that spin 2 derivations

involving spinors require a physically meaningful antisymmetric gravitational potential.

2. Gauge invariance properties

We identify as “gauge transformations” those transformations that act on the dynamical variables

only; they do not act on either the coordinates and on the background (fixed) quantities. Properties of

the field-theoretic formulation of GR under gauge transformations follow from the usual covariance of

GR in the geometrical formulation. Here, we follow the presentation in [89, 91]). We also note that the

gauge transformation properties are used for construction of the field-theoretic formulation of GR like

a typical gauge theory; see [107]).
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Let us consider any arbitrary solution to GR in two different coordinate systems: g𝜇𝜈(𝑥) and

g′𝜇𝜈(𝑥′). Coordinate systems {𝑥} and {𝑥′}, are connected by the coordinate transformation 𝑥′ = 𝑥′(𝑥).

Now let us apply a decomposition of the type (5) in both the cases:

g𝜇𝜈(𝑥) = ḡ𝜇𝜈(𝑥) + h𝜇𝜈(𝑥), (30)

g′𝜇𝜈(𝑥′) = ḡ𝜇𝜈(𝑥′) + h′𝜇𝜈(𝑥′) (31)

with the specification of the same functional form of the background metric density ḡ𝜇𝜈 : that is, ḡ𝜇𝜈(𝑥)

depends mathematically on its (unprimed) coordinates in the same way as ḡ𝜇𝜈(𝑥′) depends on its

(primed) coordinates (though the same coordinate values in the two coordinate systems of course pick

out distinct space-time points). This means that for the same geometrical solution, perturbations h′𝜇𝜈

and h𝜇𝜈 are defined in two different ways.

Now, let us express h′𝜇𝜈 in terms of h𝜇𝜈 . For the solution in the primed coordinates from the

points with coordinate values 𝑥′, we go to the points with coordinate values 𝑥 using the transformation

functions 𝑥′ = 𝑥′(𝑥). Then, the equality (31) transforms to

g′𝜇𝜈(𝑥) = ḡ𝜇𝜈(𝑥) + h′𝜇𝜈(𝑥) . (32)

Now, comparing (32) with (30), we turn to the right hand sides and do not touch the first terms. Thus,

transformations are related to the perturbations (dynamical variables) h𝜇𝜈 and h′𝜇𝜈 only. The same

procedure has to be implemented for the matter variables. Now we are in a position to connect h𝜇𝜈 and

h′𝜇𝜈 as well as 𝜑𝐴 and 𝜑′𝐴 by gauge (not coordinate) transformations in explicit form. The coordinate

transformation 𝑥′ = 𝑥′(𝑥) can be represented in the form:

𝑥′𝛼 = 𝑥𝛼 + 𝜉𝛼 +
1

2!
𝜉𝛽𝜉𝛼,𝛽 +

1

3!
𝜉𝜌
(︀
𝜉𝛽𝜉𝛼,𝛽

)︀
,𝜌
+ . . . (33)

with the displacement vector 𝜉𝜇. Knowing the connection between g𝜇𝜈(𝑥) and g′𝜇𝜈(𝑥) on the left hand

sides of (30) and (31), we infer the transformations of the right hand sides and transfer all the changes

to h𝜇𝜈 and h′𝜇𝜈 . Finally, assuming that 𝜉𝜇 is sufficiently smooth, we obtain the gauge transformations

in the field-theoretic formulation of GR [89,91] (recalling the definition of the Lie derivative above):

h′𝜇𝜈 = h𝜇𝜈 +

∞∑︁
𝑘=1

1

𝑘!
$𝑘𝜉 (ḡ

𝜇𝜈 + h𝜇𝜈) , (34)

𝜑′𝐴 = 𝜑𝐴 +

∞∑︁
𝑘=1

1

𝑘!
$𝑘𝜉
(︀
Φ̄𝐴 + 𝜑𝐴

)︀
. (35)

Indeed, they affect neither the coordinates nor the background quantities. As one recalls from Einstein’s

point-coincidence argument, in GR space-time points are physically individuated empirically by the

observable events that happen there [108]; thus the physical meaning of these gauge transformations

is not immediate. One sees that if one adds the background quantities to each side, then these gauge

transformations leave the background metric and matter fields alone while altering the total curved

metric and total matter fields just as coordinate transformations do.

Now, it is important to show why transformations (34) and (35) are called gauge transformations.

Then, it is necessary to show how under substitution of them the dynamical Lagrangian, equations in

the field-theoretic form of GR and energy-momentum complexes are changed. First, let us turn to the

Lagrangian (9) and substitute (34) and (35):

ℒ′dyn = ℒdyn − (h′𝜇𝜈 − h𝜇𝜈)
𝛿ℒ̄𝐸𝐻

𝛿ḡ𝜇𝜈
− (𝜑′𝐴 − 𝜑𝐴)𝛿ℒ̄

𝑀

𝛿Φ̄𝐴
+ div . (36)

One can see that ℒdyn is invariant under the transformations (34) and (35) up to a divergence if the

background equations (8) hold. Second, turn to the equations (15) and consider their operator in the
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form (23), which enables finding how they are changed under the substitution of (34) and (35). One

easily finds [︀
𝒢𝐿𝜇𝜈 +Φ𝐿

𝜇𝜈 − 𝜅𝑡tot𝜇𝜈
]︀′
=
[︀
𝒢𝐿𝜇𝜈 +Φ𝐿

𝜇𝜈 − 𝜅𝑡tot𝜇𝜈
]︀

+
𝜕ḡ𝜌𝜎

𝜕𝑔𝜇𝜈

∞∑︁
𝑘=1

1

𝑘!
$𝜉

𝑘

[︂
𝜕𝑔𝛿𝜋

𝜕ḡ𝜌𝜎
(︀
𝒢𝐿𝛿𝜋 +Φ𝐿

𝛿𝜋 − 𝜅𝑡tot𝛿𝜋
)︀
− 2𝜅

𝛿

𝛿ḡ𝜌𝜎
ℒ̄𝐸𝐻

]︂
. (37)

One can see that the field-theoretic equations in GR are invariant under the transformations (34)

and (35) if a) they themselves hold, and if b) the background equations (8) hold. Thus, the gauge

transformations (36) and (37) reflect the gauge invariance properties of the field-theoretic formulation

of GR. One could also notice that the Lagrangian density changes by only a divergence. Third, let us

consider the gauge invariance properties of the energy-momentum tensor density (18) (or (22)). Keeping

in mind the field-theoretic equations, one has only

𝜅𝑡′tot𝜇𝜈 = 𝜅𝑡tot𝜇𝜈 + 𝒢𝐿𝜇𝜈(h′ − h) +Φ𝐿
𝜇𝜈(h

′ − h, , 𝜑′ − 𝜑) , (38)

𝜅𝑡′
eff
𝜇𝜈 = 𝜅𝑡eff𝜇𝜈 + 𝒢𝐿𝜇𝜈(h′ − h) : (39)

that is, the energy-momentum complexes are not gauge invariant. The mathematical reason is by the

presence of second and third terms in (36) and by a requirement that the background equations must

not be used before variation of (36) with respect to 𝑔𝜇𝜈 .

The longstanding (1910s+) problem known as the non-localizability of gravitational energy is

illustrated by the non-covariance of pseudotensors and related superpotentials; see chapter 1 in the

book [3]. A covariantization of pseudotensors and superpotentials can be achieved using an auxiliary

background metric. However, in this case, the non-localization problem transforms into an ambiguity in

the choice of the background. But such a formalism does not suggest any unique mathematical derivation

for a concrete description of such an ambiguity. We close this gap here: the gauge transformations

(38) and (39) for the total energy-momentum and the effective energy-momentum show how the non-

localization initiated by different choices of backgrounds is expressed mathematical terms. It is one of

the advantages when the field-theoretic formulation of GR is applied.

It is important to note that in the case of a Ricci-flat background, 𝑅̄𝜇𝜈 = 0, one has Φ𝐿𝜇𝜈 = 0,

therefore the energy-momentum 𝑡tot𝜇𝜈 is not gauge invariant up to 𝐺𝐿𝜇𝜈 , a covariant divergence. Note

again that the energy-momentum 𝑡eff𝜇𝜈 is not gauge invariant up to a covariant divergence even in the

case of arbitrary curved backgrounds. These facts could be important for determining gauge invariance

of conserved charges because divergences just contribute surface integrals.

It is also important to consider equations and gauge transformations in linear, quadratic and

other approximations. Assume that perturbations are small (h𝜇𝜈 ≪ ḡ𝜇𝜈 , 𝜑𝐴 ≪ Φ̄𝐴), and so are

their derivatives (low-frequency approximation). Assume also that the background equations (8) give a

solution ḡ𝜇𝜈 ∼ 𝑓(𝜅)Φ̄𝐴 with a coefficient 𝑓(𝜅) of the order of the Einstein’s constant. Then one can set

h𝜇𝜈 ∼ 𝑓(𝜅)𝜑𝐴, etc. To understand better the main properties of the approximation scheme, we derive

the equations (15) up to second order:

𝐺𝐿𝜇𝜈(h) + Φ𝐿𝜇𝜈(h, 𝜑)− 8𝜋 2𝑡
tot
𝜇𝜈 (hh, h𝜑, 𝜑𝜑) = 0 . (40)

The perturbations can be expanded as usual, h𝜇𝜈 = h𝜇𝜈1 + h𝜇𝜈2 + ... , and 𝜑𝐴 = 𝜑𝐴1 + 𝜑𝐴2 + ... . Then

one can obtain a solution to the equations (15) step by step. Thus, to obtain the solution of (40)

one has to find, firstly, h1 and 𝜑1 and, secondly, h2 and 𝜑2. Besides, assume 𝜉
𝜇 = 𝜉𝜇1 + 𝜉𝜇2 + ... with

𝜉𝜇1 ∼ 𝜕𝛼𝜉
𝜇
1 ∼ . . . ∼ h𝜇𝜈1 ∼ 𝑓(𝜅)𝜑𝐴1 and 𝜉𝜇2 ∼ 𝜕𝛼𝜉

𝜇
2 ∼ . . . ∼ h𝜇𝜈2 ∼ 𝑓(𝜅)𝜑𝐴2 .

After these assumptions are made, the linear version of the equations (40) is

𝐺𝐿𝛼𝛽(h1) + Φ𝐿𝛼𝛽(h1, 𝜑1) = 0 . (41)
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The linear approximation the transformations (34) and (35) is

h′𝜇𝜈1 = h𝜇𝜈1 +$𝜉1 ḡ
𝜇𝜈 = h𝜇𝜈1 − ḡ𝜇𝜈 ∇̄𝜌𝜉𝜌1 +

√
−𝑔
(︀
∇̄𝜇𝜉𝜈1 + ∇̄𝜈𝜉𝜇1

)︀
, (42)

𝜑′𝐴1 = 𝜑𝐴1 +$𝜉1Φ̄
𝐴. (43)

Substituting (42) and (43) into (37) and retaining the linear approximation, one has[︀
𝐺𝐿𝜇𝜈(h1) + Φ𝐿𝜇𝜈(h1, 𝜑1)

]︀′
=
[︀
𝐺𝐿𝜇𝜈(h1) + Φ𝐿𝜇𝜈(h1, 𝜑1)

]︀
+

(︀
𝛿𝜌𝜇𝛿

𝜎
𝜇 − 1

2𝑔𝜇𝜈𝑔
𝜌𝜎
)︀
$𝜉1

[︀
𝑅̄𝜌𝜎 − 8𝜋

(︀
𝑇𝜌𝜎 − 1

2𝑔𝜌𝜎𝑇
)︀]︀
. (44)

Thus, the linear equations are gauge invariant on the background equations only; it is not necessary to

require that the fields h1 and 𝜑1 satisfy (41). In the simplest case of the Ricci-flat background, the linear

transformations have the form (42) only, without (43). Then the formula (44) transfers to the formula

𝐺′𝐿
𝜇𝜈 = 𝐺𝐿𝜇𝜈 , which expresses the gauge invariance of the linear spin-2 field that can be found in the text

books. Thus (44) the generalization of the well known gauge invariance in the linear gravity.

The equations (40) rewritten in the quadratic order are

𝐺𝐿𝛼𝛽(h2) + Φ𝐿𝛼𝛽(h2, 𝜑2)− 8𝜋
(︁
2𝑡

g
𝛼𝛽(h1h1) + 2𝑡

m
𝛼𝛽(h1h1, h1𝜑1, 𝜑1𝜑1)

)︁
= 0 . (45)

The gauge transformations (34) and (35) in the quadratic order are

h′𝜇𝜈2 = h𝜇𝜈2 +$𝜉2 ḡ
𝜇𝜈 +

1

2!
$2
𝜉1
ḡ𝜇𝜈 +$𝜉1h

𝜇𝜈
1 (46)

𝜑′𝐴2 = 𝜑𝐴2 +$𝜉2Φ̄
𝐴 +

1

2!
$2
𝜉1
Φ̄𝐴 +$𝜉1𝜑

𝐴
1 . (47)

Substitution of (46) and (47) into (37) gives for the quadratic approximation:[︀
𝐺𝐿𝜇𝜈(h2) + Φ𝐿𝜇𝜈(h2, 𝜑2)− 8𝜋 2𝑡

tot
𝜇𝜈 (h1h1, h1𝜑1, 𝜑1𝜑1)

]︀′
=

[︀
𝐺𝐿𝜇𝜈(h2) + Φ𝐿𝜇𝜈(h2, 𝜑2)− 8𝜋 2𝑡

tot
𝜇𝜈 (h1h1, h1𝜑1, 𝜑1𝜑1)

]︀
+

1√
−𝑔

𝜕ḡ𝜌𝜎

𝜕𝑔𝜇𝜈

(︂
$𝜉2 +

1

2!
$2
𝜉1

)︂[︀
𝑅̄𝜌𝜎 − 8𝜋

(︀
𝑇𝜌𝜎 − 1

2𝑔𝜌𝜎𝑇
)︀]︀

+

+
1√
−𝑔

𝜕ḡ𝜌𝜎

𝜕𝑔𝜇𝜈
$𝜉1

[︂√
−𝑔 𝜕𝑔

𝛿𝜋

𝜕ḡ𝜌𝜎
[︀
𝐺𝐿𝛿𝜋(h1)) + Φ𝐿𝛿𝜋(h1, 𝜑1)

]︀]︂
. (48)

One can see that equations (45) are gauge invariant on the background equations (8) and on the linear

equations (41). The procedure in the next orders is similar.

One can compare coordinate transformations, gauge transformations, and a partially compensating

combination of coordinate and gauge transformations to appreciate how the background metric is gauge

dependent [29,89]. Coordinate transformations connected to the identity take the form

g′𝜇𝜈 =

∞∑︁
𝑘=0

1

𝑘!
$𝑘𝜉g

𝜇𝜈 , (49)

ḡ′𝜇𝜈 =

∞∑︁
𝑘=0

1

𝑘!
$𝑘𝜉 ḡ

𝜇𝜈 , (50)

Φ′𝐴 =

∞∑︁
𝑘=0

1

𝑘!
$𝑘𝜉Φ

𝐴, (51)

Φ̄′𝐴 =

∞∑︁
𝑘=0

1

𝑘!
$𝑘𝜉 Φ̄

𝐴, (52)

with the Lie derivative acting on all the field variables including the background metric and background

matter. Gauge transformations, such as were described above, can be presented as acting on the total
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effective curved metric and matter fields, while leaving the background metric and background matter

alone:

g′𝜇𝜈 =

∞∑︁
𝑘=0

1

𝑘!
$𝑘𝜉g

𝜇𝜈 , (53)

ḡ′𝜇𝜈 = ḡ𝜇𝜈 , (54)

Φ′𝐴 =

∞∑︁
𝑘=0

1

𝑘!
$𝑘𝜉Φ

𝐴, (55)

Φ̄′𝐴 = Φ̄𝐴. (56)

What happens if one combines these two transformations with equal-but-opposite descriptor vector

fields? The resulting combined transformation alters the background metric and background matter

while leaving the effective/total curved metric and effective/total matter fields alone [29]:

g′𝜇𝜈 = g𝜇𝜈 , (57)

ḡ′𝜇𝜈 =

∞∑︁
𝑘=0

1

𝑘!
$𝑘−𝜉ḡ

𝜇𝜈 , (58)

Φ′𝐴 = Φ𝐴, (59)

Φ̄′𝐴 =

∞∑︁
𝑘=0

1

𝑘!
$𝑘−𝜉Φ̄

𝐴. (60)

Thus dependence on the background metric and/or background matter makes an expression gauge-

dependent under these transformations. Thus some of the advantage for describing gravitational energy

using a background metric and hence tensorially is offset by the additional gauge dependence [109].

To conclude the section we note that on the basis of gauge invariance properties of the field-theoretic

formalism, in recent papers [76–79] a gauge invariant theory of the cosmological perturbations has been

elaborated. In order to ascertain the gauge invariance of global conserved quantities for isolated systems,

the weakest fall-off for gravitational potentials at spatial infinity has been determined [80,81].

3. Gravitational field on fixed backgrounds

What has been presented above is a construction of the field-theoretic formulation of GR when from

the start in the framework of the geometrical formulation of GR the decompositions (5) and (6) have

been provided. Then, the dynamical Lagrangian (9) has been suggested, and, next, all the structures

of the theory have been obtained like in an arbitrary Lagrangian-based field theory. This presentation

gives an evident connection of geometrical and field-theoretic representations of GR. However, in order

to appreciate the properties of the theory more clearly, it is useful to outline other ways (not only on the

basis of decompositions (5) and (6)) of constructing the field theory of gravity on flat or fixed curved

backgrounds.

Firstly, we recall briefly how to construct GR as a field theory of gravity in Minkowski space, keeping in

mind that we are working in the framework of special relativity. (Also see above.)

To construct such a gravitational theory usually one follows natural requirements:

� Such a theory has to be Lagrangian-based.

� All the fields including gravitational field are to be propagated in Minkowski space.

� The main observable tests have to be explained.

� In limit of weak fields and low velocities the gravitational theory under construction has to go to

the Newtonian theory.
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As main candidates for gravitational fields in special relativity, researchers considered scalar, vector

and the tensor fields. In scalar gravitational theories (see [60, 88]), the deflection of light in the

gravitational field of the Sun is not described correctly, because a scalar theory does not bend light

due to the conformally flat geometry of space-time (exactly for the massless case, or to an arbitrarily

good approximation for a small graviton mass) and the conformal invariance of Maxwell’s equations

in 4 space-time dimensions. In the vector theories (see [60, 87, 88]), in the case of positive energy of

gravitational waves, massive bodies are repulsive, contrary to the most basic features of gravitation.

Thus, pure scalar or pure vector gravitational theories in Minkowski space are not interesting candidates

for the real world. On the other hand, (symmetric rank 2) tensor variants of the gravitational theory can

satisfy the aforementioned requirements. Scalar and vector admixtures, nevertheless, can be considered

as corrections for tensor theories, see, for example, [110–112]. We consider the tensor variant only, which

leads to the field-theoretic formulation of GR.

When a construction of the pure tensor theory is provided, one assumes the following. The first

requirement is that in Minkowski space-time with Cartesian coordinates in the field equations, the source

of the part linear in gravitational variables h𝜇𝜈 is to be the symmetric energy-momentum tensor of the

matter variables 𝜑𝐴. The next requirement is the positivity of the energy of the gravitational waves,

leading to the unique quadratic Lagrangian ℒ2
𝑔𝑟𝑎𝑣(h). The last describes the massless spin two field;

a mass terms disappears if one assumes the correspondence to the Newtonian potential in the weak

field limit. (Massive spin 2 gravity famously has multiple theoretical challenges involving nonlinear

negative-energy degrees of freedom typically [30,113] (but see [31–33] and many subsequent works) and

a discontinuous massless limit under a perturbative treatment [36, 37] (but see [39, 40, 114] and many

subsequent works; two reviews are [115,116]). Thus the relativistic equations for the tensor gravitational

field acquire the form:

𝐺𝐿𝜇𝜈(h) = 𝜅𝑇𝜇𝜈(𝜑, 𝜂) . (61)

At this step, the linear in h𝜇𝜈 left hand side of (61) is a result of varying ℒ2
𝑔𝑟𝑎𝑣(h) with respect to h𝜇𝜈 ,

whereas the right hand side of (61) is the symmetric (metric) energy-momentum tensor of the matter

variables 𝜑𝐴. Because identically 𝐺𝐿𝜇𝜈
,𝜈 ≡ 0 one has the conservation law 𝑇𝜇𝜈

,𝜈 = 0. The last, however,

contradicts to field equations for 𝜑𝐴, which interact with h𝜇𝜈 , see [60]. To improve the equations (61)

one has to change the right hand side:

𝐺𝐿𝜇𝜈(h) = 𝜅
[︁
𝑇𝜇𝜈(𝜑,𝜂 + h) + 𝑡(2)𝜇𝜈 (h)

]︁
(62)

where 𝑡
(2)
𝜇𝜈 (h) is the symmetric energy-momentum tensor obtained from ℒ2

𝑔𝑟𝑎𝑣(h) by the ordinary

variation with respect to background (Minkowski) metric. After that the Lagrangian corresponding

to (62) has to be cubic, that is ℒ2
𝑔𝑟𝑎𝑣(h) +ℒ3

𝑔𝑟𝑎𝑣(h), etc. The contradiction vanishes when iterations are

provided an infinite number of times:

𝐺𝐿𝜇𝜈(h) = 𝜅

[︃
𝑇𝜇𝜈(𝜑, h+ 𝜂) +

∞∑︁
𝑛=2

𝑡(𝑛)𝜇𝜈 (h)

]︃
. (63)

Notice that now 𝑇𝜇𝜈 depends on h𝜇𝜈 in the sum g𝜇𝜈 = h𝜇𝜈+𝜂𝜇𝜈 . Then, one can show that the equations

(63) are equivalent to the Einstein equations in the usual form, see [87,95,117].

Secondly, a construction of GR in the field-theoretic form in Minkowski space is generalized to a tensor

theory in a curved space-time.

In spite of considerable efforts, up to the beginning of the 1980s, there was not a completed version

of the field-theoretic formulation of GR with all the properties of a field theory in an arbitrary curved

background space-time. In the works [89,91,107] this formulation was provided. It took inspiration from

Deser [27], who suggested a covariant formulation on a flat background where the results given in the

(61) - (63) have been suggested in closed form without expansions. In [89], we have generalized the Deser

principle. It could be formulated as:
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� In an arbitrary curved fixed space-time, the total energy-momentum tensor of all the fields,

including gravitational one, has to be the source of the linear massless field of spin 2 (tensor

gravitational field) and linear perturbations of matter fields.

