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B nanHoii paboTe uccienyoTcs nsaruMepHsie h-npocrpancTtsa (Hai, g) Tuna {41} [4]. Haxomsitcs HeoGxoauMble 1
JTOCTATOYIHBIE YCJIOBAHA, TIPA KOTOPBIX (H41,g) ABIAETCS MPOCTPAHCTBOM MOCTOSHHOW KpubBu3HbL. Onpenensercs
obuiee pentenwe ypaBHeHwUs Di3HXApPTA B h-ipoctpancrse (Hai, g) HEMOCTOSHHON KPUBU3HBL. YCTAHABIMBAIOTCS
YCI0BUS CyIIECTBOBAHHMA HETOMOTETHIECKOrO NPOEKTHBHOrO aprkenwus B (H41,g) W ONMCHIBAETCA CTPYKTyDa
HEroMOTETUYECKON poeKTuBHOM anre6pst Jlu B h-upocrpancrse (Hya1,g) tuma {41}.

Karouesvie cA06a: IATIMEPHOE IICEBIOPUMAHOBO MHOr000pa3ue, h-upocrpanctso tuma {41}, ypasuenune Ditzen-

XapTa, MPOEKTUBHAA ayredpa Jlm.
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In this paper we study five-dimensional h-spaces (Ha1, g) of type {41} [4]. Necessary and sufficient conditions for
(Ha1,g) to be a space of constant curvature are found. The general solution of the Eisnhart equation in h-space
(Ha1, g) of non-constant curvature is determined. We establish conditions for the existence of a non-homothetic
projective motion in (Hui,g) and describe the structure of a non-homothetic projective Lie algebra in h-space
(Ha1,g9) of type {41}.
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Introduction

A vector field X on a five-dimensional pseudo-Riemannian manifold (M,g) with a projective
structure II is called an infinitesimal projective transformation, or a projective motion if the local 1-
parameter group of local transformations, which is generated by this field in a neighbourhood of each
point € M, consists of (local) projective transformations, that is, automorphisms of the projective
structure II.
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The necessary and sufficient condition that X = &£%0; be a projective motion in a pseudo—
Riemannian manifold (M, g) is

(Lxgij) k= 2915k + gik®.j + GjkP.is (1)

where ¢ is a function of 2, which we shall call a defining function of a projective motion X.
The equation (1) can be written in the form of two relations:

Lxgij = &ij + &0 = hij (2)
(the generalized Killing equation) and
hijoe = 2ij Pk + GikP,j + Gjk.i (3)

(the Eisenhart equation). If ¢ = const, that is, divX = const, then the vector field X preserves the
affine connection and hence it is an infinitesimal affine transformation, or an affine motion.

An affine motion X is an infinitesimal homothety, or a homothetic motion when h;; = const - g;;
and an infinitesimal isometry, or an isometric motion when h;; = 0 [1].

After making a change of variables

hij = aij + 2¢gij,

where a;; is a symmetric bilinear form with the same Segre characteristic x (that is of the same type
X) as h;j;, the equation (3) becomes
Qijk = GikP.j + GikP,i- (4)
We call g;; an h-metric of type x and we call (M, g) an h-space of type x [2].
Given the type of tensor h;;, one can find solutions of the Eisenhart equation (3) and then of the
Killing equation (2).
In a canonical skew-normal frame ( [3], p. 97) {Y;} on V C M the equation (4) takes the form

n
dapg + Z eh(dhquﬁ + aphwqﬁ) = (Yop)bp + (Yp)bq,
h=1
where 6}, is the canonical 1-form which is conjugate to Y}, wpq = —wgp is the connection 1-form, and
p,q,r=1,...,5.

In [4] h-spaces (Hy1,g) of type {41} were found, and necessary and sufficient conditions for the
existence of projective motion of type {41} were obtained. To calculate the maximal projective Lie
algebra in (Hyi,g), it is necessary to obtain a general solution of the Eisenhart equation (3) in h-space
(Hy1, g). To solve this problem, one needs to study the integrability conditions (25) for the Eisenhart
equation, which contain the curvature form ;;. In this case, spaces of constant curvature should be
excluded, the structure of the projective group of which is well known [2].

