ГРАВИТАЦИЯ, КОСМОЛОГИЯ И ФУНДАМЕНТАЛЬНЫЕ ПОЛЯ

УДК 514.763, 512.816

С Аминова А. В., Хакимов Д. Р., 2019

H-ПРОСТРАНСТВА (H_{41},G) ТИПА $\{41\}$: ПРОЕКТИВНО-ГРУППОВЫЕ СВОЙСТВА

Аминова А. В. a,1 , Хакимов Д. Р. a,2

^а Казанский (Приволжский) федеральный университет, г. Казань, 420008, Россия.

В данной работе исследуются пятимерные h-пространства (H_{41},g) типа $\{41\}$ [4]. Находятся необходимые и достаточные условия, при которых (H_{41},g) является пространством постоянной кривизны. Определяется общее решение уравнения Эйзнхарта в h-пространстве (H_{41},g) непостоянной кривизны. Устанавливаются условия существования негомотетического проективного движения в (H_{41},g) и описывается структура негомотетической проективной алгебры Ли в h-пространстве (H_{41},g) типа $\{41\}$.

Kлючевые слова: пятимерное псевдориманово многообразие, h-пространство типа $\{41\}$, уравнение Эйзенхарта, проективная алгебра Π и.

H-SPACES (H_{41}, G) OF TYPE $\{41\}$: PROJECTIVE-GROUP PROPERTIES

Aminova A. V.^{a,1}, Khakimov D. R.^{a,2}

^a Kazan Federal University, Kazan, 420008, Russia.

In this paper we study five-dimensional h-spaces (H_{41}, g) of type $\{41\}$ [4]. Necessary and sufficient conditions for (H_{41}, g) to be a space of constant curvature are found. The general solution of the Eisnhart equation in h-space (H_{41}, g) of non-constant curvature is determined. We establish conditions for the existence of a non-homothetic projective motion in (H_{41}, g) and describe the structure of a non-homothetic projective Lie algebra in h-space (H_{41}, g) of type $\{41\}$.

Keywords: five-dimensional pseudo-Riemannian manifold, h-space of type $\{41\}$, Eisenhart equation, projective Lie algebra.

PACS: 04.50.+h, 04.50.-h, 02.40-k, 02.20.Sv DOI: 10.17238/issn2226-8812.2019.4.4-12

Introduction

A vector field X on a five-dimensional pseudo-Riemannian manifold (M,g) with a projective structure Π is called an *infinitesimal projective transformation*, or a *projective motion* if the local 1-parameter group of local transformations, which is generated by this field in a neighbourhood of each point $x \in M$, consists of (local) projective transformations, that is, automorphisms of the projective structure Π .

¹E-mail: asya.aminova@kpfu.ru

²E-mail: dzhamoliddink@mail.ru

The necessary and sufficient condition that $X = \xi^i \partial_i$ be a projective motion in a pseudo-Riemannian manifold (M, g) is

$$(L_X g_{ij})_{,k} = 2g_{ij}\varphi_{,k} + g_{ik}\varphi_{,j} + g_{jk}\varphi_{,i}, \tag{1}$$

where φ is a function of x^i , which we shall call a defining function of a projective motion X.

The equation (1) can be written in the form of two relations:

$$L_X g_{ij} \equiv \xi_{i,j} + \xi_{j,i} = h_{ij} \tag{2}$$

(the generalized Killing equation) and

$$h_{ij,k} = 2g_{ij}\varphi_{,k} + g_{ik}\varphi_{,j} + g_{jk}\varphi_{,i} \tag{3}$$

(the *Eisenhart equation*). If $\varphi = \text{const}$, that is, divX = const, then the vector field X preserves the affine connection and hence it is an infinitesimal affine transformation, or an affine motion.

An affine motion X is an infinitesimal homothety, or a homothetic motion when $h_{ij} = const \cdot g_{ij}$ and an infinitesimal isometry, or an isometric motion when $h_{ij} = 0$ [1].

After making a change of variables

$$h_{ij} = a_{ij} + 2\varphi g_{ij},$$

where a_{ij} is a symmetric bilinear form with the same Segre characteristic χ (that is of the same type χ) as h_{ij} , the equation (3) becomes

$$a_{ij,k} = g_{ik}\varphi_{,j} + g_{jk}\varphi_{,i}. (4)$$

We call g_{ij} an h-metric of type χ and we call (M,g) an h-space of type χ [2].