On the basis of this principle the formulation in [89] presented above in sections 1 was constructed.

Thirdly, another principle for constructing the field-theoretic formulation of GR can be formulated

as a generalization of the Newtonian theory. This means a transformation from a gravistatic law to

gravidynamics (Einstein equations).

Steps of the construction are as follows.

� To follow the relativistic requirement one has to replace the mass density 𝜌 in the Newtonian law

by the ten components of the matter energy-momentum tensor.

� Then, the number of the gravitational potentials should be increased from 1 component 𝜑 to 10

components h𝜇𝜈 .

� After that the Laplace operator in the Newtonian law should be replaced by the d’Alembert

operator.

� Besides, the relativistic theory of gravity should be a theory with self-interaction, that is the

gravitational field has to be a source for itself. Then the gravitational equations become

h𝜇𝜈
,𝛼
,𝛼 = 𝜅(𝑡𝑔𝜇𝜈 + 𝑡𝑚𝜇𝜈) ≡ 𝜅𝑡tot𝜇𝜈 . (64)

� In these equations the gauge condition h𝜇𝜈,𝜈 = 0 is already chosen. The condition when the

conservation law (𝑡𝑔𝜇𝜈 + 𝑡𝑚𝜇𝜈)
,𝜈 = 0 holds automatically leads to a necessity to add the terms[︀

𝜂𝜇𝜈h
𝛼𝛽

,𝛼,𝛽 − h𝛼𝜇,𝜈,𝛼 − h𝛼𝜈,𝜇,𝛼
]︀
to the left hand side of (64). Finally, (64) transforms to the

Einstein equations in the form (63).

For more detail see the work [90].

Fourthly, because GR in the field-theoretic form has gauge freedom, it can be constructed as a gauge

theory itself.

The gauge principle of constructing the field-theoretic formulation of GR has been presented and

analyzed in the work [107]. A non-standard way of localization is postulated. From the very start, the

existence of a fixed background space-time (it can be even curved) with symmetries presented by Killing

vectors is assumed. It is also assumed that initial dynamic fields in this space-time are propagated and

their action is under consideration. Then, one notices that the initial action is invariant up to a surface

term under the addition of Lie derivatives (with respect to aforementioned Killing vector) to the initial

fields to themselves. Then, the Killing vector in this transformation is replaced by an arbitrary vector.

Next we require the same invariance of a sought-for action for the same dynamic fields under the localized

transformation. In the process the coordinates and the background metric do not change. All of this

plays a role of a local invariance. We note that our concept of ‘localization’ should not be taken literally.

Indeed, it turns out that in our case a background space-time can have no symmetries. It is enough to

require the aforementioned invariance of the initial action for Lie derivatives with respect to arbitrary

vectors only. As a result of ‘localization’ the compensating (gauge) field appears. The requirement to

have this gauge field as a universal one with the same (as the other fields) gauge transformation law

leads to the theory with the Lagrangian (9) and the field equations (15) where the gauge field is just

h𝜇𝜈 .

All the above methods begin from a concrete background. However, finally it becomes the

background in the field-theoretic formulation of GR. Already, we have noted that the Einstein equations
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in field-theoretic form are equivalent to Einstein equations in the standard geometrical form. But the

latter have no any background structure at all.2 Therefore, it is quite important to clarify the role,

physical or auxiliary, of the background. Indeed, after the identification (5) and (6) the fixed metric

𝑔𝜇𝜈 and the fixed fields Φ̄𝐴 disappear from the equations (15). This means that a fixed background

appearing in the field-theoretic expressions cannot in fact be observed. Let us demonstrate it from the

physical viewpoint for a Minkowski background space-time.

Consider the intermediate equations (61) of the field-theoretic formulation with Cartesian

coordinates for the flat background. The latter cannot be observed with the use of the light signals,

see the works [88, 90]). Indeed, the propagation of light in gravitational field can be interpreted as a

propagation in a refractive medium [73]; the velocity of light changes in this medium. Besides that,

the energy of relativistic particles depends on the gravitational field h𝜇𝜈 as well, and, consequently, the

frequency of photons depends on gravity also. Then, the ratio of physically measured time to coordinate

time changes in the theory with the equation (61). Finally, one concludes that distances are decreased

and the Minkowski space-time is not observed when the gravitational field h𝜇𝜈 propagates.

What can a study of propagation of gravitational waves (not only relativistic particles) in Minkowski

space-time yield? Recall that the characteristic part of the left hand side of the equations (63) is the

d’Alembert operator, like in (64) for the flat background in the Lorentzian gauge. Only in the linear

approximation do the gravitational waves propagate along the null geodesics of the Minkowski space.

But we consider equations with self-interaction, for example, see (63), where the right hand side contains

the second derivatives of h𝜇𝜈 in the terms like h𝛼𝛽h𝜇𝜈,𝛼,𝛽 . As a result, the flat d’Alembert operator is

modified. Then, of course, gravitational waves cannot feel a flat background. The related idea of a

geometry that is entirely masked by a universal distortion force goes back to the 19th and early 20th

centuries in discussions of universal distortion forces and the question whether Euclidean geometry is

privileged [24,124–126].

To illustrate further the auxiliary character of the background space-time, it is instructive to

consider how the gauge transformations influence trajectories of a test particle on this background.

Again, it is enough to consider a flat background. Let us derive the related dynamical Lagrangian:

ℒdyn = − 1

2𝜅
ℒ𝑔 + ℒ𝑚 . (65)

The related matter Lagrangian in the field-theoretic form has a general form: ℒ𝑚 = ℒ𝑀 (𝜂 + h, 𝜑),

where h𝜇𝜈 is the gravitational field, 𝜂𝜇𝜈 is the background Minkowski metric density. To define ℒ𝑀 one

has to recall the action for a free matter point in GR [127]:

𝑆𝑚 = −𝑚
∫︁
𝑑𝜏 , (66)

where 𝑑𝜏2 = −𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . To represent (66) in the field-theoretic form one has to express

𝑔𝜇𝜈 = 𝑔𝜇𝜈(𝜂
𝛼𝛽 , h𝜌𝜎) with the use of (5). The variation of 𝑆𝑚 with respect to the coordinates gives

the equations of motion for a test particle. It is assumed that their solutions exist and are the vector

components of the particle 4-velocity 𝑢𝛼 ≡ 𝑑𝑥𝛼/𝑑𝜏 ; we note that 𝑑𝜏 depends on 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 .
Let us present 𝑆𝑚 in a more suitable form:

𝑆𝑚 =

∫︁
𝑑4𝑥ℒ𝑚 = −

∫︁
𝑑4𝑥
√
−𝑔𝜌𝑔𝜇𝜈𝑢𝜇𝑢𝜈 ; 𝜌 ≡ 𝑚𝛿(𝑟⃗ − 𝑟0)√︀

−𝑔3𝑔00
𝑑𝜏

𝑑𝑡
, (67)

where 𝛿(𝑟⃗− 𝑟0) is the Dirac 𝛿-function, 𝑔𝑎𝑏 is the spatial part of the tensor 𝑔𝛼𝛽 and 𝑔3 ≡ det 𝑔𝑎𝑏. Thus,

matter fields in (67) are 𝜑𝐴 = {𝜌, 𝑢𝛼}.
2In the case of spinor fields, the matrix 𝑑𝑖𝑎𝑔(−1, 1, 1, 1) appears (as do Γ matrices). One might call this quantity a

confined object rather than an absolute object [118,119] because it does not change at all order coordinate transformations.
Some authors use this matrix (or the identity matrix with 𝑥4 = 𝑖𝑐𝑡) as a background for a perturbative expansion of the
effective curved metric [95,104,120–123]. Then the gravitational potential has an inhomogeneous coordinate transformation
law and no new gauge freedom arises. Thus the idea of a background is more common and potentially ‘thinner’ than one
might have thought.
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Of course, the theory with the Lagrangian (65) has to be gauge invariant with respect the gauge

transformations (34) and (35). In the case of the flat background the transformations (34) and (35) for

all the variables in (65) are

h′𝜇𝜈(𝑥) = h𝜇𝜈(𝑥) +

∞∑︁
𝑘=1

1

𝑘!
$𝑘𝜉 (𝜂

𝜇𝜈(𝑥) + h𝜇𝜈(𝑥)) , (68)

𝜌′(𝑥) = 𝜌(𝑥) +

∞∑︁
𝑘=1

1

𝑘!
$𝑘𝜉𝜌(𝑥), (69)

𝑢′𝛼(𝑥) = 𝑢𝛼(𝑥) +

∞∑︁
𝑘=1

1

𝑘!
$𝑘𝜉𝑢

𝛼(𝑥). (70)

Of course, both the set h𝜇𝜈(𝑥), 𝜌(𝑥), 𝑢𝛼(𝑥) and the set h′𝜇𝜈(𝑥), 𝜌′(𝑥), 𝑢′𝛼(𝑥) satisfy the equations

of the field-theoretic formulation of general relativity. However, in general, 𝑢𝛼(𝑥) and 𝑢′𝛼(𝑥) defines

different trajectories in the same background space-time. This conclusion again stresses the fact that a

background space-time has an auxiliary character. However, in spite of backgrounds’ lacking physical

meaning (at least quantitatively) in the field-theoretic formulation of General Relativity, they can be

very useful for deriving important characteristics of various solutions, including interpretations of exact

solutions in GR and other metric theories.

4. Conservation laws in GR

Here we follow the results and methods of the papers [89,128–131]. In section 2, we have connected

the non-localization of the energy and other conserved quantities in GR with the gauge non-invariance

of the energy-momentum tensor of perturbations. Before applying the formalism to any concrete models,

one has to fix the gauge freedom. In the usual geometrical formulation of GR, this procedure corresponds

to fixing a coordinate system. By gauge fixing one suppresses the ambiguities related to non-localization

and can construct unambiguous conserved quantities related just to this gauge. Thus, in this section we

construct conserved quantities and conservation laws assuming that a gauge fixing was made.

From the start let discuss differential conservation laws on Ricci-flat (including flat) backgrounds,

𝑅̄𝜇𝜈 = 0. Then, one has to take into account Φ̄𝐴 ≡ 0, ℒ̄𝑀 ≡ 0, Φ𝐿
𝜇𝜈 ≡ 0 and use

𝛿ℛ̄
𝛿ḡ𝜇𝜈

= 0 (71)

as the degenerated form of the background equations (8). Then, the dynamical Lagrangian (9) is

simplified to

ℒdyn = − 1

2𝜅
ℒ𝑔 + ℒ𝑚 = − 1

2𝜅
ℒ𝑔 + ℒ𝑀

(︀
𝜑𝐴; ḡ𝜇𝜈 + h𝜇𝜈

)︀
, (72)

and the field equations (15) transform to the form of the equations (23):

𝒢𝐿𝜇𝜈 = 𝜅
(︀
𝑡𝑔𝜇𝜈 + 𝑡𝑚𝜇𝜈

)︀
≡ 𝜅𝑡tot𝜇𝜈 . (73)

Thus for Ricci-flat backgrounds the energy-momentum tensor densities 𝑡tot𝜇𝜈 and 𝑡eff𝜇𝜈 coincide.

Furthermore, in the case of Ricci-flat backgrounds the left hand side of (73) is conserved identically,

∇̄𝜈𝒢𝐿𝜇𝜈 ≡ 0 ; (74)

then taking the divergence of equation (73) leads to a differential conservation law:

∇̄𝜈𝑡tot𝜇𝜈 = 0 . (75)

All the above permits us to construct differentially conserved current. Contracting 𝑡tot𝜇𝜈 with a

Killing vector 𝜉𝛼 defined in a background space-time, one obtains such a current:

𝒥 𝜈(𝜉) = 𝑡tot𝜈𝜇 𝜉𝜇, ∇̄𝜈𝒥 𝜈
(︀
𝜉
)︀
≡ 𝜕𝜈𝒥 𝜈

(︀
𝜉
)︀
= 0 . (76)
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Integration of this equality leads to a definitions of integral (not local) conserved quantities. Consider a

background 4-dimensional volume 𝑉4, the boundary of which consists of time-like ‘surrounding wall’ 𝑆

and two space-like sections: Σ0 := 𝑡0 = const and Σ1 := 𝑡1 = const. Because the conservation law (76)

is a scalar density under coordinate transformations, it can be integrated in a coordinate-independent

way over the 4-volume 𝑉4: ∫︁
𝑉4

𝜕𝜇𝒥 𝜇(𝜉)𝑑4𝑥 = 0 . (77)

By the generalized Gauss theorem, it can be rewritten as∫︁
Σ1

𝑑3𝑥𝒥 0(𝜉)−
∫︁
Σ0

𝑑3𝑥𝒥 0(𝜉) +

∮︁
𝑆

𝑑𝑠𝜇𝒥 𝜇(𝜉) = 0 , (78)

where 𝑑𝑠𝜇 is the element of integration on 𝑆. If the integral over ‘surrounding wall’ in (78) becomes

zero, ∮︁
𝑆

𝒥 𝜇(𝜆)𝑑𝑆𝜇 = 0 , (79)

then the quantity

𝒫(𝜉) =
∫︁
Σ

𝑑3𝑥𝒥 0(𝜉) (80)

is conserved on space-like sections Σ restricted by 𝜕Σ, intersection with 𝑆. It can be also assumed that

𝜕Σ→∞. In the case, when the condition (79) does not hold, the equation (78) describes a change of the

quantity (80), that is its flux through 𝜕Σ. The differential conservation laws (75) and all the following

constructions also apply for backgrounds that are Einstein spaces in A. Z. Petrov’s definition [132] with

a vacuum 𝑅̄𝜇𝜈 = Λ𝑔𝜇𝜈 , where Λ is a constant (see [89,128,129]).

Below we will apply the formalism to study various solutions in GR using flat backgrounds only.

Therefore, the above theoretical results are quite enough for such goals. However, for arbitrary curved

backgrounds there are no conservation laws of the form (75). That is because, in the general case for

the linear operators in (15) and (22) one has

∇̄𝜈
(︀
𝒢𝐿𝜈𝜇 +Φ𝐿𝜈

𝜇

)︀
̸= 0, ∇̄𝜈𝒢𝐿𝜇𝜈 ̸= 0 (81)

instead of (74). The reason is that the system (9) interacts with a complicated background geometry

determined by the background matter fields Φ̄𝐴. Cosmological solutions, for example, are not flat or

Einstein’s spaces.

Nevertheless, in spite of the inequalities (81), one expects conservation laws for arbitrary curved

backgrounds and arbitrary displacement vectors 𝜉𝛼. (This fact follows from Noether’s first theorem

and the fact that the laws (not the geometry, which as such is irrelevant to Noether’s theorems) have

continuous symmetries [52, 61, 63].) We find such laws making use of the canonical Nœther procedure

developed in [130] and applied to the Lagrangian (9). This technique is developed in detail in the

framework of an arbitrary metric theory of the Lovelock class in section 10. At the end of this section

we derive formulae of section 10 simplified to GR and necessary here.

Thus, let us derive the identity (197) adopted to GR:

𝑖𝜇 ≡ ∇̄𝜈𝑖𝜇𝜈 ≡ 𝜕𝜈𝑖𝜇𝜈 . (82)

Here, the current and superpotential are, respectively,

𝑖𝜇(𝜉) ≡ 1

𝜅
𝒢𝐿𝜇𝜈 𝜉𝜈 +

1

𝜅
h𝜇𝜆𝑅̄𝜆𝜈𝜉

𝜈 + 𝜁𝜇(𝜉) (83)

𝑖𝜇𝜈(𝜉) ≡ 1

𝜅
h𝜌[𝜇∇̄𝜌𝜉𝜈] + 𝒫𝜇𝜈𝜆𝜉𝜆 ≡

1

𝜅

(︁
h𝜌[𝜇∇̄𝜌𝜉𝜈] + 𝜉[𝜇∇̄𝜎h𝜈]𝜎 − 𝜉𝜎∇̄[𝜇h𝜈]𝜎

)︁
. (84)

The last term in (83) is

2𝜅𝜁𝜇(𝜉) ≡ 2
(︀
𝑧𝜌𝜎∇̄𝜌h𝜇𝜎 − h𝜌𝜎∇̄𝜌𝑧𝜇𝜎

)︀
−
(︀
𝑧𝜌𝜎∇̄𝜇h𝜌𝜎 − h𝜌𝜎∇̄𝜇𝑧𝜌𝜎

)︀
+

(︀
h𝜇𝜈∇̄𝜈𝑧 − 𝑧∇̄𝜈h𝜇𝜈

)︀
(85)
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where 2𝑧𝜌𝜎 ≡ −$𝜉𝑔𝜌𝜎, and, thus, disappears if 𝜉𝛼 = 𝜉𝛼, that is, if the displacement vector is a Killing

vector of the background. Here 𝑧 = 𝑧𝛼𝛼 with the index moved using the background metric.

The main property demanded of superpotentials, 𝜕𝜇𝜈𝑖
𝜇𝜈(𝜉) ≡ 0, holds. The expression (84)

generalizes the Papapetrou superpotential [64], which depends on a background matrix 𝑑𝑖𝑎𝑔(−1, 1, 1, 1)
or the like. Indeed for the case of a Minkowski space-time background and rigid coordinate translations

𝜉𝜆 = 𝛿𝜆(𝜌) (in Cartesian coordinates), one gets

𝑖𝜇𝜈(𝜌) = 𝒫
𝜇𝜈
𝜌 =

1

2𝜅
𝜕𝜎
(︀
𝛿𝜇𝜌 h

𝜈𝜎 − 𝛿𝜈𝜌h𝜇𝜎 − 𝑔𝜎𝜇h𝜈𝜌 + 𝑔𝜎𝜈h𝜇𝜌
)︀
. (86)

The same superpotential (84) was constructed in [131] by another means, namely, by the Belinfante

symmetrization of the canonical system in [130].

To provide physically sensible conservation laws from the identity (83), one needs to use the field

equations. We substitute 𝒢𝐿𝜇𝜈 in the form (22) into the current (83) and obtain

𝒥 𝜇(𝜉) ≡ Θ𝜈
𝜇𝜉𝜈 + 𝜁𝜇(𝜉) . (87)

The generalized total energy-momentum tensor density is

Θ𝜈
𝜇 ≡ 𝑡𝑔𝜈

𝜇 + 𝛿𝑡𝑀𝜇
𝜈 +

1

𝜅
h𝜇𝜆𝑅̄𝜆𝜈 ≡ 𝑡eff𝜈

𝜇 +
1

𝜅
h𝜇𝜆𝑅̄𝜆𝜈 (88)

where the interaction with the background geometry, h𝜇𝜆𝑅̄𝜆𝜈 , is taken into account. Because on the

right hand side of (87) there is a divergence of the superpotential (84), the current (87) is conserved:

∇̄𝜇𝒥 𝜇 = 𝜕𝜇𝒥 𝜇 = 0. Thus, Θ𝜈
𝜇 plays the same role as 𝑡tot𝜈

𝜇 in the equation (76) on the flat background

if Killing vectors exist. Thus, the current (87) generalizes (76) to arbitrary backgrounds and arbitrary

displacement vectors. It can be important, for example, for models with cosmological backgrounds where

not only the Killing vectors are used (see, e.g., [133–135]).

For a concrete solution the superpotential 𝑖𝜇𝜈(𝜉) in (84) is rewritten in a new notation, 𝒥 𝜇𝜈(𝜉),
although it has the same form. Finally, the identity (82) acquires the form of a physically meaningful

conservation law:

𝒥 𝜇(𝜉) = ∇̄𝜈𝒥 𝜇𝜈(𝜉) = 𝜕𝜈𝒥 𝜇𝜈(𝜉) . (89)

Because the current (87) is conserved, the integral conserved quantity, like (80), can be constructed.

Due to antisymmetry of the superpotential in (89), this conserved quantity is expressed over a surface

integral in the form of the charge:

𝒫(𝜉) =
∫︁
Σ

𝑑3𝑥𝒥 0(𝜉) =

∮︁
𝜕Σ

𝑑𝜎𝑘𝒥 0𝑘(𝜉) , (90)

where 𝑑𝜎𝑘 is the element of integration on 𝜕Σ. It is a significant expression because it connects a

quantity 𝒫(𝜉) obtained by integration of local densities with a surface integral playing a role of a quasi-
local quantity (see discussion in the Introduction).

5. The total mass of the Schwarzschild black hole in GR

Already in the Introduction, we have noted that it is important to describe exact solutions in

GR in terms of the field-theoretic formalism. This means that the solution is represented by the field

configuration propagating on a fixed background. In the present and next sections, we concentrate on the

first exact solution of GR, which is the Schwarzschild solution. It is simplest yet most relevant solution

in GR, and its properties interpreted in the framework of the geometrical description are well known. In

the present section (based on the results of the papers [89,136,137], see also chapter 4 in the book [3]),

we calculate the total mass of the Schwarzschild black hole presented by various field configurations

connected by gauge transformations.
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For the Schwarzschild solution, which is asymptotically flat, it is quite natural to admit the flat

space-time at spatial infinity as a background space-time. Therefore we choose a flat metric coinciding

with the asymptotic metric as the background metric. In spherical coordinates, the metric is

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2
(︀
𝑑𝜃2 + sin2 𝜃𝑑𝜑2

)︀
, (91)

where, as usual, the coordinates are numerated as 𝑥0 = 𝑐𝑡, 𝑥1 = 𝑟, 𝑥2 = 𝜃 and 𝑥3 = 𝜑. (The freedom to

use Cartesian coordinates distinguishes the field-theoretic formulation even with a flat background from

the use of a numerical matrix background 𝑑𝑖𝑎𝑔(−1, 1, 1, 1).) We denote the background metric of the

Minkowski space in curved coordinates as 𝑔𝜇𝜈 = 𝛾𝜇𝜈 . Non-zero components of the Christoffel symbols

corresponding the metric (91) are

𝐶1
22 = −𝑟 , 𝐶1

33 = −𝑟 sin2 𝜃 , 𝐶2
12 = 𝐶3

13 =
1

𝑟
,

𝐶2
33 = − sin 𝜃 cos 𝜃 , 𝐶3

23 = cot 𝜃 . (92)

From the start let us consider the Schwarzschild solution in the typical Droste coordinates:

𝑑𝑠2 = −
(︁
1− 𝑟𝑔

𝑟

)︁
𝑐2𝑑𝑡2 +

1

1− (𝑟𝑔/𝑟)
𝑑𝑟2 + 𝑟2

(︀
𝑑𝜃2 + sin2 𝜃𝑑𝜑2

)︀
, (93)

where 𝑟𝑔 ≡ 2𝑚𝐺/𝑐2. Below we consider other presentations of the Schwarzschild solution important for

our considerations. First, we change the radial coordinate by what one might call a radial translation:

𝑟 → 𝑟
(︁
1 +

𝑟𝑔
4𝑟

)︁
. (94)

Then, the metric element (93) is represented in the so-called isotropic coordinates [127]:

𝑑𝑠2 = − (1− 𝑟𝑔/4𝑟)2

(1 + 𝑟𝑔/4𝑟)
2 𝑐

2𝑑𝑡2 +
(︁
1 +

𝑟𝑔
4𝑟

)︁4 [︀
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2)

]︀
. (95)

Of course, the coordinate ‘𝑟’ here is not the same as the coordinate ‘𝑟’ in (93). This is because the same

background metric in the form (91) is used to derive the field configuration in both the above cases.