The outline of the article is as follows. Basic definitions and formulas are given in Section 1. The
curvature structure of the h-space (Hy,g) is defined in Section 2. In Section 3 we derive the necessary
and sufficient conditions that h-space (Hy1,g) be a space of constant curvature. In Section 4 we discuss
the integrability conditions of the Eisenhart equation in (Hyg, g) and obtain an important characteristic
of its solutions in an h-space (Hy1, g) of non-constant curvature. In Section 5 we establish necessary and
sufficient conditions for the existence of a non-homothetic projective motion in h-space (Hyi, g) of type
{41}, and determine the structure of a non-homothetic projective Lie algebra in (Hyi,g).

1. Computing curvature of (Hy1,g).

In the paper [4] a canonical skew-normal frame (Y;) = (fj 0;) has been defined with the following

components in the appropriate coordinates:
1 1 1

1 .2 .3 S
¢ _g _§  (fo— SV g 2(fa — f1)3/%
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1—# 2:; 1:¥
§ - 8(fa— f)P § 2(f2 = fr)3/%’ ﬁ 16(f2 — f1)7/2 (5)

9 1 3 7§z1 3 _ 1 1 7£z2
E‘aﬁ—ﬁw2Qh—ﬁP AE)’E 2%—ﬁﬂ“<b—h AE)’

a__ Y s 1 _ s .y B
Ao § TG ARl ) )

The canonical forms a;; and g;; are given by the formulas

0 0 0 e1f1 0 0 0 0 e O

0 0 €1f1 €1 O 0 0 €1 0 O
apg=1 0 efi e 0 0O |, gpg=|[0 e 0 O O, (6)

€1f1 €1 0 0 0 €1 0 0 0 0

0 0 0 0 esfo 0O 0 0 0 e

and the following equations are satisfied:
Yip =Y = Y30 =0, (7)
1
dfy = §(Y4<P)91, dfs = 2(Ys¢)0s, (8)
1 Y:
wiz = = (Yap)bh, wia = —(Yap)ba, wis = iGh
2 fo—fi
Y5 Y5
wag = —(Yap)bs, wos = 2 jf1)291 + 7 i 7 02, (9)
Y59 Y5 Y5
w3g = —(Yy0)04, wss = 0, + 0> + 03,
o (Yap)bs, wss (o= )2 (o= f1)2 2 foFi°
Y5 Y5 Y50 Y5 Yip
Was = 61 + 02 + 03 + 04+ 0
BT ) ()P (-2 R-A " R
Here 1

<P:2f1+§f2 (10)

is the defining function of a projective motion of type {41}, w;; = v;;x0" is the 1-form of connection in
the skew-normal frame (Y3,), f1 = ez + (1 — &)k, fo = f2(25), ¢ takes values 0 and 1,  is a constant,
e1, ez = £1. [4]. Using the first Cartan structure equation df; = — Z?:l ejw;; A 05 and the formulas (9),
we find

_ 3e(Yay) e2(Ys9)
by = ~"EE0 16, — TR0, A6,
Y: Y:
0y = —e1(Yap)0y A O3 — (;2(_5;1’;291 Abs — 6;2(_5?1) 0o A Os,
e1(Yayp) e2(Ys) e2(Ys) e2(Ys)
db; = — 01 NOy — ——=01 N O5 — 0o N 05 — 03 A 05,
’ 2 YT = R T (a2l 2O
ea(Yse) e2(Ys0) ea(Yse) ea(Yse)
dly = ——————01 N0 — ————0, N0 — ————=03 N O5 — 04 N 05,
‘ (o= P (o= P2 (o= )20 a0
e1(Yap)
dfs = ———26, N\ 0Os.
5 7o, 110
We introduce the notation
Al = n@a A2 = }/5@5
Cl = €1Y21(Y430), 02 = 62Y5(}/5<p). (11)
AA
dwio =0, dwiz =0, dwig = —C101 A0y + A%Ol A O3+ a2 01 A 05,

(f2 = f1)?
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3€1A1A2
2(f2 = f1)