Given the type of tensor h_{ij} , one can find solutions of the Eisenhart equation (3) and then of the Killing equation (2).

In a canonical skew-normal frame ([3], p. 97) $\{Y_l\}$ on $V \subseteq M$ the equation (4) takes the form

$$d\bar{a}_{pq} + \sum_{h=1}^n e_h(\bar{a}_{hq}\omega_{p\tilde{h}} + \bar{a}_{ph}\omega_{q\tilde{h}}) = (Y_q\varphi)\theta_p + (Y_p\varphi)\theta_q,$$

where θ_h is the canonical 1-form which is conjugate to Y_h , $\omega_{pq} = -\omega_{qp}$ is the connection 1-form, and $p, q, r = 1, \ldots, 5$.

In [4] h-spaces (H_{41}, g) of type {41} were found, and necessary and sufficient conditions for the existence of projective motion of type {41} were obtained. To calculate the maximal projective Lie algebra in (H_{41}, g) , it is necessary to obtain a general solution of the Eisenhart equation (3) in h-space (H_{41}, g) . To solve this problem, one needs to study the integrability conditions (25) for the Eisenhart equation, which contain the curvature form Ω_{ij} . In this case, spaces of constant curvature should be excluded, the structure of the projective group of which is well known [2].

The outline of the article is as follows. Basic definitions and formulas are given in Section 1. The curvature structure of the h-space (H_{41}, g) is defined in Section 2. In Section 3 we derive the necessary and sufficient conditions that h-space (H_{41}, g) be a space of constant curvature. In Section 4 we discuss the integrability conditions of the Eisenhart equation in (H_{41}, g) and obtain an important characteristic of its solutions in an h-space (H_{41}, g) of non-constant curvature. In Section 5 we establish necessary and sufficient conditions for the existence of a non-homothetic projective motion in h-space (H_{41}, g) of type $\{41\}$, and determine the structure of a non-homothetic projective Lie algebra in (H_{41}, g) .

1. Computing curvature of (H_{41}, g) .

In the paper [4] a canonical skew-normal frame $(Y_i) = (\xi^j \partial_j)$ has been defined with the following components in the appropriate coordinates:

$$\xi^1_1 = \xi^2_2 = \xi^3_3 = \frac{1}{(f_2 - f_1)^{1/2}}, \quad \xi^1_2 = \frac{1}{2(f_2 - f_1)^{3/2}},$$

$$\xi_{3}^{1} = \frac{3}{8(f_{2} - f_{1})^{5/2}}, \quad \xi_{3}^{2} = \frac{1}{2(f_{2} - f_{1})^{3/2}}, \quad \xi_{4}^{1} = \frac{5}{16(f_{2} - f_{1})^{7/2}},$$

$$\xi_{4}^{2} = \frac{1}{8(f_{2} - f_{1})^{1/2}} \left(\frac{3}{(f_{2} - f_{1})^{2}} - \frac{8}{A} \varepsilon x^{1} \right), \quad \xi_{4}^{3} = \frac{1}{2(f_{2} - f_{1})^{1/2}} \left(\frac{1}{f_{2} - f_{1}} - \frac{4}{A} \varepsilon x^{2} \right),$$

$$\xi_{4}^{4} = \frac{1}{A(f_{2} - f_{1})^{1/2}}, \quad \xi_{5}^{5} = \frac{1}{(f_{1} - f_{2})^{2}}, \quad (A = 3\varepsilon \left(x^{3} + \omega(x^{4}) \right) + 1 - \varepsilon).$$

$$(5)$$

The canonical forms a_{ij} and g_{ij} are given by the formulas

$$\bar{a}_{pq} = \begin{pmatrix} 0 & 0 & 0 & e_1 f_1 & 0 \\ 0 & 0 & e_1 f_1 & e_1 & 0 \\ 0 & e_1 f_1 & e_1 & 0 & 0 & 0 \\ e_1 f_1 & e_1 & 0 & 0 & 0 & e_2 f_2 \end{pmatrix}, \quad \bar{g}_{pq} = \begin{pmatrix} 0 & 0 & 0 & e_1 & 0 \\ 0 & 0 & e_1 & 0 & 0 \\ 0 & e_1 & 0 & 0 & 0 \\ e_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & e_2 \end{pmatrix}, \tag{6}$$