While the detailed quantitative features of the background metric are not observable, the background

metric still helps to delimit places that actually exist. While the world does not have edges that one

could fall off, values such as 𝑟 = 0 and infinite values of the coordinates for a well-chosen background

metric do have the significance of delimiting the furthest reaches of the world. As will appear below, one

aims to stuff as much of a curved metric’s observable events onto the background as possible (giving a

bimetric notion of maximal extension), without leaving any bare spots. The non-internal character of

gravitational gauge transformations makes such questions disanalogous to Maxwell or Yang-Mills and

analogous to questions of extending space-times in geometrical GR.

Next we only change the time coordinate

𝑐𝑡→ 𝑐𝑡− 𝑟𝑔 ln
⃒⃒⃒
1− 𝑟𝑔

𝑟

⃒⃒⃒
, (96)

whereas the other coordinates {𝑟, 𝜃, 𝜑} are not changed. As a result one has

𝑑𝑠2 = −
(︁
1− 𝑟𝑔

𝑟

)︁
𝑐2𝑑𝑡2 + 2

𝑟2𝑔
𝑟2
𝑐 𝑑𝑡 𝑑𝑟 +

(︁
1 +

𝑟𝑔
𝑟

)︁(︃
1 +

𝑟2𝑔
𝑟2

)︃
𝑑𝑟2 + 𝑟2

(︀
𝑑𝜃2 + sin2 𝜃𝑑𝜑2

)︀
. (97)

Of course, the coordinate ‘𝑡’ here is not the same as the coordinate ‘𝑡’ in (93). The important properties

of this solution are that a falling test particle approaches the horizon 𝑟 = 𝑟𝑔 in finite coordinate time 𝑡.

Below the horizon, it is always falling towards the singularity, it gets arbitrarily close to it, but only hits

it, at, 𝑡 =∞. Finally, let us provide the time transformation for the Schwarzschild time in the form:

𝑐𝑡→ 𝑐𝑡− 𝑟𝑔 ln
⃒⃒⃒⃒
𝑟

𝑟𝑔
− 1

⃒⃒⃒⃒
. (98)



90 А.Н. Петров, Дж.Б. Питц

As a result, the metric element (93) is represented as

𝑑𝑠2 = −
(︁
1− 𝑟𝑔

𝑟

)︁
𝑐2𝑑𝑡2 + 2

𝑟𝑔
𝑟
𝑐 𝑑𝑡 𝑑𝑟 +

(︁
1 +

𝑟𝑔
𝑟

)︁
𝑑𝑟2 − 𝑟2

(︀
𝑑𝜃2 + sin2 𝜃𝑑𝜑2

)︀
. (99)

Again, the coordinate ‘𝑡’ here is not the same as the coordinate ‘𝑡’ in (93). One has to remark that the

metric (99) is the well known Eddington-Finkelstein (EF) metric for the Schwarzschild geometry [60].

Only one has to make a transformation from the null coordinate 𝑉 to the time coordinate 𝑡: 𝑐𝑡 = 𝑐𝑉 −𝑟.
Now, let us derive field configurations corresponding the above geometrical representations of

the Schwarzschild solution. We use the decomposition (5) adopted to these solutions. Thus, for the

background (93) one has

g𝜇𝜈 ≡ ḡ𝜇𝜈 + h𝜇𝜈 = 𝛾𝜇𝜈 + h𝜇𝜈 =
√
−𝛾 (𝛾𝜇𝜈 + ℎ𝜇𝜈) (100)

where
√
−𝛾 = 𝑟2 sin 𝜃. The equation above defines the non-densitized (non-Gothic letter) gravitational

perturbation ℎ𝜇𝜈 , which is freed of the strong coordinate effects manifest in 𝑟2 sin 𝜃 in spherical

coordinates by the use of
√
−𝛾 to de-densitize.

Then, the field configurations related to (93), (95), (97) and (99), respectively, are as follows,

ℎ00 = −𝑟𝑔
𝑟

1

1− (𝑟𝑔/𝑟)
, ℎ11 = −𝑟𝑔

𝑟
; (101)

ℎ′00 = 1− (1 + 𝑟𝑔/4𝑟)
7

(1− 𝑟𝑔/4𝑟)
, ℎ′11 = ℎ′22 = ℎ′33 = −

(︁ 𝑟𝑔
4𝑟

)︁2
; (102)

ℎ′′00 = −

(︃
𝑟𝑔
𝑟

+
𝑟2𝑔
𝑟2

+
𝑟3𝑔
𝑟3

)︃
, ℎ′′01 =

𝑟2𝑔
𝑟2
, ℎ′′11 = −𝑟𝑔

𝑟
; (103)

ℎ′′′00 = −𝑟𝑔
𝑟
, ℎ′′′01 =

𝑟𝑔
𝑟
, ℎ′′′11 = −𝑟𝑔

𝑟
. (104)

Let us outline a connection of variables in (101)-(104) to gauge transformations. The transformations

(94), (96) and (98) lead to the metric elements (95), (97) and (99), respectively. The last three are united

in the general formula (32). Thus, ℎ𝜇𝜈 , ℎ′𝜇𝜈 , ℎ′′𝜇𝜈 and ℎ′′′𝜇𝜈 are connected by gauge transformations

(34), only in (101)-(104) displacement vectors 𝜉𝛼 are not derived explicitly.

One can see that the field configurations (101)-(104) have breaks and singularities at 𝑟 = 𝑟𝑔 and/or

at 𝑟 = 0. The breaks at 𝑟 = 𝑟𝑔 reflect the coordinate problems at the horizon in the framework of the

geometrical description. Because it is not a physical singularity, it can be suppressed by a (naive) gauge

transformation. Indeed, after related gauge transformations a break at 𝑟 = 𝑟𝑔 in (101) and (102) is

cancelled in (103) and (104). The singularity at 𝑟 = 0 corresponds to a true singularity of a black hole,

so it cannot be suppressed, whether by coordinate transformations or by gauge transformations.

In the present section all the field configurations (101)-(104) (combined with the background metric)

are asymptotically flat. What does this mean? To show this explicitly, it is best to use Cartesian

coordinates, 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧, instead of spherical ones. After that the background metric

element (91) goes to Minkowski form and the Christoffel symbols (92) disappear. As a result, at spatial

infinity, 𝑟 →∞, all the components of the configurations (101)-(104) acquire the fall-off not weaker than

ℎ𝜇𝜈 ∼ 1/𝑟. Then, by the conclusions presented in [138], one concludes that configurations (101)-(104)

have to give the same total mass for the related isolated system. Below, we illustrate it explicitly.

To calculate the total mass/energy of the Schwarzschild black hole, we use the surface integral

(90) at 𝑟 → ∞. The superpotential (84) in this integral is universal and is valid for arbitrary curved

backgrounds, including a flat one. In our case we have to consider covariant derivatives in (84) defined

by the Christoffel symbols (92). To calculate the energy we choose the Killing vector of the background

in the form: 𝜉𝛼 = {−1, 0, 0, 0}. Then for all the kinds of configurations (101)-(104) the total mass is

𝒫(𝜉) =
∮︁
∞
𝑑𝜃𝑑𝜑𝒥 01(𝜉) = 𝑚𝑐2 . (105)
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Let us explain why one has the unique result (105) for the different aforementioned configurations.

Because we use the simplest (flat) background, one can use the current defined in (76). Because we

consider a concrete solution to GR, the field equations (73) hold. Then, the total energy-momentum in

(76) can be expressed through the left hand side of the field equations:

𝑡tot𝜇𝜈 =
1

𝜅
𝒢𝐿𝜇𝜈 =

1

2𝜅

(︀
h𝜇𝜈

;𝛼
;𝛼 + 𝛾𝜇𝜈h

𝛼𝛽
;𝛼𝛽 − h𝛼𝜇;𝜈𝛼 − h𝛼𝜈;𝜇𝛼

)︀
, (106)

where ‘;𝛼’ means the covariant derivative with respect to 𝛾𝜇𝜈 . Substituting this expression into the

current (76) one can transform it into a divergence of the superpotential (84) with the displacement

vector 𝜉𝛼 = 𝜉𝛼 only. Finally, one obtains again the charge (the total energy) in the form and with the

result in (105).

Now, recall that the field configurations are connected by gauge transformations. Then, for the flat

background the transformation for the total energy-momentum (38) acquires the form:

𝜅𝑡′tot𝜇𝜈 = 𝜅𝑡tot𝜇𝜈 + 𝒢𝐿𝜇𝜈(h′ − h) . (107)

The difference 𝒢𝐿𝜇𝜈(h′ − h) is a double divergence, and is, of course, incorporated in the integrand in

(105). One can easily check that all the differences, like h′𝜇𝜈 − h𝜇𝜈 , h′′𝜇𝜈 − h𝜇𝜈 , etc., do not contribute

to the charge (105). Thus the total energy (105) is invariant with respect to gauge transformations

connecting the configurations (101)-(104). One can, of course, interpret this result in terms of either a

gauge-dependent localization of an objectively non-localizable quantity or as the sameness of the total

amounts of distinct localized energies.

6. The Schwarzschild black hole in GR as a point mass

The Schwarzschild solution, being a surprisingly a non-trivial solution, has well-known problems

with regard to its interpretation in the geometric language. These problems have been discussed in

many papers and textbooks and in most cases are resolved. Many of the problems have analogs in the

field-theoretic formalism. One of these problems is a description of the point mass in GR. Here we take

inspiration from a paper by Narlikar [139]. In Newtonian gravity the problem is resolved simply: one can

describe the point mass with the Newtonian potential ∼ 𝑚/𝑟 everywhere, including the point 𝑟 = 0. To

satisfy this, one has to assume that the mass distribution has the form 𝜌(𝑟) = 𝑚𝛿(𝑟), where the Dirac

𝛿-function satisfies the ordinary Poisson equation

∇2

(︂
1

𝑟

)︂
=

(︂
𝑑2

𝑑𝑟2
+

2

𝑟

𝑑

𝑑𝑟

)︂
1

𝑟
= −4𝜋𝛿(r) . (108)

Then, both for a regular distribution 𝜌(𝑟) and for a point mass

𝜌(𝑟) = 𝑚𝛿(r), (109)

the total mass of the gravitating system is calculated with the use of the same integral:

𝑚 =

∫︁
Σ

𝑑𝑥3𝜌(𝑟) (110)

with 𝜌(𝑟) =
√
−𝛾𝜌(𝑟). Thus, the point particle located at 𝑟 = 0 is included in a unique standard way in

Newtonian gravity by making use of the 𝛿-function.

At first glance, it might seem that one can simply use the Schwarzschild solution in order to describe

a point mass in GR. However, a conceptual difficulty arises. If one tries to consider an ideal point mass in

the framework of the geometrical description, the point mass is shrouded by its own horizon. Under the

horizon the coordinate 𝑟 becomes a time-like coordinate and 𝑟 = 0 describes a space-like hypersurface,

not a point. Therefore it is impossible to model it by 𝛿-function at 𝑟 = 0 as one might have hoped
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naively. However, we will show how this problem is resolved using the field-theoretic formalism. Already

we have shown that the black hole geometry can be interpreted as a reasonable field configuration even

at the horizon and behind the horizon down to the true physical singularity 𝑟 = 0; see (101)-(104).

Then, one anticipates that the problem of a point mass can be solved by using the volume integration

(80) with the time-like Killing vector 𝜉𝛼 = {−1, 0, 0, 0} defined for the coordinates in (91):

𝒫(𝜉) =
∫︁
Σ

𝑑3𝑥𝒥 0(𝜉) =

∫︁
Σ

𝑑3𝑥𝑡0𝛼tot𝜉𝛼 =

∫︁
Σ

𝑑3𝑥
√
−𝛾𝑡00tot (111)

over the whole Minkowski space including 𝑟 = 0 with the energy density (energy distribution) 𝑡00tot. The

problem of the point mass can be resolved if the 𝛿-function representing the singularity is included into

𝑡00tot in a consistent way. Thus, (111) has to generalize the Newtonian formula (110). We develop this

proposal below.

Recall that 𝑡00tot is changed by gauge transformations. So, we will check the configurations (101)-

(104) just connected by gauge transformations and define an appropriate gauge fixing. We employ the

following criteria:

(i) Breaks in the field configurations and the energy density at each points of the Minkowski

background space-time (except at 𝑟 = 0) are inadmissible.

(ii) A point particle at rest in the whole Minkowski space-time must be represented. Therefore it must

be natural to describe the true singularity by the worldline 𝑟 = 0.

(iii) The mass-energy should be concentrated at point 𝑟 = 0 only without distribution of energy outside,

as in the Newtonian case (109).3

(iv) The Schwarzschild solution in appropriate coordinates should be asymptotically flat.

(v) A falling test particle should penetrate the horizon without obstacles and reach the point 𝑟 = 0

at a finite time relative to the Minkowski background.4

(vi) The requirement of ‘𝜂-causality’, to be explained presently, is satisfied.

The property of ‘𝜂-causality’ is that the physical light cone of the effective metric 𝑔𝜇𝜈 is tangent

to or inside the flat ‘light’ (null) cone of the flat background metric 𝜂𝜇𝜈 at all points of the Minkowski

background space-time [29, 137, 140, 141].5 This requirement avoids interpretive difficulties in the field-

theoretic presentation of GR. Given this requirement, all the causally connected events in the physical

(dynamical) space-time 𝑔𝜇𝜈 are acceptably related to the causal structure of the Minkowski space.

Hence any 𝑔-time-like vector is 𝜂-time-like and any 𝑔-null vector is 𝜂-time-like or 𝜂-null. Thus the

effect of gravity is to narrow and perhaps gently tip the physical light cone relative to the background

null cone, but not to make anything physical (𝑔-time-like or 𝑔-null) ‘go faster than light’ as defined

by the background (along which, admittedly, electromagnetic radiation does not travel). The proper

relationship of the null cones is not automatically gauge invariant in the sense of the exponentiated

Lie derivative formulae [88]. Properties of 𝜂-causality and gauge transformations conserving it were

studied in some detail [140]. In effect one aims to restrict the naive mathematical notion of gauge

transformations because gauge transformations should relate physically equivalent solutions and thus

should preserve the proper relation between the two null cones. Employing a new set of variables, a

3This condition is imposed here not because its violation is physically absurd, but because one wants to see how fully
the ideal of a point mass can be realized.

4One might instead consider the alternative requirement that the test particle only approach the true singularity as
Minkowski background time goes to infinity. A reason for doing so will be mentioned later.

5 One might reasonably generalize this requirement to use for a background a maximally symmetric space-time of
constant curvature (A)dS or perhaps a pure conformal geometry with vanishing Weyl curvature tensor. In all such cases
a flat null cone is retained and the geometry in question is maximally symmetric.
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generalized eigenvector formalism, can be useful so that the inequalities hold automatically. A major

motivation for the 𝜂-causality criterion is to provide a justification for quantization with equal-time or

space-like commutation relations [29, 140, 142], which otherwise are often used in both covariant and

canonical quantization programs with no evident justification.

The requirement of the 𝜂-causality can be strengthened by the requirement of stable 𝜂-causality

[29,140,141]. The latter condition means that the physical light cone of 𝑔𝜇𝜈 has to be strictly inside the flat

light cone of 𝜂𝜇𝜈 . This relation could be important when quantization problems are under consideration.

Indeed, in the case of tangency, a field is on the verge of 𝜂-causality violation and would be pushed

into violation under some infinitesimal gauge transformations [140]. Assuming stable 𝜂-causality, any

infinitesimal gauge transformation will change an 𝜂-causal configuration into an 𝜂-causal configuration;

only for finite transformations restrictions on the descriptor vector field arise.

We note that the representation of the Schwarzschild solution by the field configuration (101) does

not satisfy the requirements (i), (iii), (v) and (vi) in the above list. The field configuration (102) has to

be excluded as well because it cannot satisfy all the requirements; indeed, the coordinates in (95) do

not cover the area under the horizon, so the configuration (102) cannot describe the true singularity at

all. The configuration (103) does not satisfy the requirement (iii) and a test particle cannot reach the

true singularity in finite Minkowski time.

Unlike (101)-(103), the field configuration (104) satisfies all the requirements in the above list.

Finally let us present the components of the total energy-momentum. After making use of the expression

(106) for the configuration (104) we obtain

𝑡tot00 = 𝑚𝑐2𝛿(r) ,

𝑡tot11 = −𝑚𝑐2𝛿(r) ,
𝑡tot𝐴𝐵 = − 1

2𝛾𝐴𝐵𝑚𝑐
2𝛿(r); 𝐴, . . . = 2, 3 . (112)

Indeed, all these energy-momentum components are concentrated only at 𝑟 = 0. The volume integration

(111) of 𝑡𝑡𝑜𝑡00 from (112) again gives 𝐸 = 𝑚𝑐2. Recall, the surface integration with the configuration

(104) gives 𝐸 = 𝑚𝑐2 also. This result follows with an arbitrary radius, 𝑟0, of 2-sphere in a surface

integration; it is not necessary to set 𝑟0 → ∞. It is an exact analog for calculating the electric charge

in electrodynamics, or calculating the point mass in Newtonian gravity, as in (110) for the point mass.

The other components 𝑡𝑡𝑜𝑡11 and 𝑡𝑡𝑜𝑡𝐴𝐵 in (112) are proportional to 𝛿(r) as well, thus, could describe the

“inner radial” and “inner tangent” stresses. Formally these quantities could be related to the intrinsic

properties of the point. Thus, finally one concludes that the field configuration (104) indeed represents

a point-like object in Minkowski space, though it is more complicated than in Newtonian gravity.

Finally let us remark that we are considering only the total energy-momentum. The matter source,

𝑡𝑚𝜇𝜈 , that contributes into (112) is ‘localized’ at 𝑟 = 0 only. One can find how it can be separated formally

from the free gravitational field, see [136]. However, it is in the spirit of GR that 𝑡𝑚𝜇𝜈 cannot be considered

separately from 𝑡𝑔𝜇𝜈 .

7. Particle trajectories in the Schwarzschild space-time and the harmonic gauge fixing

To find solutions to the Einstein equations, one usually makes an appropriate choice of coordinates.

Harmonic coordinates are among the most popular ones. Concerning the Schwarzschild solution, Fock

[143] has suggested such harmonic coordinates. However, the latter, like the Schwarzschild coordinates,

are singular at the horizon. Many coordinate systems without this defect are known but are not harmonic.

Here, following [138], we discuss coordinates that are both harmonic and regular at the horizon.

Thus, continuing to illustrate the field-theoretic method, we apply it to interpret the transition from

the Fock coordinates to the new harmonic coordinates in terms of gauge transformations. In both of the

gauge fixings, we consider trajectories of test particles falling into a Schwarzschild black hole. We find

that trajectories in the Minkowski space are gauge dependent, as was remarked in the Introduction and
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as one expects from the combined coordinate and gauge transformation that alters only the background

entities. Because gauge transformations do not change the physical meaning, we see once more that the

background Minkowski metric is an auxiliary structure. Thus, a breakdown in the trajectories at the

horizon for the field configuration in the Fock picture is interpreted as physically unreal. Indeed, such a

breakdown is averted for the field configuration corresponding to the new harmonic coordinates. These

problems, of course, are resolved clearly in the framework of the usual geometrical formalism of GR.

Here we illustrate the utility of the field-theoretic formalism.

We start with the Schwarzschild metric in the Fock harmonic coordinates:

𝑑𝑠2 = −𝑟 − 𝛼
𝑟 + 𝛼

𝑐2𝑑𝑡2 +
𝑟 + 𝛼

𝑟 − 𝛼
𝑑𝑟2 + (𝑟 + 𝛼)2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) , (113)

where 𝛼 = 𝑟𝑔/2. Going to asymptotically Cartesian coordinates in standard way, one finds that the

solution (113) satisfies the harmonic (de Donder) conditions

𝜕𝜈
(︀√
−𝑔𝑔𝜇𝜈

)︀
= 0 . (114)

For the sake of simplicity, we consider a test particle falling radially into a black hole. We restrict

ourselves to the ‘parabolic orbit’ case, when a particle begins its motion from the rest at infinity 𝑟 =∞.

Then, the equation of motion of the test particle becomes

𝑐𝑡 = −2𝛼

[︃
2

3

(︂
𝑟 + 𝛼

2𝛼

)︂3/2

+ 2

(︂
𝑟 + 𝛼

2𝛼

)︂1/2

+ ln
⃒⃒⃒ 𝑟
𝛼
− 1
⃒⃒⃒
− 2 ln

⃒⃒⃒⃒
⃒
(︂
𝑟 + 𝛼

2𝛼

)︂1/2

+ 1

⃒⃒⃒⃒
⃒
]︃
+ const . (115)

The existence of the term −2𝛼 ln |𝑟/𝛼 − 1| leads to the situation that a particle falling to the event

horizon 𝑟 = 𝛼 takes infinitely long in the coordinate time 𝑡 that is the time of a distant observer.