CQ . €2A2
fa—=fi (fa—f1)?

dw15:— 01/\92( >91/\95, d(.dggzo,

LA2 A A
duny = —C10, A O + & A A9 NG+ m@l/\%qLS 2 g, A By + ij_ilfjgogws,
o 761A1A2 . C2 . 262A% ) .
s = =, g s <<f2 “RE e fp)
02 _ €2A% )
(fol (fo—f1)? 02 1 0s,
dwss = —C161 Ay + (;2’41}42) 01 A5+ 361’4192 A by + (ij’ilff)gez A O5 + &”f?é 65 A 05,
dots = 20 N g O = T 0
CQ _ 36214% ) _ ( CQ _ QGQA% ) _
((f2—f1)3 (fo— f1)4 G105 (fo=f1)2 (fo— f1)? 6215
Cg _ €2A% )
(fol (fo—f1)? b 1\ 0s,
dCLJ45 (;lfQ‘?l) 91 A 92 (;211:12?11)3 91 N 93 (;:AQ?E 91 AN 04+
Cl _ CQ 462143 €1A2 > _
<(f2 Sy B Py R oy Ty ) R
CQ 361A% _ 362A2 > .
<(f2 - f1)3 * 2(fo—f1)  (fo— fr)? b2 105
CQ _ 26214% ) _ ( 02 62A2 >
((fz e o) N\ T o)

By taking the external differential from both sides of the equation df; = e1(Ya)0; = e1 4161 (8)
and comparing this to dA; = 0'Y;Y ¢ = 0'[Y;, V4] + 0'Y, Y, we get by using (7)
62A1A2
fa— 1

3
dA1 = 0191 — 56114%92 — 95;

dAs is similarly calculated.
Using the obtained relations and the second Cartan structure equation ;; = dw;; +Zl5:1 ewi Awy;,
we calculate the curvature 2-form €2;; of h-space of type {41}:

62142 ( €1 A% €9 A% ) A2
Qo =——F""2—0, N0, Q3= — — 161 N6 ——= 0, N3,
BT (o2t 2 (—h)3) T (- p)r
€9 A% > < €1 A% €9 A% > 2A2
Qy=—(C1+—22 )0, N0y + - 01 Ny — —2 0, A0,
14 ( Y- i) 2 (fo—h)3) 07 (a2t
Cy €2A2 ) <€1A% 6214% )
Qs = — 01 A5, Qos = - -
' (fz—fl (fo— fr)2) 1070 7% 2 (-h)3)
€9 A2 < 62A ) < €1A% €9 A% >
05 A0, Qo= —(Ci+ 01 A0 + - N
(fo—p)2 20 7% ™™ Y-t 2 (fa—f)2) "0
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2 2 5
B Cy | 2e,43 > B < Cy el )
25 = ((fz—f1)2 (f2 = f1)? O n 0 fo=fi (o= f1)? i

A2 A2 A2 A2
934:_<C1+€22)91/\94+<61 1_ €22 )92/\94—622293/\945

Go— )" > " (h-f) Go— 1)
o=~ (gt 2<Eiﬁfl> - (fje—?f)“) intes
(= (f?ff)fﬂ) o= (727 - (fzeiA§1)2> Pu b,
%= (G~ e s T 3"1)2) Pints=
(&t T (fje—2%)4> P05
(= (ffe—ny) ot = (725 - (f2e2—AJ%1)2> Pinbs.

2. H-spaces (Hy1,g) of constant curvature.

Theorem 1. The necessary and sufficient condition for an h-space (Hy1,g) of type {41} to be a space
of constant curvature K: Q;; = K60; N0, is K1312 = 0, which is equivalent to
A? A2
p=201_ 20 (13)
2 (f2— f1)
moreover, K, = 0, p;; = 0 for all (i) and (kl) # (i), that is Q;; = 0, and any h-space Hy1 of type
{41} of constant curvature is flat.