The problem of breakdown at the horizon using the de Donder harmonic conditions has been

resolved [138]. Finally its results lead to the transformations:

𝑐𝜏 = 𝑐𝑡+ 2𝛼 ln

⃒⃒⃒⃒
𝑟 − 𝛼
𝑟 + 𝛼

⃒⃒⃒⃒
, 𝑟 = 𝑟 , 𝜃 = 𝜃 , 𝜑 = 𝜑 . (116)

Applying them, one obtains the Schwarzschild solution in the form:

𝑑𝑠2 = −𝑟 − 𝛼
𝑟 + 𝛼

𝑐2𝑑𝜏2 + 2

(︂
2𝛼

𝑟 + 𝛼

)︂2

𝑐𝑑𝜏𝑑𝑟 +

[︃
1 +

2𝛼

𝑟 + 𝛼
+

(︂
2𝛼

𝑟 + 𝛼

)︂2

+

(︂
2𝛼

𝑟 + 𝛼

)︂3
]︃
𝑑𝑟2

+ (𝑟 + 𝛼)2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) . (117)

Note that with the use of the shift 𝑟 → 𝑟 − 𝛼 in the transformation (116) and the metric (117), they

go to (96) and (97), respectively. One can check that after transferring to asymptotically Cartesian

coordinates, the metric (117) satisfies (114) also. Finally, the metric coefficients in (117) are finite

everywhere except of the true singularity 𝑟 = −𝛼.
The trajectory of the test particle that is on the ‘parabolic orbit’ is given by the equation:

𝑐𝜏 = −2𝛼

[︃
2

3

(︂
𝑟 + 𝛼

2𝛼

)︂3/2

+ 2

(︂
𝑟 + 𝛼

2𝛼

)︂1/2

+ ln
⃒⃒⃒ 𝑟
𝛼
+ 1
⃒⃒⃒
− 2 ln

⃒⃒⃒⃒
⃒
(︂
𝑟 + 𝛼

2𝛼

)︂1/2

+ 1

⃒⃒⃒⃒
⃒
]︃
+ const . (118)

Here, unlike (115), there is no divergent logarithmic term. Hence, in the coordinate system (𝜏, 𝑟), a

falling particle trajectory without breakdowns goes through the horizon.

The metric (117) and the structure of the light cones

𝑐
𝑑𝜏

𝑑𝑟

⃒⃒⃒⃒
1

=
(𝑟 + 𝛼)2 + (2𝛼)2

𝑟2 − 𝛼2
, 𝑐

𝑑𝜏

𝑑𝑟

⃒⃒⃒⃒
2

= −𝑟 + 3𝛼

𝑟 + 𝛼
(119)

show that in the domain 𝑟 < 𝛼 both 𝑟 and 𝜏 become space-like, as in the Finkelstein coordinates [144].

This is permissible, because the metric signature in the domain 𝑟 < 𝛼 remains correct. Only when 𝑟 < 𝛼
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is the description of the particle motion somewhat unusual: evolution of the space-like coordinate 𝑟 is

presented as 𝑟 = 𝑟(𝜏), where 𝜏 is another space-like coordinate. The sections 𝜏 = const are space-like

both outside and inside the horizon. If some events belong to the surface 𝜏 = const, then in this sense,

one can speak about their simultaneity everywhere from infinity up to the true singularity.

Now, let us consider particle trajectories in terms of gauge transformations. Because gauge

transformations act on the gravitational variables together with the matter variables, they have to

act on the particle trajectories as well. Therefore, trajectories in a fixed background space-time are not

gauge invariant. We consider ‘parabolic orbits’ for the Schwarzschild solutions in harmonic coordinates,

both in (113) and in (117). We consider also the exact transformations without using the 𝜉𝜇-vector used

to build finite transformations by exponentiation as above.

First, we construct the field configurations related to the solutions (113) and (117). For the latter

we make a mapping 𝜏 → 𝑡 . After that for each of the solutions we choose the same background metric

in the form (91). However, we exclude from the consideration the domain −𝛼 ≤ 𝑟 < 0. Doing so is

permissible here because we consider the trajectories in the neighborhood of the event horizon only.

Thus, using the decomposition (100), one finds the field configuration for the solution (113):

ℎ00 = 1− (1 + 𝛼/𝑟)
3

1− 𝛼/𝑟
, ℎ11 = −𝛼

2

𝑟2
, (120)

and the field configuration for the solution (117):

ℎ′00 = 1−
(︁
1 +

𝛼

𝑟

)︁2 [︃
1 +

2𝛼

1 + 𝛼
+

(︂
2𝛼

1 + 𝛼

)︂2

+

(︂
2𝛼

1 + 𝛼

)︂3
]︃
,

ℎ′01 =
4𝛼2

𝑟2
, ℎ′11 = −𝛼

2

𝑟2
. (121)

As with the configurations (101) -(104), the above configurations are connected by gauge transformations

(neglecting the notion of 𝜂-causality). Now, they are induced by the coordinate transformations (116).

Let us discuss properties of the configurations (120) and (121), which are quite similar. First, they

do not depend on time 𝑡 (stationary). Second, both of them represent asymptotically flat space-time.

Third, the total energy calculated for both of the cases is 𝐸 = 𝑚𝑐2. Finally, the tensorial de Donder

condition is rewritten as

ℎ𝜇𝜈 ;𝜈 = 0 , and ℎ′𝜇𝜈 ;𝜈 = 0 (122)

for both of the configurations in spherical coordinates. The background metric permits the use of

spherical coordinates while imposing a Fock-like generalized harmonic condition.

To describe the trajectories of test particles, one has to vary the action (67) with respect to the

coordinates. One obtains the equations for 4-velocities 𝑢𝛼 and 𝑢′𝛼; formally they are the equations for

the geodesics. Maintaining the restriction to ‘parabolic trajectories’, for the configuration (120) one has:

𝑢0 =
𝑟 + 𝛼

𝑟 − 𝛼
, 𝑢1 = −

(︂
2𝛼

𝑟 + 𝛼

)︂1/2

, 𝑢2 = 𝑢3 = 0. (123)

Integrating 𝑐𝑑𝑡 = (𝑢0/𝑢1)𝑑𝑟 one obtains the equation (115). Thus, now the particle approaches the

event horizon, 𝑟 = 𝛼, for an infinitely long time 𝑡; it fails to penetrate the horizon. However, for the field

configuration (121), one has

𝑢′0 =
1

1 +
(︁

2𝛼
1+𝛼

)︁1/2
[︃
1 +

(︂
2𝛼

1 + 𝛼

)︂1/2

+
2𝛼

1 + 𝛼
+

(︂
2𝛼

1 + 𝛼

)︂3/2

+

(︂
2𝛼

1 + 𝛼

)︂2
]︃
,

𝑢′1 = −
(︂

2𝛼

𝑟 + 𝛼

)︂1/2

, 𝑢′2 = 𝑢′3 = 0 . (124)

After integration of 𝑐𝑑𝑡 = (𝑢′0/𝑢′1)𝑑𝑟 one obtains the equations (118) by changing 𝜏 for 𝑡. Unlike

(123), now the particle approaches the event horizon and penetrate it at a time 𝑡. Thus, by a
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gauge transformation, trajectories are saved from a ‘catastrophic’ discontinuity at 𝑟 = 𝑟𝑔. Much as

one extends the solution in geometrical GR, one should extend the field configuration so that the

interior of the horizon is included. While infinitesimal gauge transformations remain arbitrary, finite

gauge transformations require suitable boundary conditions to implement a suitable notion of maximal

extension.

8. Continuous gravitational collapse to a point mass in GR

In this section, we recall some recent results [4]. The Schwarzschild solution represented as a point

particle with a Minkowski background is only a static model (at least outside the horizon). A dynamical

model, that is a description of the process by which the final point mass is formed, is desirable. In the

framework of the geometrical description, the gravitational collapse was studied by Oppenheimer and

Snyder [145]; see also the textbook [60]. The interior solution presents the Friedmann solution with dust

in synchronous comoving coordinates, whereas the exterior is represented by the vacuum Schwarzschild

solution. However, the interior region and the exterior region are described by different coordinates.

To make the nature of the matching region more perspicuous, it would be more natural to describe

both of the regions in the same coordinates. Recently [146] such a task has been accomplished using a

generalization of the well known Painlevé-Gullstrand (PG) coordinates. Below we outline the results.

Painlevé [147] and Gullstrand [148] discovered their coordinates independently. An instructive

derivation of the PG coordinates and their discussion can be found in [149] and references therein. The

original form of the Schwarzschild vacuum solution in the PG coordinates is

𝑑𝑠2 = −𝑐2𝑑𝑡2𝑝 +
(︂
𝑑𝑟 +

(︁𝑟𝑔
𝑟

)︁1/2
𝑐𝑑𝑡𝑝

)︂2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2) . (125)

For the sake of definiteness, we discuss in this section the type of time coordinate, for example, here, 𝑡𝑝,

that is related to PG coordinates. Its main property is that each of the sections defined as 𝑐𝑡𝑝 = const

presents a flat Euclidean space. Recently interest in these coordinates has increased; many authors,

retaining this property, have generalized the PG coordinates for more complicated black holes than the

Schwarzschild one; see, for example, [146].

To obtain the PG coordinates, one can find the transformation from the Schwarzschild coordinates

in (93) in this way:

𝑐𝑑𝑡𝑝 = 𝑐𝑑𝑡𝑠 +
(𝑟𝑔/𝑟)

1/2

1− 𝑟𝑔/𝑟
𝑑𝑟 = 𝑐𝑑𝑡𝑠 +

(︂
1

1− 𝑟𝑔/𝑟
− 1

1 + (𝑟𝑔/𝑟)1/2

)︂
𝑑𝑟. (126)

By this transformation one removes the break in the geodesic trajectories on the space-time diagram.

This fact can be seen more explicitly after analyzing the components of the 4-velocity for test particles.

The transformation (126) permits us to recalculate the components of 4-velocity for test particles (123)

falling radially from infinity:

𝑢0𝑝 = 1 , 𝑢1𝑝 = −
(︁𝑟𝑔
𝑟

)︁1/2
, 𝑢2 = 𝑢3 = 0. (127)

The authors of the paper [146] have generalized the vacuum PG solution (125) to the dust case. Here

we consider the model where the surface of the star is at rest at infinity. It corresponds to our assumption

of parabolic orbits. Collapse from a finite radius has been suggested in [146] as well. However, we do not

consider it here because conceptually it is similar, but formulae are significantly more complicated. It

is assumed that the radius of the star, 𝑅(𝑡𝑝), monotonically decreases from 𝑡 = −∞ to zero as 𝑡𝑝 → 0.

Thus, the dust interior region is contracted monotonically to the true singularity. Let us list the steps

provided in [146].

First, they have assumed that the metric element has the form

𝑑𝑠2 = −𝑐2𝑑𝑡2𝑝 +

(︃
𝑑𝑟 +

√︂
2𝑚

𝑟

𝐺

𝑐2
𝑐𝑑𝑡𝑝

)︃2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2) , (128)
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where 𝑚 = 𝑚(𝑡𝑝, 𝑟). Second, the Einstein equations permit to express the matter energy-momentum

𝑇𝜈
𝜇 at the right hand side through the function 𝑚(𝑡𝑝, 𝑟) unknown from the start. Third, as usual, in

the dust case it is assumed that the matter energy-momentum has the form:

𝑇𝜇𝜈𝑝 = 𝜌𝑐2𝑢𝜇𝑝𝑢
𝜈
𝑝 , (129)

where for the 4-velocity of matter particles moving radially it is assumed that: 𝑢𝜇𝑝 = {1, 𝑣(𝑡𝑝, 𝑟), 0, 0}.
Fourth, the requirement of the consistency of the Einstein equations permits to find 𝑣(𝑡𝑝, 𝑟). Thus

𝑢0𝑝 = 1 , 𝑢1𝑝 = −
(︂
2𝑚

𝑟

𝐺

𝑐2

)︂1/2

, 𝑢2 = 𝑢3 = 0. (130)

Fifth, the integration of the 00-component of the Einstein equations yields the function

𝑚(𝑡𝑝, 𝑟) = 4𝜋

∫︁ 𝑟

0

𝜌(𝑡𝑝, 𝑟)𝑟
2𝑑𝑟 . (131)

Sixth, after assumption that 𝜌(𝑡, 𝑟) = 𝜑(𝑟)𝜓(𝑡) and imposing the natural conditions 𝑚|𝑟=0 = 0 and

𝜌|𝑡=0 =∞, the 10-component of the Einstein equations gives:

𝜌 =
1

6𝜋

𝑐2

𝐺

1

(𝑐𝑡𝑝)2
(132)

for −∞ < 𝑡 ≤ 0. Thus, a combination of (131) with (132) gives√︂
2𝑚

𝑟

𝐺

𝑐2
=

2

3

𝑟

|𝑐𝑡𝑝|
. (133)

Substituting it into (128), one obtains

𝑑𝑠2 = −
(︂
1− 4

9

𝑟2

(𝑐𝑡𝑝)2

)︂
𝑐2𝑑𝑡2𝑝 −

4

3

𝑟

𝑐𝑡𝑝
𝑑𝑟𝑐𝑑𝑡𝑝 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2) . (134)

A single non-zero component of the matter energy-momentum tensor is

𝑇00 =
𝑐4

6𝜋𝐺

1

(𝑐𝑡𝑝)2
. (135)

Contracting it with 𝑔00 = −1 that easily can be found by (134), one finds the trace of the energy-

momentum tensor:

𝑇 = − 𝑐4

6𝜋𝐺

1

(𝑐𝑡𝑝)2
. (136)

Thus, (132)-(136) describe a homogeneous distribution of dust in the interior PG coordinates.

However, only the interior solution is presented above. It is more interesting to describe a collapse

of a star with the radius 𝑟 = 𝑅(𝑡𝑝), connecting the interior dust region, 𝑟 < 𝑅(𝑡𝑝), with the exterior

vacuum region, 𝑟 > 𝑅(𝑡𝑝), described by (125). Of course, the total mass𝑀 of the star is to be a constant;

it is calculated by

𝑀 = 𝑚(𝑡𝑝, 𝑟)|𝑟=𝑅(𝑡𝑝)
=

4𝜋

3
𝑅3𝜌 . (137)

We stress that the interior and exterior regions defined in the aforementioned way are smoothly matched

to each other.

It might seem that we could directly apply the above geometrical derivation to represent the

continuous gravitational collapse in the framework of the field-theoretic formulation. However, the

exterior metric (125) does not satisfy the requirement of asymptotic flatness. To satisfy this requirement

for the total model presented by the exterior metric (125) and the interior metric (134), we can apply

the transformation in both the regions,

𝑐𝑑𝑡𝑝 = 𝑐𝑑𝑡𝑒 +
(𝑟𝑔/𝑟)

1/2

1 + (𝑟𝑔/𝑟)1/2
𝑑𝑟 . (138)
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This change transfers the coordinates from the PG time 𝑡𝑝 to the EF time 𝑡𝑒 in the external region

initially. Then the exterior metric (125) is transformed to the EF metric (99). Following the field-

theoretic prescription, we make the shift 𝑡𝑒 → 𝑡 and obtain the field configuration (104) with 𝑡𝑡𝑜𝑡𝜇𝜈 = 0

at 𝑟 > 𝑅(𝑡), see (112). The next step is to be the field-theoretic reformulation for the interior solution

at 𝑟 < 𝑅(𝑡). Because the function (138) is differentiable and monotonic at 0 < 𝑟 ≤ ∞, a smooth

matching between the exterior and interior solutions is obtained. Because the surface 𝑅(𝑡𝑝) goes to zero

monotonically at 𝑡𝑝 → 0, choosing a vanishing constant after integration of (138), one easily finds that

𝑅(𝑡𝑒)→ 0, when 𝑡𝑒 → 𝑡→ 0 with the final state (112).

One can easily check that in the case of the generalized EF frame for the interior and exterior

regions, the above requirements (i)-(vi) of section 6, including the 𝜂-causality condition, are satisfied.

Now, for the sake of generality, excluding only the requirement (iii) while preserving all the other

aforementioned requirements, we will show how this picture can be generalized. To achieve this goal we

use the transformation with arbitrary 𝑓 combined with (138):

𝑐𝑑𝑡𝑝 = 𝑐𝑑𝑡𝑓 +

(︂
(𝑟𝑔/𝑟)

1/2

1 + (𝑟𝑔/𝑟)1/2
− 𝑓(𝑟𝑔/𝑟)

)︂
𝑑𝑟 = 𝑐𝑑𝑡𝑓 + 𝐹 (𝑟𝑔/𝑟)𝑑𝑟 . (139)

First, we consider the exterior region 𝑟 > 𝑅(𝑡). Then, we obtain the metric

𝑑𝑠2 = −
(︁
1− 𝑟𝑔

𝑟

)︁
𝑐2𝑑𝑡2𝑓 + 2

[︁𝑟𝑔
𝑟

+
(︁
1− 𝑟𝑔

𝑟

)︁
𝑓
]︁
𝑐𝑑𝑡𝑓𝑑𝑟

+
[︁(︁

1 +
𝑟𝑔
𝑟

)︁
− 2

𝑟𝑔
𝑟
𝑓 −

(︁
1− 𝑟𝑔

𝑟

)︁
𝑓2
]︁
𝑑𝑟2 + 𝑟2𝑑Ω2 . (140)

After applying a shift 𝑡𝑓 → 𝑡, choosing the flat background again in the form (91), and making the use

of the decomposition (100), one obtains for the field configuration corresponding to (140)

ℎ00𝑓 = −𝑟𝑔
𝑟

+ 2
𝑟𝑔
𝑟
𝑓 +

(︁
1− 𝑟𝑔

𝑟

)︁
𝑓2 ,

ℎ01𝑓 =
𝑟𝑔
𝑟

+
(︁
1− 𝑟𝑔

𝑟

)︁
𝑓 ,

ℎ11𝑓 = −𝑟𝑔
𝑟
. (141)

This field configuration has to satisfy the Einstein equations in the whole Minkowski space. Because

it contains an arbitrary function 𝑓 = 𝑓(𝑟𝑔/𝑟), the technique has to be generalized. Formally, one can

derive for an arbitrary such function 𝑓 = 𝑓(𝑟𝑔/𝑟):

∇2𝑓
(︁𝑟𝑔
𝑟

)︁
=

(︃
𝑓 ′′
𝑟2𝑔
𝑟4
− 4𝜋𝑟𝑔𝑓

′𝛿(𝑟)

)︃
, (142)

where 𝑓 ′ = 𝜕𝑥𝑓(𝑥). The definition (142) has been derived by making use of the formula (108),

assuming that 𝑓(𝑥) in enough smooth. Application of the theory of generalized functions requires

careful consideration; therefore formula (142) tends to restrict the choice of 𝑓 (𝑟𝑔/𝑟). Then, calculating

the components of 𝑡𝑡𝑜𝑡𝜇𝜈 making use of (106), we obtain non-vanishing components of the total energy-

momentum tensor6:

𝑡𝑡𝑜𝑡00 = 𝑚𝑐2𝛿(𝑟) +
𝑚𝑐2

2

[︃
𝑓 ′′

4𝜋

𝑟𝑔
𝑟4
− 𝑓 ′𝛿(𝑟)

]︃
;

𝑓 ≡ 2
𝑟𝑔
𝑟
𝑓 +

(︁
1− 𝑟𝑔

𝑟

)︁
𝑓2 , (143)

𝑡𝑡𝑜𝑡11 = −𝑚𝑐2𝛿(𝑟) , (144)

𝑡𝑡𝑜𝑡𝐴𝐵 = − 1
2𝛾𝐴𝐵𝑚𝑐

2𝛿(𝑟); 𝐴, . . . = 2, 3 . (145)

6Note that in [4] in the formula related to (143) a misprint exists.
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One can see that the energy-momentum is especially concentrated at 𝑟 = 0 and is expressed making use

of the 𝛿(𝑟)-function representing the point particle, but there is also a distribution of energy outside

𝑟 = 0.

The requirement for a definition of the permissible weakest fall-off for asymptotically flat space-

time (see [80, 81] and references there in) presented by the field configuration ℎ𝜇𝜈𝑓 in (141) restricts the

asymptotic behavior of 𝑓 as

𝑓(𝑟𝑔/𝑟)|𝑟→∞ ∼ (𝑟𝑔/𝑟)
𝛼; 𝛼 > 1/2. (146)

Consider the requirement of continuity of geodesics in the vacuum region. The transformation

(139) permits us to recalculate the components of the 4-velocity for test particles (127) in the generic

coordinates:

𝑢0𝑓 = 1 +
𝑟𝑔/𝑟

1 + (𝑟𝑔/𝑟)1/2
− 𝑓 ·

(︁𝑟𝑔
𝑟

)︁1/2
, 𝑢1𝑓 = −

(︁𝑟𝑔
𝑟

)︁1/2
, 𝑢2 = 𝑢3 = 0. (147)

This gives
𝑐𝑑𝑡

𝑑𝑟
=
𝑢0𝑓
𝑢1𝑓

= − (𝑟/𝑟𝑔)
1/2 − (𝑟𝑔/𝑟)

1/2

1 + (𝑟𝑔/𝑟)1/2
+ 𝑓. (148)

The requirement for geodesics to be continuous after such transformations gives a restriction on 𝑓 :

|𝑓 | < 𝑁 (149)

for some finite arbitrary large positive 𝑁 , at least for 𝑟 > 0. Indeed, failure of (149) means that

lim𝑟→𝑟0 |𝑓 | =∞ and indicates a breakdown of the geodesic at 𝑟0. Besides, to have an appropriate form

for the ingoing geodesics, one needs a monotonic smooth function 𝑓 when 𝑐𝑑𝑡/𝑑𝑟 < 0. Then the concrete

expression (148) gives

𝑓 < 1 +
(𝑟/𝑟𝑔)

1/2

1 + (𝑟𝑔/𝑟)1/2
. (150)

After integration of (148), one obtains the equation of the radial parabolic orbits on the space-time

(𝑡× 𝑟) diagram:

𝑐𝑡 = −2𝑟𝑔
[︂
1

3

(︁𝑟𝑔
𝑟

)︁−3/2

+
(︁𝑟𝑔
𝑟

)︁−1/2

− ln

⃒⃒⃒⃒(︁𝑟𝑔
𝑟

)︁−1/2

+ 1

⃒⃒⃒⃒ ]︂
+

∫︁ 𝑟

𝑓
(︁𝑟𝑔
𝑟*

)︁
𝑑𝑟* + const . (151)

Summarizing, we conclude that the requirement of the continuity is satisfied by the restrictions (149)

and (150) for monotonic smooth 𝑓 at 0 < 𝑟 ≤ ∞.

Let us turn to the question of 𝜂-causality. Deriving the light cone expressions from 𝑑𝑠2 = 0 for

the quite complicated form of the metric (140), one obtains surprisingly simple formulae. Thus for the

ingoing light ray one has
𝑐𝑑𝑡

𝑑𝑟

⃒⃒⃒⃒
1

= 𝑓 − 1, (152)

whereas for the outgoing light ray it is

𝑐𝑑𝑡

𝑑𝑟

⃒⃒⃒⃒
2

= 𝑓 +
1 + 𝑟𝑔/𝑟

1− 𝑟𝑔/𝑟
. (153)

The requirement of 𝜂-causality7 for (152) and (153) can be realized as

𝑓 − 1 ≤ −1, (154)

𝑓 +
1 + 𝑟𝑔/𝑟

1− 𝑟𝑔/𝑟
≥ 1. (155)

7Note that the requirement of ‘𝜂-causality’ can be changed by the requirement of the ‘stable 𝜂-causality’ by exchanged
{≤} and {≥} by {<} and {>} in (154) and (155).
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The restriction (154) gives 𝑓 ≤ 0 everywhere (0 ≤ 𝑟 ≤ ∞). Then if we impose the requirement of

𝜂-causality, it is not necessary to consider (150). The restriction (155) has to be analyzed in more detail.

Considering asymptotic behaviour at 𝑟 →∞ in (155), we are restricted by

|𝑓 |𝑟→∞ < ∼ 2𝑟𝑔
𝑟
, (156)

which is even stronger than the restriction (146). From (155) for the domain 𝑟𝑔 < 𝑟 <∞, one has

|𝑓 | ≤ 2𝑟𝑔/𝑟

1− 𝑟𝑔/𝑟
. (157)

This restriction is in addition to (149). Finally, for the case 𝑟 = 𝑟𝑔 with the restricted 𝑓 , see (149),

the expression (153) describing the event horizon becomes +∞, as it must for the horizon. Thus, for

a monotonic, restricted and negative 𝑓, the expression (153) for the outgoing light ray is positive for

𝑟𝑔 ≤ 𝑟 ≤ ∞.

The case 𝑟 < 𝑟𝑔 requires special attention. The expression (153) becomes negative, automatically

satisfying the requirement (v) with the natural relation between ingoing and outgoing light rays:

𝑓 − 1 ≥ 𝑓 +
1 + 𝑟𝑔/𝑟

1− 𝑟𝑔/𝑟
. (158)

The equality in (158) holds at the true singularity, which is where the light cone becomes degenerated.

Again, this fact signals the continuity of the geodesic all the way to the true singularity. Finally, it could

be interesting to require that after finalizing the collapse the test particle approach the true singularity

at a finite time 𝑡.8 Then, it is necessary to add the restriction (149) by

|𝑓 ||𝑟→0 < 𝑁 . (159)

Let us turn to the exterior region including the surface of the star 𝑟 ≤ 𝑅(𝑡). To achieve a smooth

matching between exterior and interior regions, one has to require that the function 𝐹 (𝑟𝑔/𝑟) in (139) be

differentiable and monotonic on the interval 0 < 𝑟 ≤ ∞. Another requirement for the function 𝐹 (𝑟𝑔/𝑟)

in (139) is formulated as follows. After integrating (139) and replacing 𝑟 by a surface radius 𝑅(𝑡𝑝), one

can choose the constant of integration so that if the surface 𝑅(𝑡𝑝) goes to zero monotonically at 𝑡𝑝 → 0,

then 𝑅(𝑡𝑓 )→ 0 when 𝑡𝑓 → 𝑡→ 0. Then the final state (143)-(145) is achieved at 𝑡→ 0 at a finite time

𝑡. After satisfying these requirements, the model of the continuous collapse (125) plus (128) presented

in the PG frame is rewritten in the generic frame with the use of the transformations (139). Then, all

the requirements hold; only the 𝜂-causality problem remains to be addressed.

After transformation (139) and the shift 𝑡𝑓 → 𝑡, the metric (134) for the interior region acquires

the form:

𝑑𝑠2 = −
(︂
1− 2𝑚

𝑟

)︂
𝑑𝑡2 + 2

[︃√︂
2𝑚

𝑟
−
(︂
1− 2𝑚

𝑟

)︂
𝐹

]︃
𝑑𝑟𝑑𝑡

+

[︃
1 + 2

√︂
2𝑚

𝑟
𝐹 −

(︂
1− 2𝑚

𝑟

)︂
𝐹 2

]︃
𝑑𝑟2 + 𝑟2𝑑Ω2 . (160)

For the sake of simplicity in formulae, here and below, we set 𝐺 = 𝑐 = 1. A standard calculation gives

the expression for the ingoing ray of the light cone

𝑑𝑡

𝑑𝑟

⃒⃒⃒⃒
1

= − 1

1 +
√︀

2𝑚/𝑟
− 𝐹 (𝑟𝑔/𝑟), (161)

8As noted above, one might also consider the alternative requirement that the test particle only approach the true
singularity as Minkowski background time goes to infinity. In that case there might be less worry about black hole
information loss, which might never occur.
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whereas the outgoing ray is determined by

𝑑𝑡

𝑑𝑟

⃒⃒⃒⃒
2

=
1

1−
√︀
2𝑚/𝑟

− 𝐹 (𝑟𝑔/𝑟). (162)

The necessary requirement for (161) is that it has to be negative in all the regions. Then the 𝜂-causality

condition, 𝑑𝑡/𝑑𝑟|1 ≤ −1, implies the restriction

𝐹 ≥
√︀
2𝑚/𝑟

1 +
√︀
2𝑚/𝑟

. (163)

Let us consider three cases for (162), each of which corresponds to a concrete instant 𝑡𝑝:

� The first case corresponds to the PG instant of time when the star boundary 𝑅(𝑡𝑝) > 𝑟𝑔 ≡ 2𝑀/𝑟.

Because 𝑚 ≤𝑀 and 𝑚 in (133) decreases as 𝑟 → 0 at the instant 𝑡𝑝, one finds that

2𝑚

𝑟
< 1. (164)

Next, the outgoing expression (162) has to be positive in order to be matched with the exterior

smoothly. Then the 𝜂-causality condition, 𝑑𝑡/𝑑𝑟|2 ≥ 1, implies the restriction√︀
2𝑚/𝑟

1−
√︀
2𝑚/𝑟

− 𝐹 ≥ 1. (165)

Combining (163) and (165) gives a unified restriction on 𝐹 (𝑟𝑔/𝑟)√︀
2𝑚/𝑟

1 +
√︀
2𝑚/𝑟

≤ 𝐹 ≤
√︀
2𝑚/𝑟

1−
√︀
2𝑚/𝑟

. (166)

� The second case is classified by the position of the star surface at the horizon 𝑅(𝑡𝑝) = 𝑟𝑔. Then

(162) gives 𝑑𝑡/𝑑𝑟|2 = +∞. It matches the exterior region continuously, see (153). For the interior

region, where again the condition (164) holds, the result (166) of the first case is repeated.

� The third case that is classified by the position of the star surface, 𝑅(𝑡𝑝) < 𝑟𝑔, is more complicated.

The interior region is decomposed into the three subregions: a) 2𝑚/𝑟 > 1, b) 2𝑚/𝑟 = 1 and c)

2𝑚/𝑟 < 1. In the case a) for the outgoing ray defined by (162) one has 𝑑𝑡/𝑑𝑟|2 < 0. Then, because

the light cone must not to be degenerate, 𝑑𝑡/𝑑𝑟|1 > 𝑑𝑡/𝑑𝑟|2, one obtains

− 1

1 +
√︀
2𝑚/𝑟

>
1

1−
√︀
2𝑚/𝑟

(167)

so the restriction for case a) holds automatically. Analyzing subregions b) and c), one finds easily

that the results correspond exactly to the results of the second case and the first case, respectively.

Thus again one obtains only the restriction (166).

To conclude the description of continuous collapse in the field-theoretic formulation, it is instructive

to analyze the matter part 𝑡𝑚𝜇𝜈 of the total energy-momentum. Thus, applying the transformations (139)

to the metric, 𝑔𝜇𝜈 , represented by (134), we obtain 𝑔
𝑓
𝜇𝜈 in (160); applying the transformations (139) to

the energy-momentum, 𝑇𝜇𝜈 , presented in (135), we obtain 𝑇
𝑓
𝜇𝜈 . Then, formula (21) takes the form:

𝑡𝑚𝜇𝜈 = 𝑇 𝑓𝜇𝜈 − 1
2𝑔
𝑓
𝜇𝜈𝑇

𝑓 − 1
2𝛾𝜇𝜈𝛾

𝛼𝛽
(︁
𝑇 𝑓𝛼𝛽 −

1
2𝑔
𝑓
𝛼𝛽𝑇

𝑓
)︁
. (168)

Thus we conclude that the interior region defined by the energy-momentum (168) is in fact contracted

at 𝑡→ 0 to a point-like state described by the 𝛿-function.

Keeping in mind that the Schwarzschild black hole and its collapse to this stage are physical

realities as described by Einstein’s equations, one can view the description in the field-theoretic formalism
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as merely an alternative equivalent mathematical language. On the other hand, physically reasonable

criteria such as 𝜂-causality make it possible to take the background geometry to be not purely fictitious,

but rather to have a qualitative physical meaning that makes sense of quantization techniques that

are often used anyway. Thus our treatment of gravitational collapse can be useful both for practical

calculations and fundamental considerations.

9. The field-theoretic method in an arbitrary 𝐷-dimensional metric theory

Here, following [89, 91], see also [3], we generalize the Lagrangian-based field-theoretic method in

arbitrary 𝐷-dimensional metric theories. Consider a theory with the action:

𝑆 =
1

𝑐

∫︁
𝑑𝐷𝑥ℒ𝐷(𝑔,Φ) = −

1

2𝜅𝑐

∫︁
𝑑𝐷𝑥ℒ𝐺(𝑔𝜇𝜈) +

1

𝑐

∫︁
𝑑𝐷𝑥ℒ𝑀 (𝑔𝜇𝜈 ,Φ

𝐴) , (169)

where ℒ𝐺 is the pure gravitational Lagrangian in an arbitrary metric theory and 𝜅 is the 𝐷-dimensional

Einstein’s constant. Here, unlike section 1, we consider just the components of 𝑔𝜇𝜈 as dynamical variables.

They are more appropriate in this section than are the g𝜇𝜈 =
√
−𝑔𝑔𝜇𝜈 components used earlier. For a

different choice of dynamic variables from the set

𝑔 =
{︀
𝑔𝜇𝜈 , 𝑔𝜇𝜈 ,

√
−𝑔𝑔𝜇𝜈 ,

√
−𝑔𝑔𝜇𝜈 , (−𝑔)𝑔𝜇𝜈 , . . .

}︀
(170)

see [3, 6]. The matter part ℒ𝑀 in (169) depends on Φ𝐴 — generalized matter variables interacting with

𝑔𝜇𝜈 , the same as (1). Varying (169) with respect to 𝑔𝛼𝛽 , one obtains

𝛿ℒ𝐺

𝛿𝑔𝛼𝛽
= 2𝜅

𝛿ℒ𝑀

𝛿𝑔𝛼𝛽
→ 𝛿ℒ𝐺

𝛿𝑔𝜇𝜈
≡ 𝒞𝜇𝜈 = 𝜅𝒯𝜇𝜈 . (171)

The last equality gives the gravitational equations in the standard form obtained after contracting the

first one with 𝜕𝑔𝛼𝛽/𝜕𝑔
𝜇𝜈 = −𝑔𝛼(𝜇𝑔𝜈)𝛽 ; see the analogous coefficient in (14). Variation of (169) with

respect to Φ𝐴 gives corresponding matter equations, the same as (3). The background gravitational

equations are in the form

𝛿ℒ̄𝐺

𝛿𝑔𝛼𝛽
= 2𝜅

𝛿ℒ̄𝑀

𝛿𝑔𝛼𝛽
→ 𝛿ℒ̄𝐺

𝛿𝑔𝜇𝜈
≡ 𝒞𝜇𝜈 = 𝜅𝒯𝜇𝜈 , (172)

where the background Lagrangian is defined by the barred procedure in (169): ℒ̄𝐷 = ℒ𝐷(𝑔𝛼𝛽 , Φ̄
𝐴). The

background matter equations are derived analogously. It is assumed that background fields 𝑔𝛼𝛽 and Φ̄𝐴

are specified and satisfy the background equations.

A physical system described by equations (171) can be considered as a perturbed one with respect

to a background system with the equations (172). Just as in (5) and (6), we decompose metric and

matter variables in (169) into the background (barred) parts and the dynamic variables (perturbations)

κ𝜇𝜈 and 𝜑𝐴:

𝑔𝜇𝜈 = 𝑔𝜇𝜈 + κ𝜇𝜈 , (173)

Φ𝐴 = Φ̄𝐴 + 𝜑𝐴 . (174)

We note that h𝜇𝜈 in (5) and κ𝜇𝜈 in (173) one differ (aside from moving indices and densitizing with the

background metric) both in trace at lowest order and in second and higher order terms, see [3,6]. Now,

analogously to the definition (9), we derive the dynamical Lagrangian:

ℒ𝑑𝑦𝑛(𝑔, Φ̄;κ, 𝜑) = ℒ𝐷(𝑔 + κ, Φ̄ + 𝜑)− κ𝜇𝜈
𝛿ℒ̄𝐷

𝛿𝑔𝜇𝜈
− 𝜑𝐴 𝛿ℒ̄𝐷

𝛿Φ̄𝐴
− ℒ̄𝐷 = − 1

2𝜅
ℒ𝑔 + ℒ𝑚 . (175)

Thus, the field-theoretic method applied in an arbitrary metric theory is based on the dynamical

Lagrangian (175).
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To obtain the gravitational equations related to the Lagrangian (175), one needs to vary it with

respect to κ𝛼𝛽 . Using the property 𝛿ℒ𝐷(𝑔 + κ, Φ̄ + 𝜑)/𝛿𝑔𝛼𝛽 = 𝛿ℒ𝐷(𝑔 + κ, Φ̄ + 𝜑)/𝛿κ𝛼𝛽 , we present
them in the form:

𝛿ℒ𝑑𝑦𝑛

𝛿κ𝛼𝛽
=

𝛿

𝛿𝑔𝛼𝛽

[︀
ℒ𝐷(𝑔 + κ, Φ̄ + 𝜑)− ℒ̄𝐷

]︀
= 0 . (176)

It is clear that the field equations for κ𝛼𝛽 are equivalent to the gravitational equations in the standard
form (171) if the background equations (172) are satisfied.

Let us define the metric energy-momentum for perturbations defined in (173) and (174). Let us

rewrite the equation (176) as

𝛿ℒ𝑑𝑦𝑛

𝛿𝑔𝛼𝛽
= − 𝛿

𝛿𝑔𝛼𝛽

(︂
κ𝜌𝜎

𝛿ℒ̄𝐷

𝛿𝑔𝜌𝜎
+ 𝜑𝐴

𝛿ℒ̄𝐷

𝛿Φ̄𝐴

)︂
. (177)

Note that the background equations should not be taken into account before variation of ℒ𝑑𝑦𝑛 with

respect to 𝑔𝛼𝛽 and Φ̄𝐴. Then, contracting (177) with 2𝜅𝜕𝑔𝛼𝛽/𝑔
𝜇𝜈 = −2𝜅𝑔𝛼(𝜇𝑔𝜈)𝛽 , one obtains another

form of the equations (176):

𝒞𝐿𝜇𝜈 + ℱ𝐿𝜇𝜈 = 𝜅𝑡tot𝜇𝜈 (178)

equivalent to the equations (171) if the background equations (172) hold. The linear operators on the

left hand side of (178) are defined by the expressions:

𝒞𝐿𝜇𝜈 =
𝛿

𝛿𝑔𝜇𝜈
κ𝜌𝜎

𝛿ℒ̄𝐺

𝛿𝑔𝜌𝜎
, (179)

ℱ𝐿𝜇𝜈 = −2𝜅 𝛿

𝛿𝑔𝜇𝜈

(︂
κ𝜌𝜎

𝛿ℒ̄𝑀

𝛿𝑔𝜌𝜎
+ 𝜑𝐴

𝛿ℒ̄𝑀

𝛿Φ̄𝐴

)︂
. (180)

Finally, the right hand side in (178) becomes the total symmetric (metric) energy-momentum tensor

density for the fields (perturbations) κ𝛼𝛽 and 𝜑𝐴 defined as usual,

𝑡tot𝜇𝜈 = 2
𝛿ℒ𝑑𝑦𝑛

𝛿𝑔𝜇𝜈
= 𝑡𝑔𝜇𝜈 + 𝑡𝑚𝜇𝜈 , (181)

see also (18). Here, 𝑡𝑔𝜇𝜈 is the energy-momentum related to a pure gravitational part of the Lagrangian

(175); 𝑡𝑚𝜇𝜈 is the energy-momentum of matter fields 𝜑𝐴 in (175) interacting with the gravitational field

κ𝛼𝛽 .
To conclude this section, let us note the following. As a general rule, a difference between definitions

of metric perturbations is not important for calculating conserved quantities for static solutions. It does

not influence calculations in quantum gravity either [92]. A difference in the second order becomes

important, however, in a real calculation for radiating isolated systems in 4D GR. It turns out that

only the choice of the metric perturbations h𝜇𝜈 = g𝜇𝜈 − ḡ𝜇𝜈 gives (see [131]) the standard Bondi-Sachs

momentum [150]. All the other decompositions (including the popular κ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑔𝜇𝜈 , used in this

section and, for example, in [128]) do not lead to the right result.

10. Currents and superpotentials in an arbitrary field theory of the Lovelock type

Here we construct currents and superpotentials for generic theories presented in the field-theoretic

description, as in the above section. We restrict ourselves to Lovelock-like theories; see [6] for a detailed

treatment. For such constructions we use many results from the Appendix. Before constructing conserved

quantities for perturbations in the Lovelock theory, we consider the Lagrangian (264) in the Appendix

in a more concrete form:

ℒ = ℒ𝐺(κ𝛼𝛽 ; 𝑔𝜋𝜎;𝑅𝛼𝜇𝛽𝜈) , (182)

although it is still quite abstract. The fields in (264) is now 𝜓𝐴 = {κ𝛼𝛽 , 𝑔𝜋𝜎}. The Lagrangian (182)

is an arbitrary enough smooth algebraic function of κ𝛼𝛽 , 𝑔𝜋𝜎 and the Riemann tensor 𝑅𝛼𝜇𝛽𝜈 . We note

especially that derivatives of the metric 𝑔𝜋𝜎 are included only in 𝑅
𝛼
𝜇𝛽𝜈 , not anywhere else.
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It is very useful to define the quantity

𝜔𝜌𝜆|𝜇𝜈 =
𝜕ℒ𝐺

𝜕𝑔𝜌𝜆,𝜇𝜈
. (183)

It has the evident symmetries

𝜔𝜌𝜆|𝜇𝜈 = 𝜔𝜆𝜌|𝜇𝜈 = 𝜔𝜌𝜆|𝜈𝜇 . (184)

Recalling that the Riemannian tensor is linear in second derivatives of 𝑔𝜋𝜎, we conclude that the quantity

(183) is covariant automatically. Turning again to the Appendix and making use of the definitions for

the coefficients (267) - (269) and (275) - (277), the identities (273) and (284), the quantity (183) and

its symmetries (184), we can rewrite (275) - (277) for the Lagrangian (182) as

𝑢𝜎
𝜇 = ℒ𝐺𝛿

𝜇
𝜎 +

𝛿ℒ𝐺

𝛿𝜓𝐴
𝜓𝐴
⃒⃒𝜇
𝜎
− 𝜔𝜆𝜇|𝜌𝜈𝑅𝜆𝜌𝜈𝜎 , (185)

𝑚𝜌𝜇𝜈 = 2∇𝜆𝜔𝜌𝜈|𝜇𝜆; 𝑚𝜌𝜇𝜈 = 𝑚𝜈𝜇𝜌 , (186)

𝑛𝜌𝜆𝜇𝜈 = 𝜔𝜌𝜆|𝜇𝜈 ; 𝜔𝜌𝜆|𝜇𝜈 = 𝜔𝜇𝜈|𝜌𝜆 . (187)

The concrete expressions (185) - (187) are covariant, and, of course, they satisfy the identities (282) -

(284) of the general form derived in the Appendix.

Keeping in mind the expressions (185) - (187), we rewrite the current (279) - (280) and the

superpotential (286) of the general form for the Lagrangian (182) in the concrete form:

𝑖𝜇 = −
(︂
ℒ𝐺𝜉

𝜇 +
𝛿ℒ𝐺

𝛿𝜓𝐴
𝜓𝐴
⃒⃒𝜇
𝜎
𝜉𝜎 + 𝑧𝜇

)︂
, (188)

𝑧𝜇 = 2𝜁𝜌𝜆∇𝜈𝜔𝜌𝜆|𝜇𝜈 − 2𝜔𝜌𝜆|𝜇𝜈∇𝜈𝜁𝜌𝜆 . (189)

𝑖𝜇𝜈 = 4
3

(︁
2𝜉𝜎∇𝜆𝜔𝜎 [𝜇|𝜈]𝜆 − 𝜔𝜎

[𝜇|𝜈]𝜆∇𝜆𝜉𝜎
)︁
. (190)

Here 2𝜁𝜌𝜎 ≡ −$𝜉𝑔𝜌𝜎 = 2∇(𝜌𝜉𝜎) . We note that due to the symmetry in (186), the 𝑚-term disappears

from the current; compare (279) with (188). Furthermore, the expression for the superpotential (190)

only depends on the quantity 𝜔𝜌𝜆|𝜇𝜈 defined in (183).

Keeping in mind the abstract definitions (185)-(190) related to the system (182), we can construct

currents and superpotentials in metric theories in the field-theoretic formulation (175). We use the

structure of the Lagrangian ℒ𝑑𝑦𝑛 defined in (175). Consider this purely gravitational part that is linear
in metric perturbations:

ℒ1 = − 1

2𝜅
κ𝛼𝛽

𝛿ℒ̄𝐺

𝛿𝑔𝛼𝛽
. (191)

It plays a role of an auxiliary Lagrangian (182), where we can set 𝜓𝐴 = {κ𝛼𝛽 , 𝑔𝜋𝜎}. The index "1"is

used because Lagrangian (191) is of the first order in κ𝛼𝛽 in expansion of ℒ𝐺. To apply the above

technique to the Lagrangian (191), we assume that ℒ1 = ℒ1(κ𝛼𝛽 ; 𝑔𝜋𝜎; 𝑅̄𝛼𝜇𝛽𝜈). Then, because ℒ1 in

(191) is proportional to the Lagrange derivative of ℒ̄𝐺, the gravitational part of the Lagrangian (169)

can present a theory of the Lovelock type, see, for example, [6]. However, here we consider generic

expressions only. Analysing (191) itself, we can obtain only identically conserved quantities. However,

because the Lagrangian (191) induces the construction of the linear operator (179) in (178), making

the use of the field equations (178), we can transform the identically conserved quantities to physically

conserved quantities.