Proof. We write the curvature 2-form as

iy = Kijube A0 (k,1=1,...,5, k <1) (14)
(kD)

and put Kj;j;;; = p;j, then the formula (14) takes the form

Qij = pij0i N0+ D> Kb A0 (i, k,1=1,...,5, i <j, k<),

(k1) #(i5)
where, by virtue of (12),
e A2
P12 = _(f22—7;1)2 = P13 = P14 = P23 = P24 = P34, (15)
CQ 62A§

P15 = — + = P25 = P35 = P45,
fo=fi (f2—f1)?
and among the coefficients Kz, for (kl) # (ij) are nonzero only

2 2 2
61A1 62142 €2A2
K312 = - 5 K =-0C— ——;

2 (fe = f1) (f2— fu)¥’
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K413 = K312 = Koagi3, Koz = K412, Kosa = Ki312 = Kogo3,

OQ 262A§
Kosi5 = — o )2 + o 15 K3414 = Ki412,
A? A2
Kss15 = — Cs G Seadly

(f2=f)* 2(fa—f1) " (fo— fi)"

K3s25 = Kas15, Kuasos = Kss15, Kaszs = Kosis,
GG el ek

fo=fi (2= f0)* 2(fa—f1)2  (fo— f1)*

Kys15 =

Equating K;;r; with (k,1) # (4,7), 4,7,k,l=1,...,5, to zero, we get the following five conditions:

e1 A2 ea A3
— =D=0,
2 (f2— f1)?
GQA%
-C1— ——=— =0,
ERCEIIE
C2 262A§
- + =0,
(fo=f1)2 (fo— f1)?
. CQ . 61A% + 3€2A§ - 0
(fo—=f1)2 2(fa—f1)  (fo— f1)4 ’
Ol Cz €1A% 46214%

[ Ty ey EI

Given the formulas (10), (11) and (5), the equation (17) becomes
46162 62(fé)2

o A2 2(fs-fi "

(16)

(17)

(18)

(19)

(20)

(21)

where f5 = dfs/dx®. Differentiating it with respect to 2, we find ¢ = 0, after that from (13) we get
4 =10, it follows A} = A3 =0, Cy = e1Y4(A;1) =0, C2 = e3Y5(A3) = 0. In this case, the conditions (17)-
(21) are carried out identically, moreover, p;; = 0 for all 4,5 = 1,...5. Hence, Q;; =0 for all 4,5 =1, ...5,

therefore K = 0, and h-space (Hy1,g) is flat. Q.E.D.

3. Integrability conditions of the Eisenhart equation.
Theorem 2. Any solution (k,g,v) of the Eisenhart equation
VE(Y,ZW)=29(Y,ZYW¢ +gW,Z)Y¢ + g(Y,W)Z,
which is equivalent after change k = b+ 21 g to the equation
VoY, Z,W) = gW,Z)Y ¢ + g(Y,W)Zy),
in h-space (Hyy,g) of type {41} of non-constant curvature satisfies the condition

1
P =cy (2f1 + 2f2> + const = c1 + const,

where the function ¢ is defined by the relation (10), and ¢y is an arbitrary constant.

(23)

P r oo f. In view of the invariance of the quantities f; and the tensor nature of the equality (23),

it suffices to prove it in the canonical skew-frame (5), where the equation (22) takes the form

5
dbpg + > en (z}hq% n Bphwq,;) = (Y,0)0, + (Yy0)b,,
h=1

(24)
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here w j is defined by the formulas (9), and qu are the components of the tensor b in the skew-frame

(5)-

By differentiating the Eisenhart equation (24), we obtain its integrability conditions:
bprY g + by = Ypn0 A Oy + g0 A Oy, (25)

where th = ehQ;Lp, Yph = =Y Yp — fylthlz/) = np. By equating the coefficients for identical basic
2-forms 6, A 63 left and right in (25), for (pg) = (13) and (af) = (24) we find

61A% €2A§ ) -
— b11 = 0.
( 2 (fa—-f)3) M

If b1 # 0, then it follows (13), and, by Theorem 1, (Hy;,g) is a space of constant curvature. As this
contradicts the assumption, we have by; = 0. We similarly get

bio = b1z = b5 = bag = bag = bgy = b3y = byg = bys = 0. (26)