The explicit expression for the linear operator 𝒞𝐿𝜇𝜈 in (178) defined in (179) is quite important in

numerous applications. Let us derive it. For the Lagrangian (191) that is of the type (182) and for the

expressions (185) - (187), one finds from the related identity (282) of the Appendix:

𝒞𝐿𝜇𝜎 = −1

2

𝛿ℒ̄𝐺

𝛿𝑔𝛼𝛽
(κ𝛼𝛽𝛿𝜇𝜎 + κ𝛼𝛽 |𝜇𝜎

)︀
+ 2𝜅

(︂
∇̄𝜌𝜆𝜔1𝜎

𝜇|𝜌𝜆 + 𝜔
𝜇𝜏 |𝜌𝜆
1 𝑅̄𝜎𝜆𝜏𝜌 +

1

3
𝜔1𝜎

𝜆|𝜏𝜌𝑅̄𝜇𝜏𝜌𝜆

)︂
. (192)
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Note that this formula can be obtained following the method in [151]; however, the use of the identities

(281) - (284) in the Appendix is more economical.

Now, let us proceed to constructing concrete quantities. Substituting the expression for the

Lagrangian (191) into the current expression (188), one obtains

𝑖𝜇1 = 𝜃𝜎
𝜇𝜉𝜎 − 𝑧𝜇1 , (193)

where the coefficient 𝜃𝜎
𝜇 of 𝜉𝜎 is interpreted as the energy-momentum in the standard way:

𝜃𝜎
𝜇 =

1

𝜅

(︂
𝒞𝐿𝜇𝜎 +

1

2

𝛿ℒ̄𝐺

𝛿𝑔𝛼𝛽

(︀
κ𝛼𝛽𝛿𝜇𝜎 + κ𝛼𝛽 |𝜇𝜎

)︀)︂
, (194)

and 𝑧-term 𝑧𝜇1 has exactly the form (189) with 𝜔
𝜌𝜆|𝜇𝜈
1 defined in (183) and related to ℒ1. Combining

the last expression with (192), one finds a quite simple formula for the energy-momentum:

𝜃𝜎
𝜇 = 2

(︂
∇̄𝜌𝜆𝜔1𝜎

𝜇|𝜌𝜆 + 𝜔
𝜇𝜏 |𝜌𝜆
1 𝑅̄𝜎𝜆𝜏𝜌 +

1

3
𝜔1𝜎

𝜆|𝜏𝜌𝑅̄𝜇𝜏𝜌𝜆

)︂
. (195)

Formally the energy-momentum (195) is related to the auxiliary and arbitrary Lagrangian (191). We

note again the nice property of the expression (195) that, being quite general, depends essentially on

the quantity 𝜔
𝜎𝜆|𝜏𝜌
1 , not on any other quantities.

We recall that the current (193) is identically conserved:

∇̄𝜇𝑖𝜇1 ≡ 𝜕𝜇𝑖
𝜇
1 ≡ 0 . (196)

As a consequence, the current in this identity, making use of the Klein-Noether identities, can be

rewritten as a divergence of a superpotential,

𝑖𝜇1 ≡ ∇̄𝜈𝑖
𝜇𝜈
1 ≡ 𝜕𝜈𝑖

𝜇𝜈
1 , (197)

where 𝑖𝜇𝜈1 has exactly the form (190) with 𝜔
𝜌𝜆|𝜇𝜈
1 related to the Lagrangian ℒ1 in (191).

Both (196) and (197) are merely identities. To make them physically meaningful conservation laws,

one has to use the field equations. Substituting the part linear in metric perturbations from (178) into

the energy-momentum (194), one obtains

𝜃𝜇𝜈 → 𝜏𝜇𝜈 = 𝑡𝑔𝜇𝜈 + 𝑡𝑚𝜇𝜈 −
1

𝜅
ℱ𝐿𝜇𝜈 +

1

2𝜅

𝛿ℒ̄𝐺

𝛿𝑔𝛼𝛽

(︁
κ𝛼𝛽𝑔𝜇𝜈 + κ𝛼𝛽 |𝜎𝜇 𝑔𝜈𝜎

)︁
. (198)

Here, the first term is the energy-momentum for a free gravitational field related to the gravitational

part of the Lagrangian (175). The second term is the energy-momentum for matter fields related to

the matter part of the Lagrangian (175). The last term describes interaction of the gravitational field

κ𝛼𝛽 with a curved background described by the metric 𝑔𝜇𝜈 . However, the role of the third term is not

clear. Let us clarify it. Using the definitions (180) and (181), combining the second and third terms, and

taking into account (171) and (172), one transforms (198) to

𝜏𝜇𝜈 = 𝑡𝑔𝜇𝜈 + 𝛿𝒯𝜇𝜈 +
1

2𝜅

𝛿ℒ̄𝐺

𝛿𝑔𝛼𝛽

(︁
κ𝛼𝛽𝑔𝜇𝜈 + κ𝛼𝛽 |𝜎𝜇 𝑔𝜈𝜎

)︁
, (199)

where 𝛿𝒯𝜇𝜈 = 𝒯𝜇𝜈 −𝒯𝜇𝜈 describes a perturbation of the matter energy-momentum of the gravity theory

in (171) with respect to the background one in (172). If we examine a concrete solution to the field

equations (178), we can turn to the energy-momentum (195), instead of (198) or (199). Thus, it is

𝜏𝜇𝜈 = 2

(︂
∇̄𝜌𝜆𝜔𝜇𝜈|𝜌𝜆1 + 𝜔

𝜇𝜏 |𝜌𝜆
1 𝑅̄𝜈𝜆𝜏𝜌 +

1

3
𝜔
𝜈𝜆|𝜏𝜌
1 𝑅̄𝜇𝜏𝜌𝜆

)︂⃒⃒⃒⃒
(178)

. (200)

After that let us consider the current (193) and transform it to

𝑖𝜇1 → ℐ𝜇 = 𝜏𝜇𝜈𝜉𝜈 − 𝑧𝜇1 . (201)
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Then the identity (196) becomes the physically sensible conservation law:

∇̄𝜇ℐ𝜇 = 𝜕𝜇ℐ𝜇 = 0 . (202)

At last, substituting potentials of a concrete solution into the superpotential expression (197), we denote

it as

𝑖𝜇𝜈1 → ℐ𝜇𝜈 . (203)

Then the identity (197) turns into the physically sensible conservation law:

ℐ𝜇 = ∇̄𝜈ℐ𝜇𝜈 = 𝜕𝜈ℐ𝜇𝜈 . (204)

All the above has been constructed for arbitrary curved backgrounds, even non-vacuum ones.

However, the case of a vacuum background,

ℒ̄𝑚 = 0→ 𝛿ℒ̄𝐺

𝛿𝑔𝜇𝜈
= 0, 𝒯𝜇𝜈 = 0, ℱ𝐿𝜇𝜈 = 0 , (205)

is of special interest; we describe this below. The field equations (178) go over to

𝒞𝐿𝜇𝜈 = 𝜅
(︀
𝑡𝑔𝜇𝜈 + 𝑡𝑚𝜇𝜈

)︀
. (206)

Under the conditions (205) the expression (192) becomes

𝒞𝐿𝜇𝜎 = 2𝜅

(︂
∇̄𝜌𝜆𝜔1𝜎

𝜇|𝜌𝜆 + 𝜔
𝜇𝜏 |𝜌𝜆
1 𝑅̄𝜎𝜆𝜏𝜌 +

1

3
𝜔1𝜎

𝜆|𝜏𝜌𝑅̄𝜇𝜏𝜌𝜆

)︂
. (207)

In this case, the total energy-momentum (198) becomes

𝜏𝜇𝜈 = 𝑡𝑔𝜇𝜈 + 𝑡𝑚𝜇𝜈 . (208)

Again we highlight the nice property that the expression (207) depends on the quantity 𝜔
𝜎𝜆|𝜏𝜌
1 only,

defined as in (183) for the Lagrangian ℒ1. Next, in the case (205), making use of the Killing vectors

𝜉𝛼 = 𝜉𝛼, the current (201) transforms to the standard form:

ℐ𝜇 = 𝜏𝜇𝜈𝜉𝜈 . (209)

Assuming arbitrary Killing vectors 𝜉𝛼 = 𝜉𝛼 in the identity (196), one obtains the identity

∇̄𝜇𝒞𝐿𝜇𝜈 ≡ 0 (210)

under the conditions (205). Then, from the field equations (206) one obtains the differential conservation

law for the total energy-momentum tensor density (208):

∇̄𝜈𝜏𝜇𝜈 = 0 . (211)

11. Conserved quantities in the Lovelock theory

In this section, based on the results of the previous two sections, the Lagrangian based field-theoretic

reformulation of Lovelock gravity is provided; for more detail see [6]. After that we construct conserved

currents and superpotentials. Let us concretize Lagrangian (169) for the Lovelock theory:

ℒ𝐷(𝑔,Φ) = −
1

2𝜅
ℒ𝐿(𝑔𝜇𝜈) + ℒ𝑀 (𝑔𝜇𝜈 ,Φ

𝐴) , (212)

where 𝜅 = 2Ω𝐷−2𝐺𝐷 > 0 with 𝐺𝐷 being the 𝐷-dimensional Newton’s constant and Ω𝐷−2 being the

area of a (𝐷 − 2)-dimensional sphere with unit radius. Lovelock [152] has required the following for
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the Lagrangian: it must describe a covariant metric theory in 𝐷-dimensional space-time and the field

equations from varying ℒ𝐿(𝑔𝜇𝜈) must be of second order only. The unique possibility to satisfy these

requirements is a sum of polynomials in the Riemann tensor in the form:

ℒ𝐿(𝑔𝜇𝜈) =
√
−𝑔

𝑚∑︁
𝑝=0

𝛼𝑝
2𝑝
𝛿
[𝑗1𝑗2···𝑗2𝑝]
[𝑖1𝑖2···𝑖2𝑝] 𝑅

𝑖1𝑖2
𝑗1𝑗2
· · ·𝑅𝑖2𝑝−1𝑖2𝑝

𝑗2𝑝−1𝑗2𝑝
, (213)

where 𝛼𝑝 are coupling constants, 𝑚 = [(𝐷 − 1)/2], and the totally-antisymmetric Kronecker delta is

𝛿
[𝜈1···𝜈𝑞 ]
[𝜇1···𝜇𝑞 ]

:=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝛿𝜈1𝜇1

𝛿𝜈2𝜇1
· · · 𝛿

𝜈𝑞
𝜇1

𝛿𝜈1𝜇2
𝛿𝜈2𝜇2

𝛿
𝜈𝑞
𝜇2

...
. . .

𝛿𝜈1𝜇𝑞
𝛿𝜈2𝜇𝑞

· · · 𝛿
𝜈𝑞
𝜇𝑞

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ . (214)

The term of zeroth order, 𝑝 = 0, gives a ‘bare’ cosmological constant Λ0 with 𝛼0 = −2Λ0. The first

order term 𝑝 = 1 is the Hilbert (Ricci scalar) term with 𝛼1 = 1. The second order term 𝑝 = 2 is the

Gauss-Bonnet term with a coupling constant 𝛼2 unspecified.

The Lovelock field equations obtained by varying (212) with respect to 𝑔𝜌𝜎 are

𝛿ℒ𝐿

𝛿𝑔𝜌𝜎
=
√
−𝑔𝑔𝜋𝜌

𝑚∑︁
𝑝=0

𝛼𝑝
2𝑝+1

𝛿
[𝜎𝜇1𝜇2···𝜇2𝑝]

[𝜋𝜈1𝜈2···𝜈2𝑝] 𝑅
𝜈1𝜈2
𝜇1𝜇2

· · ·𝑅𝜈2𝑝−1𝜈2𝑝
𝜇2𝑝−1𝜇2𝑝 = −𝜅𝒯 𝜌𝜎 . (215)

It is just an instance of the equations (171).

Now let us derive a Lagrangian linear in metric perturbations (191) for the Lovelock theory. We use

the background version of the Lovelock Lagrangian, ℒ̄𝐿, and the background version of the Lagrange

derivative in (215). Then, the auxiliary Lagrangian (191) becomes

ℒ𝐿1 = − 1

2𝜅
κ𝜌𝜎

𝛿ℒ̄𝐿

𝛿𝑔𝜌𝜎
= −
√
−𝑔
2𝜅

κ𝜌𝜎
𝑚∑︁
𝑝=0

𝛼𝑝
2𝑝+1

𝛿
[𝜎𝜇1𝜇2···𝜇2𝑝]

[𝜌𝜈1𝜈2···𝜈2𝑝] 𝑅̄
𝜈1𝜈2
𝜇1𝜇2

· · · 𝑅̄𝜈2𝑝−1𝜈2𝑝
𝜇2𝑝−1𝜇2𝑝 . (216)

Another key quantity of the type (183) calculated for the Lagrangian (216) is

𝜔
𝜌𝜆|𝜇𝜈
𝐿1 = −

√
−𝑔
2𝜅

κ𝛼𝛽
𝑚∑︁
𝑝=1

𝑝𝛼𝑝
2𝑝+1

𝛿
[𝛽𝜋𝜎𝜇3𝜇4···𝜇2𝑝]

[𝛼𝜑𝜓𝜈3𝜈4···𝜈2𝑝] 𝑅̄
𝜈3𝜈4
𝜇3𝜇4

· · · 𝑅̄𝜈2𝑝−1𝜈2𝑝
𝜇2𝑝−1𝜇2𝑝𝑔

𝜑𝜏𝑔𝜓𝜅𝐷𝜌𝜆𝜇𝜈
𝜋𝜎𝜏𝜅 . (217)

The quantity

𝐷𝜌𝜆𝜇𝜈
𝜋𝜎𝜏𝜅 = 1

2

(︀
𝛿𝜌𝜋𝛿

𝜆
𝜅 + 𝛿𝜌𝜅𝛿

𝜆
𝜋

)︀
(𝛿𝜇𝜎𝛿

𝜈
𝜏 + 𝛿𝜇𝜏 𝛿

𝜈
𝜎) (218)

is obtained after differentiating the Riemannian tensor 𝑅̄𝜋𝜎𝜏𝜅 with respect to 𝑔𝜌𝜆,𝜇𝜈 and using the index

symmetry.

The linear operator (192) in the Lovelock gravity acquires the form

𝒞𝜎𝜇𝐿 = −1

2
𝑔𝜎𝜇

𝛿ℒ̄𝐿

𝛿𝑔𝜌𝜏
κ𝜌𝜏 +

𝛿ℒ̄𝐿

𝛿𝑔𝜌𝜎
κ𝜇𝜌 + 2𝜅

(︂
∇̄𝜌𝜆𝜔𝜎𝜇|𝜌𝜆𝐿1 + 𝜔

𝜇𝜏 |𝜌𝜆
𝐿1 𝑅̄𝜎𝜆𝜏𝜌 +

1

3
𝜔
𝜎𝜆|𝜏𝜌
𝐿1 𝑅̄𝜇𝜏𝜌𝜆

)︂
. (219)

Keeping in mind the quantity (217), we derive the conserved quantities in the Lovelock gravity. The

conserved current (201) becomes

ℐ𝜇𝐿 = 𝜏𝜎𝜇𝐿 𝜉𝜎 − 𝑧𝜇𝐿 , (220)

where the energy-momentum (200) has the form:

𝜏𝜎𝜇𝐿 = 2

(︂
∇̄𝜌𝜆𝜔𝜎𝜇|𝜌𝜆𝐿1 + 𝜔

𝜇𝜏 |𝜌𝜆
𝐿1 𝑅̄𝜎𝜆𝜏𝜌 +

1

3
𝜔
𝜎𝜆|𝜏𝜌
𝐿1 𝑅̄𝜇𝜏𝜌𝜆

)︂⃒⃒⃒⃒
(178)

, (221)

and 𝑧-term is

𝑧𝜇𝐿 = 2𝜁𝜌𝜆∇̄𝜈𝜔𝜌𝜆|𝜇𝜈𝐿1 − 2𝜔
𝜌𝜆|𝜇𝜈
𝐿1 ∇̄𝜈𝜁𝜌𝜆; 2𝜁𝜌𝜆 ≡ −$𝜉𝑔𝜌𝜆 = 2∇̄(𝜌𝜉𝜆) . (222)
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The superpotential (203) related to the Lovelock theory is

ℐ𝜇𝜈𝐿 = 4
3

(︁
2𝜉𝜎∇̄𝜆𝜔𝜎[𝜇|𝜈]𝜆𝐿1 − 𝜔

𝜎[𝜇|𝜈]𝜆
𝐿1 ∇̄𝜆𝜉𝜎

)︁
. (223)

We again note the remarkable property:

� For the Lovelock gravity the conserved current (220) and the superpotential (223) constructed for

arbitrary perturbations on arbitrary curved backgrounds depend on the quantity (217) only.

It is quite important to present conserved quantities for perturbations on arbitrary curved

backgrounds. However, let us turn to vacuum backgrounds. Recall that the linear operator (219) in

the case of vacuum background depends on (217) only; the two first terms disappaer. Besides, the

energy-momentum (221) is conserved for a vacuum background, see (211).

Among vacuum backgrounds one of the more popular solutions of Lovelock gravity is the global

maximally symmetric space-time with a negative constant curvature - anti-de Sitter (AdS) space.

Therefore, it is important to construct conserved quantities for arbitrary perturbations on such

backgrounds. Let us consider the equations (215) as background equations under the vacuum condition

(205):

𝛿ℒ̄ℓ
𝛿𝑔𝜌𝜎

=
√
−𝑔𝑔𝜋𝜌

𝑚∑︁
𝑝=0

𝛼𝑝
2𝑝+1

𝛿
[𝜎𝜇1𝜇2···𝜇2𝑝]

[𝜋𝜈1𝜈2···𝜈2𝑝] 𝑅̄
𝜈1𝜈2
𝜇1𝜇2

· · · 𝑅̄𝜈2𝑝−1𝜈2𝑝
𝜇2𝑝−1𝜇2𝑝 = 0 . (224)

Let the AdS space be with the Riemannian tensor

𝑅̄𝜌𝜆𝜇𝜈 = − 1

ℓ2𝑒𝑓𝑓
𝛿
[𝜌𝜆]
[𝜇𝜈] , (225)

where the quantity ℓ𝑒𝑓𝑓 is called the effective AdS radius and defines a length scale. To find ℓ𝑒𝑓𝑓 one

has to substitute (225) into (224), obtain

𝑉 (𝑥)|
𝑥=ℓ−2

𝑒𝑓𝑓
=

𝑚∑︁
𝑝=0

(𝐷 − 3)!

(𝐷 − 2𝑝− 1)!
𝛼𝑝(−1)𝑝−1

(︁
ℓ−2
𝑒𝑓𝑓

)︁𝑝
= 0 (226)

and resolve it with respect to ℓ𝑒𝑓𝑓 . The effective cosmological constant is defined as usual,

Λ𝑒𝑓𝑓 = − (𝐷 − 1)(𝐷 − 2)

2ℓ2𝑒𝑓𝑓
. (227)

A space-time with the curvature tensor (225) can be described by the metric:

𝑑𝑠2 = −𝑓𝑑𝑡2 + 1

𝑓
𝑑𝑟2 + 𝑟2

𝐷−2∑︁
𝑎,𝑏

𝑞𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 ; 𝑓(𝑟) ≡ 1 +

𝑟2

ℓ2𝑒𝑓𝑓
, (228)

where the last term describes (𝐷−2)-dimensional sphere of the radius 𝑟, and 𝑞𝑎𝑏 depends on coordinates
on the sphere only.

As has been emphasized, the key expression in constructing conserved quantities for perturbations

κ𝜇𝜈 on vacuum backgrounds in Lovelock gravity is (217). Let us derive it explicitly making use of the

condition (225) for the AdS background. First, we calculate the first term from the sum in (217) that

corresponds to the Hilbert part of the Lovelock Lagrangian, 𝛼1 = 1,

𝜔
𝜌𝜆|𝜇𝜈
𝐻1 = −

√
−𝑔
8𝜅

κ𝛼𝛽 𝛿
[𝛽𝜋𝜎]
[𝛼𝜑𝜓]𝑔

𝜑𝜏𝑔𝜓𝜅𝐷𝜌𝜆𝜇𝜈
𝜋𝜎𝜏𝜅 =

−
√
−𝑔
4𝜅

[︁
𝑔𝜇𝜈κ𝜌𝜆 + 𝑔𝜌𝜆κ𝜇𝜈 − 𝑔𝜌(𝜇κ𝜈)𝜆 − 𝑔𝜆(𝜇κ𝜈)𝜌 − κ

(︁
𝑔𝜇𝜈𝑔𝜌𝜆 − 𝑔𝜌(𝜇𝑔𝜈)𝜆

)︁]︁
. (229)

Using this expression and the condition (225), and making use of the standard relation,

𝛿
[𝜈1···𝜈2𝑘𝜈2𝑘+1···𝜈2𝑝]
[𝜇1···𝜇2𝑘𝜇2𝑘+1···𝜇2𝑝]

𝛿
𝜇2𝑘+1
𝜈2𝑘+1 · · · 𝛿

𝜇2𝑝
𝜈2𝑝 =

(𝐷 − 2𝑘)!

(𝐷 − 2𝑝)!
𝛿
[𝜈1···𝜈2𝑘]
[𝜇1···𝜇2𝑘]

, (230)
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we obtain for (217):

𝜔
𝜌𝜆|𝜇𝜈
𝐿1 = 𝜔

𝜌𝜆|𝜇𝜈
𝐻1

[︃
𝑚∑︁
𝑝=1

𝑝𝛼𝑝(−ℓ−2
𝑒𝑓𝑓 )

𝑝−1 (𝐷 − 3)!

(𝐷 − 2𝑝− 1)!

]︃
. (231)

The expression in square brackets is defined by the differentiation of (226)

𝑉 ′(ℓ−2
𝑒𝑓𝑓 ) = (𝜕𝑥𝑉 (𝑥))|

𝑥=ℓ−2
𝑒𝑓𝑓

=

𝑚∑︁
𝑝=1

𝑝𝛼𝑝(−ℓ−2
𝑒𝑓𝑓 )

𝑝−1 (𝐷 − 3)!

(𝐷 − 2𝑝− 1)!
. (232)

Thus, the expression (231) shows that all the quantities (219) - (223), if they are constructed for the

AdS background, are proportional to the factor (232). The role of the coefficient (232) is discussed in

detail in [6, 153].

One now finds that the linear operator (219) under the condition (225) becomes

𝒞𝜇𝜈𝐿 =

√
−𝑔
2

𝑉 ′(ℓ−2
𝑒𝑓𝑓 )

[︀
∇̄𝜌𝜇κ𝜈𝜌 + ∇̄𝜌𝜈κ𝜇𝜌 − ∇̄𝜌𝜌κ𝜇𝜈 − 𝑔𝜇𝜈∇̄𝜌𝜆κ𝜌𝜆

+𝑔𝜇𝜈∇̄𝜌𝜌κ − ∇̄𝜇𝜈κ + 𝑔𝜇𝜈
2Λ𝑒𝑓𝑓
𝐷 − 2

κ − 4Λ𝑒𝑓𝑓
𝐷 − 2

κ𝜇𝜈
]︂
. (233)

The same expression (233) divided by 𝜅 is, in fact, the energy-momentum 𝜏𝜇𝜈𝐿 in (221). Of course, it is

conserved (see (211):

∇̄𝜈𝜏𝜇𝜈𝐿 = 0. (234)

For (231) with (229) the conserved current (220) is calculated by making use of 𝜏𝜇𝜈𝐿 and with 𝑧-term

(222) that can be easily found. For (231) with (229) the superpotential (223) becomes

ℐ𝜇𝜈𝐿 =

√
−𝑔
𝜅

𝑉 ′(ℓ−2
𝑒𝑓𝑓 )

[︁
𝜉𝜌∇̄[𝜇κ𝜈]𝜌 − 𝜉[𝜇∇̄𝜌κ𝜈]𝜌 + 𝜉[𝜇∇̄𝜈]κ + κ𝜌[𝜇∇̄𝜈]𝜉𝜌 + 1

2κ∇̄
[𝜇𝜉𝜈]

]︁
. (235)

Recall that here, in the framework of the Lovelock gravity, we apply the Lagrangian-based method

only. To see its advantages, one has to compare our method with others. Possibly the most fruitful and

popular method is the approach by Deser and Tekin and their coauthors. They apply the Abbott and

Deser procedure in 4D GR [128] in metric of higher curvature gravity theories in 𝐷 dimensions; this is

called as the ADT approach. Its development and many applications have many very important results;

for example, in the framework of any generic 𝑓(𝑅𝑖𝑒𝑚𝑎𝑛𝑛), including Lovelock theory, ADT charges have

been constructed [154]. For a broad outline see the recent review [155]. Concerning the Lovelock theory,

the ADT method has been developed for AdS backgrounds and using the Killing vectors only. Our

approach permits construction of conserved quantities for arbitrary curved backgrounds and arbitrary

displacement vectors. It is important to stress that the superpotential (235) constructed for arbitrary

displacement vectors coincides with the ADT related superpotential. However the ADT method does

not permit one to construct (235) because there is no a possibility to construct the current of the type

(220). Indeed, for Killing vectors 𝑧-term does not exist, unlike in (220). For a detailed comparison with

the ADT method, see [6].

12. The mass of the Schwarzschild-like black hole and future applications

In the present section, to apply the above results we calculate the mass for static black holes in

the Lovelock gravity. We use the formulae given in the paper [156]. Let us derive the Schwarzschild-like

metric:

𝑑𝑠2 = −𝑓𝑑𝑡2 + 1

𝑓
𝑑𝑟2 + 𝑟2

𝐷−2∑︁
𝑎,𝑏

𝑞𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏 . (236)

The function 𝑓 must satisfy the equation

𝑚∑︁
𝑝=0

𝛼𝑝
(𝐷 − 2𝑝− 1)!

(︂
1− 𝑓
𝑟2

)︂𝑝
=

𝜇

(𝐷 − 3)! 𝑟𝐷−1
. (237)
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It is a result of integration of the 𝑟𝑟-component of the Lovelock vacuum equations with the constant

of integration 𝜇. For the black hole solution one has to find the event horizon 𝑟+ that is the largest

solution of the equation 𝑓(𝑟+) = 0. We assume that such a solution exists. In [156] it is shown that the

asymptotic behaviour of 𝑓 at 𝑟 →∞,

𝑓(𝑟) ∼ 1 +
𝑟2

ℓ2𝑒𝑓𝑓
− 1

𝑉 ′(ℓ−2
𝑒𝑓𝑓 )

𝜇

𝑟𝐷−3
, (238)

occurs. Comparing it with (228), one has

∆𝑓 = 𝑓(𝑟)− 𝑓(𝑟) ∼ − 1

𝑉 ′(ℓ−2
𝑒𝑓𝑓 )

𝜇

𝑟𝐷−3
. (239)

As a result, one has for the behaviour of perturbations,

κ00 ∼ −∆𝑓, κ11 ∼ −∆𝑓/𝑓2 , (240)

in the necessary order of approximation.

To calculate the mass for the black hole solution (236) with the AdS asymptotic (228), one has

to use the Killing vector 𝜉𝛼 = {−1, 0, 0, 0} and 01-component of the superpotential (235) with the

appropriate order of approximation for the perturbations (240):

ℐ01𝐿 ∼ −
√
−𝑔
𝜅

𝑉 ′(ℓ−2
𝑒𝑓𝑓 )

𝐷 − 2

2𝑟
∆𝑓 . (241)

Substituting (239) and taking into account
√
−𝑔 = 𝑟𝐷−2

√︀
det 𝑞𝑖𝑗 , one obtains

𝑀 = lim
𝑟→∞

∮︁
𝑑𝑥𝐷−2ℐ01𝐿 =

𝐷 − 2

2𝜅
𝜇

∮︁
𝑑𝑥𝐷−2

√︀
det 𝑞𝑖𝑗 =

𝐷 − 2

4𝐺𝐷
𝜇 , (242)

which is the standard result for the mass obtained by various methods.

In future work, the above-listed advantages (use of arbitrary displacement vectors and arbitrary

curved backgrounds), not available using other methods, motivate the study of solutions in Lovelock

gravity using a background metric. The Lovelock theory, currently quite popular, is the most natural

generalization in higher dimensions. There are also arguments that only a so-called pure Lovelock gravity

leads to acceptable equations in higher dimensions, see, for example, [157–159]. Pure Lovelock gravity

is characterized by only one term from the sum of all the terms in the total Lovelock Lagrangian (213),

say, 𝛼𝑝* ̸= 0 with the unique 𝑝* only, whereas all other 𝛼𝑝 = 0, including 𝛼0 = 0 and 𝛼1 = 0. Keeping

in mind the interest in pure Lovelock gravity, we plan to apply our results to study solutions of this

theory obtained in [158]. The first one represents collapsing inhomogeneous dust. In our opinion, it is

quite important to examine the stability problem for this solution. In other words, one needs to study

perturbations and their characteristics and evolution using this solution as a background. Because this

background is non-vacuum (with matter), our approach looks very appropriate. On the other hand,

approaches constructed for maximally symmetric backgrounds, such as ADT, cannot be used in this

case. The second solution in [158] represents the Vaidya-type collapsing/radiating model with light-like

matter (null dust). To understand this model more deeply, it is important to study densities of conserved

quantities measured by a system of observers. Our method is quite appropriate for such a study. Indeed,

the field-theoretic method has been elaborated from the start for studying local characteristics; second,

in constructing the aforementioned local densities, proper vectors of observers (which are not Killing

vectors in general) have to be used—which is just what our formalism permits.

Finally, it has been noted in [157–159] that pure Lovelock gravity in even dimensions has properties

very close to those in 4-dimensional Einstein theory. Therefore, it could be interesting to represent, for

example, 6-dimensional pure Lovelock theory with 𝛼2 ̸= 0 only in the field-theoretic form and to compare

it with the field-theoretic reformulation of 4-dimensional Einstein theory that already has been developed

in detail [3, chapter 2].



Теоретико-полевой подход в общей теории относительности и других метрических теориях. Обзор 111

13. Modifications of the field-theoretic method, massive gravitons, and spinors

The field-theoretic method is developed for both in GR and other metric theories. It also permits

and perhaps suggests the construction of alternative theories of gravity. From the standpoint of particle

physics, in which one routinely thinks of relativistic field theory terms of a taxonomy of particle/field

spins and masses (associated with Wigner and others), perhaps the most natural modification of General

Relativity might seem to be the introduction of a graviton mass term. An early effort was due to Fierz

and Pauli [160–163]. They recognized that the massless case gives the linear approximation to General

Relativity, permitting the identification of Einstein’s theory as a theory of interacting massless spin 2

particles/fields. They also noted a connection between masslessness and gauge freedom for spins ≥ 1,

found the spin 2 energy density to be gauge dependent though the total energy was gauge invariant (akin

to results familiar from GR), noted the mathematical possibility of distinct masses for the expected spin

2 and perhaps unexpected spin 0 gravitons included in the formalism, and showed that avoiding negative

energy for the spin 0 (spatial scalar) degree of freedom required tuning the relative coefficients so that

the mass of the spin 0 degree of freedom became infinite. This occurs not by putting an infinite coefficient

in front of the 𝑡𝑟𝑎𝑐𝑒2 term (which would seem not to make sense), but by making the derivative terms

in the would-be Klein-Gordon equation satisfied by the trace of the gravitational potential disappear

due to a vanishing coefficient. From that point it was often (though not always [16, 95]) concluded

that only the pure spin 2 theories were of physical interest, because the negative-energy spin 0 degrees

of freedom would be expected to imply catastrophic instability under quantization: the conservation

of energy-momentum would not prevent the spontaneous development of nothing into something and

anti-something.

The development of massive gravity made considerable progress in the 1960s [16,95]. Unfortunately

much of this work was largely forgotten and hence was reinvented in the 2010s. Ogievetsky and

Polubarinov considered a spin limitation principle that eliminated wrong-sign spin 1 and one spin

0 degree of freedom and inferred Einstein’s equations for the massless case and a 2-parameter

family of inequivalent massive generalizations thereof. In the process they also invented nonlinear

group realizations (using non-integral powers of the metric tensor, which have nonlinear coordinate

transformation laws; the non-integral powers were defined using a binomial series expansion) and

subsumed spinors (almost) into the realm of entities with coordinate transformation properties and

no additional local Lorentz gauge freedom [95, 104, 105]. This supposedly impossible result—which was

partly anticipated by Bryce Seligman DeWitt [164, 165], who seemed not to grasp the depth of his

own work on this point—can be understood in a way that many people continue in effect to reinvent

it by the back door, namely, by imposing a symmetric gauge condition on the tetrad, thus fixing the

local Lorentz gauge freedom and turning the spinor’s coordinate scalar, Lorentz spinor behavior into a

nonlinear metric-dependent coordinate spinor transformation rule [105,166–169].

As Bilyalov notes in effect,9 there are non-perturbative coordinate issues. Such issues can hardly

be noticed if one works perturbatively using 𝑥4 = 𝑖𝑐𝑡 as Ogievetsky and Polubarinov do; this fact might

tend to vindicate the proposal to put 𝑥4 = 𝑖𝑐𝑡 “to the sword” [60, p. 51]. Imaginary time coordinates

are clearly not optimal for introducing null coordinates ∼ 𝑡 ± 𝑥. If one works nonperturbatively and

introduces the signature matrix 𝜂𝐴𝐵 = 𝑑𝑖𝑎𝑔(−1, 1, 1, 1), most but not all such limitations disappear.

One can isolate those that remain into the transformations that simply swap a time coordinate and

a space coordinate along the lines of ⟨𝑡, 𝑥, 𝑦, 𝑧⟩ ↔ ⟨𝑥, 𝑡, 𝑦, 𝑧⟩. The nonlinear spinor formalism does not

readily permit such transformations, because they tend to create (or destroy!) negative eigenvalues of

the matrix
∑︀
𝜈=𝑁 𝑔𝜇𝜈𝜂

𝑁𝐴, negative eigenvalues being the obstruction to taking the principal square

root [171,172], which becomes symmetric when an index is moved with 𝑑𝑖𝑎𝑔(−1, 1, 1, 1). If one takes for
granted that arbitrary coordinates including ⟨𝑥, 𝑡, 𝑦, 𝑧⟩ must be admissible, then this nonperturbative

9Bilyalov actually introduces a matrix 𝑇 that swaps a pair of coordinates and flips the sign of one of them [170].
Interpreting 𝑇 as a coordinate transformation brings the formalism more nearly into the realm of classical geometrical
objects. Flipping the sign of a coordinate seems unnecessary for our purposes.
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issue looks significant [173]. Alternatively, one can allow the extent of coordinate freedom to be sensitive

to the presence or absence of spinors [105]. Clearly no one would invent tensor calculus in order to

permit the transformations ⟨𝑡, 𝑥, 𝑦, 𝑧⟩ ↔ ⟨𝑥, 𝑡, 𝑦, 𝑧⟩, so a formalism that omits some of this freedom

seems satisfactory. The use of a background metric tensor, rather than the matrix 𝑑𝑖𝑎𝑔(−1, 1, 1, 1),
permits even coordinates such as ⟨𝑥, 𝑡, 𝑦, 𝑧⟩. Regarding the complications of dealing with spinors and

two different metrics, see the discussion early in this review.

The field-theoretic formalism above provides more than one way to treat massive gravity. One

natural way uses a highly symmetric (often flat) background metric. Another approach makes use of

“clock fields,” which are the preferred coordinates (often Cartesian) turned formally into dynamical

scalar fields through “parametrization” [93,174–179]. (The scalars’ Euler-Lagrange equations impose no

new restrictions.) This technique proves useful in understanding observables in Hamiltonian General

Relativity [180, 181] and in making sense of causality with a physically real and indirectly observable

background metric [93,140].10

One question rarely considered in the literature but of considerable interest is whether the

viciousness of a negative-energy spin 0 field/particle is a distinctly quantum result, or is it already

true in the classical theory? A realistic answer to this question is likely to require, and is undoubtedly

assisted by, numerical simulations, in light of the nonlinearity of the field equations. In this light the

work of Babak and Grishchuk [183,184] is of considerable value. One also notes work by mathematicians

on Hamiltonian field theory that conspicuously fails to exclude negative energies and avoids expecting

catastrophe (e.g., [185]. Issues of resonance are crucial [186]. In that regard, the ability to tune the ratio

of the scalar and tensor graviton masses [34,93–95,184,187] is significant.

As a preliminary manner, one can recall the state of development of gravitational energy-momentum

pseudotensors in the early 1950s. The Einstein pseudotensor depends on first derivatives of the metric

only, but is not symmetric and yields awkward results in non-Cartesian coordinates. It is awkward,

though possible, to define energy-momentum conservation with it [188]. The Belinfante symmetrized

energy-momentum of Papapetrou [64] was delayed in its appearance by World War 2 and was not

widely known. An energy-momentum pseudotensor with second derivatives might easily lack the

positivity properties that one seeks for the energy density or at least the total energy. The Landau-

Lifshitz pseudotensor, which is symmetric (facilitating conservation of angular momentum), also has no

second derivatives; this was progress. Goldberg noted the possibility of analogs of the Landau-Lifshitz

pseudotensor, which, however, all have second derivatives in the symmetric contravariant case; some

mixed (contravariant-covariant) entities of arbitrary weight lack second derivatives [189]. If one wants to

avoid the use of 𝑑𝑖𝑎𝑔(−1, 1, 1, 1) or some analogous device (such as a background metric), then a mixed
pseudotensor does not readily yield a symmetric contravariant one that is still conserved. Goldberg

discusses some unattractive consequences of the fact that the Landau-Lifshitz pseudotensor is of density

weight 2, not of weight 1 as one would prefer, under affine coordinate transformations.

One way to preserve the virtues of symmetry and the absence of second derivatives in an

energy-momentum complex is to introduce a background metric and use it to re-weight and more

generally covariantize the Landau-Lifshitz entity. This was achieved by Babak and Grishchuk [183]

as a development of the field approach [89]. They consider perturbations in the Minkowski space only,

although in arbitrary curved coordinates. Making use of the definition (5), let us represent the expression

(10) through the gravitational variables h𝜇𝜈 :

∆𝜆
𝜇𝜈 ≡ 1

2
√
−𝑔
[︀
𝑔𝜇𝜌∇̄𝜈h𝜆𝜌 + 𝑔𝜈𝜌∇̄𝜇h𝜆𝜌 − 𝑔𝜇𝛼𝑔𝜈𝛽𝑔𝜆𝜌∇̄𝜌h𝛼𝛽

+ 1
2

(︀
𝑔𝛼𝛽𝛿

𝜆
𝜇∇̄𝜈h𝛼𝛽 + 𝑔𝛼𝛽𝛿

𝜆
𝜈 ∇̄𝜇h𝛼𝛽 − 𝑔𝛼𝛽𝑔𝜇𝜈𝑔𝜆𝜌∇̄𝜌h𝛼𝛽

)︀]︀
(243)

where 𝑔𝜇𝜈 , 𝑔
𝜇𝜈 and

√
−𝑔 are thought as dependent on the definition (5). Substituting (243) into the

10These works also compare our notion of 𝜂-causality to the “causality principle” imposed by fiat in the context of de
Donder harmonic gauge fixing in the tradition of the Relativistic Theory of Gravity (e.g., [182, chapter 6]), which came
to be built around the Freund-Maheshwari-Schonberg field equations [16].
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definition (19) with (20), we select the part of 𝑡𝑔𝜇𝜈 depending on the second derivatives of h
𝜇𝜈 explicitly.

After making use of the field equations (73) in Minkowski space the second derivatives are left anyway,

however only minimally, like below

𝑡𝜇𝜈𝑔 = 𝑡𝜇𝜈red +𝑄𝛼𝛽𝜇𝜈(𝑡𝑚𝛼𝛽 − 1
2𝑔𝛼𝛽𝑡

𝑚
𝜌
𝜌) + (2

√
−𝑔)−1∇̄𝛼𝛽(h𝛼(𝜇h𝜈)𝛽 − h𝜇𝜈h𝛼𝛽); (244)

𝑄𝛼𝛽𝜇𝜈 ≡ (
√
−𝑔)−2

[︁
h𝛼(𝜇ḡ𝜈)𝛽 + h𝛽(𝜇ḡ𝜈)𝛼 + h𝛼(𝜇h𝜈)𝛽 − 1

2 ḡ
𝜇𝜈h𝛼𝛽 − 1

2h
𝜇𝜈
(︀
ḡ𝛼𝛽 + h𝛼𝛽

)︀]︁
. (245)

The first term in (244) is the reduced part depending on the first derivatives only,

𝑡𝜇𝜈red =
1

4𝜅
√
−𝑔
[︀
2∇̄𝜌h𝜇𝜈∇̄𝜎h𝜌𝜎 − 2∇̄𝛼h𝜇𝛼∇̄𝛽h𝜈𝛽 + 𝑔𝛼𝛽

(︀
2𝑔𝜌𝜎∇̄𝜌h𝜇𝛼∇̄𝜎h𝜈𝛽 + 𝑔𝜇𝜈∇̄𝜎h𝛼𝜌∇̄𝜌h𝛽𝜎

)︀
− 4𝑔𝛽𝜌𝑔

𝛼(𝜇∇̄𝜎h𝜈)𝛽∇̄𝛼h𝜌𝜎 + 1
4 (2𝑔

𝜇𝛿𝑔𝜈𝜔 − 𝑔𝜇𝜈𝑔𝜔𝛿)(2𝑔𝜌𝛼𝑔𝜎𝛽 − 𝑔𝛼𝛽𝑔𝜌𝜎)∇̄𝛿h𝜌𝜎∇̄𝜔h𝛼𝛽
]︁
. (246)

The matter part in (244) has appeared because the field equations (73) have been used.

Babak and Grishchuk [183] have suggested a way to exclude the second derivatives from the energy-

momentum without changing the field equations. Instead of the Lagrangian (12) they have suggested

the modified one,

ℒ𝑔mod = ℒ𝑔 +Λ𝛼𝛽𝜌𝜎𝑅̄𝛼𝜌𝛽𝜎 . (247)

Because a background is represented by the Minkowski space, one has to set 𝑅̄𝛼𝜌𝛽𝜎 = 0, but not before

defining the energy-momentum [11, 190]. Then in (247) the components of Λ𝛼𝛽𝜌𝜎 are an undetermined

tensor density depending on 𝑔𝜇𝜈 and h𝜇𝜈 without their derivatives. Besides, Λ𝛼𝛽𝜌𝜎 has the symmetries of

the Riemannian tensor 𝑅̄𝛼𝜌𝛽𝜎: it satisfies Λ
𝛼𝛽𝜌𝜎 = −Λ𝜌𝛽𝛼𝜎 = −Λ𝛼𝜎𝜌𝛽 = Λ𝛽𝛼𝜎𝜌. As a result, the field-

theoretic equations for perturbations in Minkowski space (73) do not change. However, in correspondence

with the modified Lagrangian (247), the modified gravitational energy-momentum tensor density is

𝜅𝑡𝜇𝜈gmod = 𝜅𝑡𝜇𝜈𝑔 − ∇̄𝛼𝛽
(︀
Λ𝜇𝜈𝛼𝛽 +Λ𝜈𝜇𝛼𝛽

)︀
(248)

instead of (19). Let us define the initially undetermined quantities Λ𝜇𝜈𝛼𝛽 . We desire to choose them

in a way when the remaining second derivatives in (244) are compensated. The unique possibility is

Λ𝜇𝜈𝛼𝛽 =
(︀
h𝛼𝜈h𝛽𝜇 − h𝛼𝛽h𝜇𝜈

)︀
/4
√
−𝑔.

Thus the equations (73), being unchanged, are rewritten in another form:

𝒢𝜇𝜈mod ≡ 𝒢𝜇𝜈𝐿 − 2∇̄𝛼𝛽Λ(𝜇𝜈)𝛼𝛽 ≡ (
√
−𝑔)−1∇̄𝛼𝛽

[︀
(ḡ𝜇𝜈 + h𝜇𝜈)(ḡ𝛼𝛽 + h𝛼𝛽)− (ḡ𝜇𝛼 + h𝜇𝛼)(ḡ𝜈𝛽 + h𝜈𝛽)

]︀
= 𝜅

(︁
𝑡𝜇𝜈gmod + 𝑡𝜇𝜈𝑚

)︁
≡ 𝜅𝑡𝜇𝜈mod . (249)

We see that the left hand side is no longer linear in h𝜇𝜈 , but its divergence is identically equal to zero.

Then, of course, ∇̄𝜈𝑡𝜇𝜈mod = 0. Reducing 𝑡𝜇𝜈mod by making use of the field equations, we rewrite (249) as

𝒢𝜇𝜈mod = 𝜅
[︀
𝑡𝜇𝜈red +𝑄𝛼𝛽𝜇𝜈(𝑡𝑚𝛼𝛽 − 1

2𝑔𝛼𝛽𝑡
𝑚
𝜌
𝜌) + 𝑡𝑚𝜇𝜈

]︀
≡ 𝜅𝑡𝜇𝜈new (250)

Thus, finally one can see that the energy-momentum tensor density in (250) has only of first derivatives

of gravitational variables and again ∇̄𝜈𝑡𝜇𝜈new = 0.