From the equation (24), where wys are defined by the formulas (9), (10) and (5), for (pg) =
(11), (12), (33), (34) and (35), using the equalities (26) and considering that &* # 0, € # 0, we find
4 5

?aﬂp =0, glaﬂp - «g?aﬂ/} =0, glaﬂp + g%w + §303¢ =0, (27)
Yibss =0 (i =1,...,5), (28)

049 = 2e1b33 f1, (29)

05 = gerbs . (30)

From the equation (27) we derive ¢ = 9 (2*, 2°) by using the formulas (5). Then from the equation
(28) it follows b33 = ejc; = const. By integrating the equations (29) and (30), we obtain

P =c (2f1 + J;Q) + const = ¢3¢ + const.

Q.E.D.

4. Main theorems.

Theorem 3. Any covariantly constant symmetric tensor b;; in h-space (Ha1,g) of type {41} of non-
constant curvature is proportional to the metric tensor:

bij = c29i; (ca = const).

P roof. In the skew-normal frame (5) the equation b;;, = 0 takes the form

5
dgpq + Z en (thwp;b + Bphwqﬁ) =0. (31)
h=1
The integrability conditions for the equations (31) are obtained from (25) for ¢ = const and have

the form
Bthhq + thth =0. (32)

Hence, as in the previous case, we obtain the equalities (26) in h-space (Hyi,g) of non-constant
curvature. From (32) for (pq) = (14),(33) it follows Dbyy = Dbzz = 0, and since in h-space (Hy,g)
of non-constant curvature D # 0, then by, = b3z = 0. From (31) for (pg) = (14),(23), (55) we find
dbis = 0, dbys = 0 and dbss = 0, whence it follows that by, bes and bss are constant.
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From (32) for (pg) = (13) we find
D(byy — baz) = 0,

from here for D # 0 we have b14 = bos, after that from (31) for (pq) = (45) we derive

(e2bss — e1b14) Az = 0,
(62655 — 61[314)141 = 0.

If (exbss — e1bis) # 0 then A; = Ay = 0; this implies (13) and by Theorem 1 (Hyi,g) has constant
curvature, which contradicts the assumption. Therefore, e;b14 = e1ba3 = egbss. Putting b1y = ejco we
find finally by, = c2gpq, Where (gp,) is defined by (6). Q.E.D.

Since the vector field X is an affine motion in (Hy1, g), if and only if (Lxg) » = 0, then the theorem
(3) implies

Theorem 4. Every affine motion X in an h-space (Hy41,g) of type {41} of non-constant curvature is
an infinitesimal homothety: Lxg = cg, ¢ = const.

Since any two solutions hy and hg of the Eisenhart equation (3) with the same right-hand side can
differ only by the covariantly constant tensor b, from the theorem 2 and the linearity of the equation
(3) it follows that the general solution of the Eisenhart equation in an h-space (Hy1, g) of non-constant
curvature can be written in the form c;h+ b or, by virtue of the theorem 3, in the form c1h + cog, where
h = a+ 2pg, g and a are defined in the skew-normal frame (5) by canonical forms (6) [4], ¢1, ¢c2 are
constant. From here it follows

Theorem 5. A vector field X is a projective motion in an h-space (Hyy,g) of non-constant curvature
if and only if

Lxg =c1h+ cag = c1(a + 2¢g) + cag,

where ¢ is the defining function of the projective motion X, g and a are defined in the skew-normal
frame (5) by canonical forms (6), c1, co are arbitrary constants.

Theorem 5 implies

Theorem 6. If an h-space (Hy1,g) of type {41} of non-constant curvature admits a r-dimensional
non-homothetic projective Lie algebra P,, then this algebra contains a (r — 1)-dimensional homothetic
subalgebra.

Proof. If (Xi,...,X,)is the basis of the Lie algebra P,, then Lx_ g =c1h+cag,s=1,...,r,
S S
where one of the constants c 1, for example, €1 is nonzero (otherwise P, consists of homotheties). In the
S

new basis Z; = X1, Z, = leT —c1X; we have Ly _g = (flcQ — §201)g, T=2,...,7. QE.D.
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