Multiplying (250) by
√
−𝑔, and using the identification (5), the definition (21) for the flat

background and the definition (245), in the Lorentzian coordinates, one easily gets

1
2𝜕𝛼𝛽

(︀
g𝜇𝜈g𝛼𝛽 − g𝜇𝛼g𝜈𝛽

)︀
= 𝜅(−𝑔) (𝑡𝜇𝜈𝐿𝐿 + 𝑇𝜇𝜈) . (251)

After substituting 𝜅𝑇𝜇𝜈 from the Einstein equations (4), this equation reduces to the identity. One finds

that (−𝑔)𝑡𝜇𝜈𝐿𝐿 is the Landau-Lifshitz pseudotensor [127]. Thus 𝑡𝜇𝜈red is the covariantized Landau-Lifshitz’s

pseudotensor (−𝑔)𝑡𝜇𝜈𝐿𝐿/
√
−𝑔.

Of course, the gauge transformations (34) and (35) with Φ̄𝐴 ≡ 0 are the gauge transformations for

the theory with the equations (250). The energy-momentum tensor is gauge invariant up to a divergence,

however now in the form:

𝜅𝑡′new𝜇𝜈 = 𝜅𝑡new𝜇𝜈 + 𝒢mod
𝜇𝜈 (h′ − h). (252)



114 А.Н. Петров, Дж.Б. Питц

on the field equations. The same as the transformations (38) and (39) the transformations (252) express

the non-localization problem of energy and other conserved quantities in GR.

This work on gravitational energy-momentum has been in the framework of Einstein’s equations.

However, this reconstruction has been used by Babak and Grishchuk to create a variant of gravity theory

with non-zero masses of gravitons [184]. They have assumed that the Lagrangian may also include an

additional term similar to the one in (247). Let the quantity 𝑅̃𝛼𝜌𝛽𝜎 be the curvature tensor of an abstract

space-time with a constant non-zero curvature: ̃︀𝑅𝛼𝜌𝛽𝜎 = 𝐾 (̃︀𝑔𝛼𝛽̃︀𝑔𝜌𝜎 − ̃︀𝑔𝛼𝜎̃︀𝑔𝜌𝛽) where the dimensionality
of 𝐾 is [𝑙𝑒𝑛𝑔𝑡ℎ]−2. If one adds Λ𝛼𝛽𝜌𝜎 ̃︀𝑅𝛼𝜌𝛽𝜎 with Λ𝜇𝜈𝛼𝛽 = (4

√︀
−̃︀𝑔)−1

(︀
h𝛼𝜈h𝛽𝜇 − h𝛼𝛽h𝜇𝜈

)︀
, changing̃︀𝑔𝜇𝜈 → 𝑔𝜇𝜈 , then the additional term in the Lagrangian (247) is 1

2 (
√
−𝑔)−1𝐾

(︀
h𝛼𝛽h𝛼𝛽 − h𝛼𝛼h

𝛽
𝛽

)︀
. Of

course, the related to such a Lagrangian theory is not GR. However one recognizes in this term the Fierz-

Pauli mass-term [160] at lowest order. Generalizing it, Babak and Grishchuk present a 2-parametric

family of theories with the additional mass terms in the gravitational Lagrangian (247):

ℒ𝑔mass = ℒ
𝑔
mod + (

√
−𝑔)−1

(︀
𝑘1h

𝛼𝛽h𝛼𝛽 + 𝑘2(h
𝛼
𝛼)

2
)︀
, (253)

where 𝑘1 and 𝑘2 have a dimensionality of [𝑙𝑒𝑛𝑔𝑡ℎ]−2. Studying these theories allows one to ascertain

whether negative-energy field degrees of freedom (such as massive gravity almost always implies without

deliberate tuning) are vicious already at the classical level.

The additional term in (253) gives a contribution both into the right hand side and into the left

hand side of (250); the equations of the new gravity theory symbolically can be rewritten as

𝒢𝜇𝜈mass = 𝜅𝑡𝜇𝜈mass . (254)

These new equations are not gauge invariant under the gauge transformations (34) and (35) because the

background metric 𝑔𝜇𝜈 cannot be incorporated in the dynamical metric 𝑔𝜇𝜈 totally. As a result, there

are no transformations like (252). Therefore, there is no problem with the localization of 𝑡𝜇𝜈mass: that is,

energy and other conserved quantities are not gauge dependent and hence are localized without infinite

multiplicity. In accord with Noether’s theorem generalized to include fields not varied in the action [191],

the presence of absolute objects shrinks the symmetry ‘group’ to the Killing vectors of the fields that

are not varied, leaving 10 symmetries of the Lagrangian rather than infinitely many.

To compare the new theory to GR, it is convenient to present (254) in the equivalent form as

𝐺𝜇𝜈 +𝑀𝜇𝜈 = 𝜅𝑇𝜇𝜈 ; (255)

here the mass term is

𝑀𝜇𝜈 ≡
(︀
2𝛿𝛼𝜇𝛿

𝛽
𝜈 − 𝑔𝛼𝛽𝑔𝜇𝜈

)︀
(𝑘1ℎ𝛼𝛽 + 𝑘2𝑔𝛼𝛽ℎ

𝜌
𝜌) . (256)

Recall that h𝜇𝜈 =
√
𝑔ℎ𝜇𝜈 and that the Bianchi identity ∇𝜈𝐺𝜈𝜇 ≡ 0 is expressed using the effective

metric. Matter equations (3) lead to ∇𝜈𝑇 𝜈𝜇 = 0, as usual; then after differentiation of (255) one obtains

∇𝜈𝑀𝜇𝜈 = 0. Frequently these conditions are more convenient to use instead of some members of the

original system (255).

We follow the analysis by Ogievetsky and Polubarinov [95] and by van Dam and Veltman [192] to

give a physical interpretation of 𝑘1 and 𝑘2. Consider the linearization of the (255):

1
2

(︀
∇̄𝜌𝜌ℎ𝜇𝜈 + 𝑔𝜇𝜈∇̄𝜌𝜎ℎ𝜌𝜎 − ∇̄𝜌𝜈ℎ𝜇𝜌 − ∇̄𝜌𝜇ℎ𝜈𝜌

)︀
+ 2𝑘1ℎ𝜇𝜈 − (𝑘1 + 2𝑘2)𝑔𝜇𝜈ℎ𝛼

𝛼 = 0 . (257)

Let us apply the divergence and obtain

∇̄𝜈 [2𝑘1ℎ𝜇𝜈 − (𝑘1 + 2𝑘2)𝑔𝜇𝜈ℎ𝛼
𝛼] = 0 (258)

that is the linearized version of the equation ∇𝜈𝑀𝜇𝜈 = 0.

The case with 𝑘1 ̸= −𝑘2. Then the system (257) becomes equivalent to

�̄𝐻𝜇𝜈 + 𝛼2𝐻𝜇𝜈 = 0, (259)

�̄ℎ𝛼𝛼 + 𝛽2ℎ𝛼𝛼 = 0, (260)
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together with (258). Here, �̄ ≡ 𝑔𝛼𝛽∇̄𝛼𝛽 ,

𝐻𝜇𝜈 ≡ ℎ𝜇𝜈 − 𝑘1 + 𝑘2
3𝑘1

𝑔𝜇𝜈 𝑙𝛼𝛼 −
𝑘1 + 𝑘2
6𝑘21

∇̄𝜇𝜈ℎ𝛼𝛼 +
𝑘1 + 𝑘2
12𝑘21

𝑔𝜇𝜈�̄ℎ𝛼𝛼 (261)

with 𝑔𝜇𝜈𝐻
𝜇𝜈 = 0 and ∇̄𝜈𝐻𝜇𝜈 = 0. Thus, parameters in the wave-like equations (259) and (260) are

𝛼2 = 4𝑘1 , 𝛽2 = −2𝑘1(𝑘1 + 4𝑘2)

𝑘1 + 𝑘2
. (262)

In the standard way, they can be thought as inverse Compton wavelengths of the spin-2 graviton with the

mass 𝑚2 = 𝛼~/𝑐 associated with the field 𝐻𝜇𝜈 and of spin-0 graviton with mass 𝑚0 = 𝛽~/𝑐 associated
with the field ℎ𝛼𝛼.

Studying weak gravitational waves in the massive gravity, one finds certain modifications of GR.

Thus the spin-0 gravitational waves, represented by the trace ℎ𝛼𝛼 = ℎ𝛼𝛽𝜂𝛼𝛽 , and the polarization

state of the spin-2 graviton represented by the spatial trace 𝐻𝑖𝑘𝜂𝑖𝑘 both, unlike GR, become essential.

They provide additional contributions to the energy-momentum flux carried by the gravitational

wave. However, gravitational wave solutions, their energy-momentum characteristics, and observational

predictions of GR are fully recovered in the massless limit 𝛼→ 0 and 𝛽 → 0.

The case 𝑘1 + 𝑘2 = 0 corresponds to the mass term of Fierz-Pauli type. This means that 𝛽2 →∞
in (262), and the full set of equations (257) is equivalent to

ℎ𝛼𝛼 = 0, �̄ℎ𝜇𝜈 + 4𝑘1ℎ
𝜇𝜈 = 0, ∇̄𝜈ℎ𝜇𝜈 = 0. (263)

This case is interpreted as unacceptable [184] because there is conflict with indirect gravitational-wave

observations of binary pulsars [193]. Such claims are in tension with recent claims of success for the

Vainshstein mechanism as a nonperturbative resolution of the van Dam-Veltman-Zakharov discontinuity

and thus might merit further investigation, especially from numerical relativists.

Returning to the case 𝑘1 ̸= −𝑘2, the full (total) non-linear equations (254), or equivalently (255),
have been analyzed in [184] searching for black hole and cosmological solutions. The study combined

analytical and numerical methods. Thus, static spherically-symmetric vacuum solutions are practically

indistinguishable from those of GR for all 2𝑀 ≪ 𝑟 ≪ 1/𝛼, where 𝑟 and 𝑀 are the radial and mass

parameters of the Schwarzschild solution, and 𝛼 is infinitesimally small. However, for 𝑟 > 1/𝛼 the solution

is of the Yukawa-type potentials; the event horizon is absent and at 𝑟 = 0 there is a naked (curvature)

singularity. Concerning the cosmological (homogeneous and isotropic) solutions, it was shown that the

massive solutions have a prolonged time interval where they are practically indistinguishable from the

FLRW solution of GR. Only at early times and very late times differences exist. The FLRW expansion

is replaced by a regular maximum; the origin (Big Bang) singularity is replaced by a regular minimum.

There are also possibilities of an oscillatory regime. These studies provide evidence that the negative-

energy degree of freedom is not vicious classically. Hence the traditional worries about negative-energy

degrees of freedom [30] are best seen as arising from the expectation of quantization rather than as

features of classical field theory. The real world is, of course, described quantum field theory (or perhaps

some successor) rather than classical field theory, so worries motivated by quantization are serious.

Concluding that “ghost” theories are acceptable classically would therefore hardly vindicate them in a

quantum world.

One property of GR [11,27,117] that one might wish to have also in a massive theory is a derivation

by universal coupling. It might appear (e.g., [16, 27]) that universal coupling gives a unique result, the

Freund-Maheshwari-Schonberg theory with a negative-energy spin 0 of the same mass as the spin 2.

As discussed above, it turns out that universal coupling can accommodate contravariant or covariant

gravitational potentials of almost any weight, as well as tetrad or cotetrad definitions of almost any

weight, giving 4 one-parameter families using linear field redefinitions [93, 94]. Introducing nonlinear

field (re)definitions, so that the effective metric is a nonlinear function of the gravitational potential
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and background metric, lets one regard any massive gravity theory as universally coupled, as long as a

mild condition of invertibility holds [34]. Despite the mass terms’ taking the form of 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙2 rather

than
√
−𝑔 − 𝑙𝑖𝑛𝑒𝑎𝑟 previously seen in universally coupled theories, the Babak-Grishchuk theories are

included. Hence universal coupling is not very restrictive after all, once nonlinear field (re)definitions

are admitted.

As was noted with references in the introduction, massive gravity has become a more lively topic

since the 2000s with renewed efforts to address the discontinuous massless limit of pure spin 2 theories and

especially in the 2000s with success in avoiding the nonlinear reappearance of the negative-energy spin 0

degree of freedom tuned away at the linear level by Pauli and Fierz. The contingency of scientific history

appears in the fact that an exact (nonlinear) argument arriving at a pure spin 2 theory was already

provided [33] prior to the discovery that the nonlinear ghost was typical [30,113]—that is, an exception

preceded the rule, though the exception was forgotten and later it and others were reinvented [34], as

discussed above. In any event one should note that arguably difficulties remain even for the so-called

ghost-free theories [184,194–197].

A. Covariant Klein-Noether identities in an arbitrary field theory

In this Appendix, we present identities necessary for the goals in the present review. We follow the

technique developed in [5,6,198,199]; see also the book [3] and related references therein. The conclusions

of the Appendix are technical and can be applied to various problems.

Let us consider a theory of arbitrary covariant fields 𝜓𝐴 with the Lagrangian:

ℒ = ℒ(𝜓𝐴;𝜓𝐴,𝛼;𝜓𝐴,𝛼𝛽) , (264)

which depends on partial derivatives up to the second order.11 Because the Lagrangian (264) is a scalar

density of the weight +1, it satisfies the main Noether identity:

$𝜉ℒ+ (𝜉𝛼ℒ),𝛼 ≡ 0 . (265)

After identical transformations it can be represented in the form:

𝜕𝛼
[︀
𝒰𝜎𝛼𝜉𝜎 +ℳ𝜎

𝛼𝜏𝜕𝜏𝜉
𝜎 +𝒩𝜎𝛼𝜏𝛽𝜕𝛽𝜏𝜉𝜎

]︀
≡ 0 . (266)

In (266), the coefficients are defined by the Lagrangian (264) without ambiguities in an unique way:

𝒰𝜎𝛼 = ℒ𝛿𝛼𝜎 +
𝛿ℒ
𝛿𝜓𝐵

𝜓𝐵 |𝛼𝜎 −
[︂

𝜕ℒ
𝜕𝜓𝐵,𝛼

− 𝜕𝛽
(︂

𝜕ℒ
𝜕𝜓𝐵,𝛼𝛽

)︂]︂
𝜕𝜎𝜓𝐵 −

𝜕ℒ
𝜕𝜓𝐵,𝛼𝛽

𝜕𝜎𝛽𝜓𝐵 , (267)

ℳ𝜎
𝛼𝜏 =

[︂
𝜕ℒ

𝜕𝜓𝐵,𝛼
− 𝜕𝛽

(︂
𝜕ℒ

𝜕𝜓𝐵,𝛼𝛽

)︂]︂
𝜓𝐵 |𝜏𝜎 −

𝜕ℒ
𝜕𝜓𝐵,𝛼𝜏

𝜕𝜎𝜓𝐵 +
𝜕ℒ

𝜕𝜓𝐵,𝛼𝛽
𝜕𝛽(𝜓𝐵 |𝜏𝜎) , (268)

𝒩𝜎𝛼𝜏𝛽 = 1
2

[︂
𝜕ℒ

𝜕𝜓𝐵,𝛼𝛽
𝜓𝐵 |𝜏𝜎 +

𝜕ℒ
𝜕𝜓𝐵,𝛼𝜏

𝜓𝐵 |𝛽𝜎

]︂
. (269)

Because 𝜕𝛽𝜏 ≡ 𝜕𝛽𝜕𝜏 in (266) is symmetrical in 𝛽 and 𝜏 , the same symmetry is reflected in coefficients:

𝒩𝜎𝛼𝜏𝛽 = 𝒩𝜎𝛼𝛽𝜏 .
Opening the identity (266), given that 𝜉𝜎, 𝜕𝛼𝜉

𝜎, 𝜕𝛽𝛼𝜉
𝜎 and 𝜕𝛾𝛽𝛼𝜉

𝜎 are arbitrary at every world

point, we equate to zero the coefficients associated with them and obtain the system of the Klein-Noether

identities:

𝜕𝛼𝒰𝜎𝛼 ≡ 0, (270)

𝒰𝜎𝛼 + 𝜕𝜆ℳ𝜎
𝜆𝛼 ≡ 0, (271)

ℳ𝜎
(𝛼𝛽) + 𝜕𝜆𝒩𝜎𝜆(𝛼𝛽) ≡ 0, (272)

𝒩 (𝛼𝛽𝛾)
𝜎 ≡ 0. (273)

11These results were derived assuming that the fields were tensor densities of some sort. But the linearity of the
transformation law appears to play little or no role in the derivation. To the degree that that is true, the results would
also apply using the nonlinear metric-dependent spinor formalism [104,105].
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These identities are not independent. Indeed, after differentiating (271) and using (272) and (273) one

easily finds (270).

One can see that expressions (267) - (269) and the identities (270) - (273) are not covariant. On the

other hand, the expression in (266) is covariant as whole, since it is a scalar density; the expression under

the divergence in (266) is a vector density. This signals that the above expressions and the identities

can be covariantized. We achieve this in the following way (see [199]). Let us replace partial derivatives

of 𝜉𝜎 in (266) by covariant ones, making the use of the expression 𝜕𝜌𝜉
𝜎 = ∇𝜌𝜉𝜎 − 𝜉𝜎|𝛼𝛽 Γ𝛽𝜌𝛼. Here, the

Christoffel symbols Γ𝛽𝜌𝛼 and, consequently, the covariant derivative ∇𝜌 are compatible with 𝑔𝜇𝜈 . At the
moment, 𝑔𝜇𝜈 is included in expressions as an external metric only. Note that 𝑔𝜇𝜈 can be included in the

set 𝜓𝐴, although this is not necessary. The identity (266) is now rewritten as

∇𝛼
[︀
𝑢𝜎

𝛼𝜉𝜎 +𝑚𝜎
𝛼𝜏∇𝜏𝜉𝜎 + 𝑛𝜎

𝛼𝜏𝛽∇𝛽𝜏𝜉𝜎
]︀
≡ 0 , (274)

where ∇𝛽𝜏 ≡ ∇𝛽∇𝜏 and

𝑢𝜆
𝛼 = 𝒰𝜆𝛼 −ℳ𝜎

𝛼𝜏Γ𝜎𝜆𝜏 +𝒩𝜎𝛼𝜏𝜌(Γ𝜎𝜏𝜋Γ𝜋𝜆𝜌 − 𝜕𝜌Γ𝜎𝜆𝜏 ) , (275)

𝑚𝜆
𝛼𝜏 = ℳ𝜆

𝛼𝜏 +𝒩𝜆𝛼𝜎𝜌Γ𝜏𝜎𝜌 − 2𝒩𝜎𝛼𝜏𝜌Γ𝜎𝜆𝜌 , (276)

𝑛𝜆
𝛼𝜏𝜌 = 𝒩𝜆𝛼𝜏𝜌 . (277)

One can show explicitly that, indeed, these coefficients are covariant [199]. Note that in [199] we have

shown that there are different ways to define coefficients in (275), (276) and (277). Here, however, we

use the form (275), (276) and (277) only.

The identity (274) can be rewritten in the form of the differential conservation law:

∇𝛼𝑖𝛼 ≡ 𝜕𝛼𝑖𝛼 ≡ 0 , (278)

where the current is rewritten as

𝑖𝛼 = −
[︀
(𝑢𝜎

𝛼 + 𝑛𝜆
𝛼𝛽𝛾𝑅𝜆𝛽𝛾𝜎)𝜉

𝜎 +𝑚𝜌𝛼𝛽𝜕[𝛽𝜉𝜌] + 𝑧𝛼
]︀
, (279)

𝑧𝛼 = 𝑚𝜎𝛼𝛽𝜁𝜎𝛽 + 𝑛𝜌𝛼𝛽𝛾 (2∇𝛾𝜁𝛽𝜌 −∇𝜌𝜁𝛽𝛾) ; 2𝜁𝜌𝜎 ≡ −$𝜉𝑔𝜌𝜎 = 2∇(𝜌𝜉𝜎) . (280)

Thus, the 𝑧-term disappears, 𝑧𝛼 = 0, if 𝜉𝜇 = 𝜉𝜇 is a Killing vector of a metric 𝑔𝜇𝜈 . Then the current

(279) is determined by the energy-momentum (𝑢+ 𝑛𝑅)-term and the spin 𝑚-term only.

Exploring the identity (278) and equating independently to zero the coefficients at 𝜉𝜎, ∇𝛼𝜉𝜎,
∇(𝛽𝛼)𝜉

𝜎 and ∇(𝛾𝛽𝛼)𝜉
𝜎, we get a system of identities that is equivalent to the system (270) - (273),

reformulated as

∇𝛼𝑢𝜎𝛼 + 1
2𝑚𝜆

𝛼𝜌𝑅 𝜆
𝜎 𝜌𝛼 + 1

3𝑛𝜆
𝛼𝜌𝛾∇𝛾𝑅 𝜆

𝜎 𝜌𝛼 ≡ 0, (281)

𝑢𝜎
𝛼 +∇𝜆𝑚𝜎

𝜆𝛼 + 𝑛𝜆
𝜏𝛼𝜌𝑅 𝜆

𝜎 𝜌𝜏 +
2
3𝑛𝜎

𝜆𝜏𝜌𝑅𝛼𝜏𝜌𝜆 ≡ 0, (282)

𝑚𝜎
(𝛼𝛽) +∇𝜆𝑛𝜎𝜆(𝛼𝛽) ≡ 0, (283)

𝑛(𝛼𝛽𝛾)
𝜎 ≡ 0. (284)

These identities are also not independent. After covariantly differentiating (282) and using (283) and

(284), one easily finds (281). Since (278) is identically satisfied, the current (279) must be a divergence

of a superpotential 𝑖𝛼𝛽 , an antisymmetric tensor density, for which 𝜕𝛽𝛼𝑖
𝛼𝛽 ≡ 0, that is

𝑖𝛼 ≡ ∇𝛽𝑖𝛼𝛽 ≡ 𝜕𝛽𝑖𝛼𝛽 . (285)

Indeed, substituting 𝑢𝜎
𝛼 from (282) into the current (279), using (283) and algebraic properties of

𝑛𝜎
𝛼𝛽𝛾 and 𝑅𝛼𝛽𝜌𝜎, we reconstruct (279) into the form (285), where the superpotential acquires the form:

𝑖𝛼𝛽 =
(︁

2
3∇𝜆𝑛𝜎

[𝛼𝛽]𝜆 −𝑚𝜎
[𝛼𝛽]
)︁
𝜉𝜎 − 4

3𝑛𝜎
[𝛼𝛽]𝜆∇𝜆𝜉𝜎. (286)

It is explicitly antisymmetric in 𝛼 and 𝛽; the differential conservation law (278) follows from (285).
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