and the following equations are satisfied:

$$Y_1\varphi = Y_2\varphi = Y_3\varphi = 0, (7)$$

$$df_1 = \frac{1}{2}(Y_4\varphi)\theta_1, \quad df_2 = 2(Y_5\varphi)\theta_5,$$
 (8)

$$\omega_{13} = \frac{1}{2} (Y_4 \varphi) \theta_1, \quad \omega_{14} = -(Y_4 \varphi) \theta_2, \quad \omega_{15} = \frac{Y_5 \varphi}{f_2 - f_1} \theta_1,$$

$$\omega_{24} = -(Y_4\varphi)\theta_3, \quad \omega_{25} = \frac{Y_5\varphi}{(f_2 - f_1)^2}\theta_1 + \frac{Y_5\varphi}{f_2 - f_1}\theta_2,$$
 (9)

$$\omega_{34} = -(Y_4\varphi)\theta_4, \quad \omega_{35} = \frac{Y_5\varphi}{(f_2 - f_1)^3}\theta_1 + \frac{Y_5\varphi}{(f_2 - f_1)^2}\theta_2 + \frac{Y_5\varphi}{f_2 - f_1}\theta_3$$

$$\omega_{45} = \frac{Y_5 \varphi}{(f_2 - f_1)^4} \theta_1 + \frac{Y_5 \varphi}{(f_2 - f_1)^3} \theta_2 + \frac{Y_5 \varphi}{(f_2 - f_1)^2} \theta_3 + \frac{Y_5 \varphi}{f_2 - f_1} \theta_4 + \frac{Y_4 \varphi}{f_2 - f_1} \theta_5.$$

Here

$$\varphi = 2f_1 + \frac{1}{2}f_2 \tag{10}$$

is the defining function of a projective motion of type $\{41\}$, $\omega_{ij} = \gamma_{jik}\theta^k$ is the 1-form of connection in the skew-normal frame (Y_h) , $f_1 = \varepsilon x^4 + (1 - \varepsilon)\kappa$, $f_2 = f_2(x^5)$, ε takes values 0 and 1, κ is a constant, $e_1, e_2 = \pm 1$. [4]. Using the first Cartan structure equation $d\theta_i = -\sum_{j=1}^5 e_j \omega_{ij} \wedge \theta_{\tilde{j}}$ and the formulas (9), we find

$$d\theta_{1} = -\frac{3e_{1}(Y_{4}\varphi)}{2}\theta_{1} \wedge \theta_{2} - \frac{e_{2}(Y_{5}\varphi)}{f_{2} - f_{1}}\theta_{1} \wedge \theta_{5},$$

$$d\theta_{2} = -e_{1}(Y_{4}\varphi)\theta_{1} \wedge \theta_{3} - \frac{e_{2}(Y_{5}\varphi)}{(f_{2} - f_{1})^{2}}\theta_{1} \wedge \theta_{5} - \frac{e_{2}(Y_{5}\varphi)}{f_{2} - f_{1}}\theta_{2} \wedge \theta_{5},$$

$$d\theta_{3} = -\frac{e_{1}(Y_{4}\varphi)}{2}\theta_{1} \wedge \theta_{4} - \frac{e_{2}(Y_{5}\varphi)}{(f_{2} - f_{1})^{3}}\theta_{1} \wedge \theta_{5} - \frac{e_{2}(Y_{5}\varphi)}{(f_{2} - f_{1})^{2}}\theta_{2} \wedge \theta_{5} - \frac{e_{2}(Y_{5}\varphi)}{f_{2} - f_{1}}\theta_{3} \wedge \theta_{5},$$

$$d\theta_{4} = -\frac{e_{2}(Y_{5}\varphi)}{(f_{2} - f_{1})^{4}}\theta_{1} \wedge \theta_{5} - \frac{e_{2}(Y_{5}\varphi)}{(f_{2} - f_{1})^{3}}\theta_{2} \wedge \theta_{5} - \frac{e_{2}(Y_{5}\varphi)}{(f_{2} - f_{1})^{2}}\theta_{3} \wedge \theta_{5} - \frac{e_{2}(Y_{5}\varphi)}{f_{2} - f_{1}}\theta_{4} \wedge \theta_{5},$$

$$d\theta_{5} = -\frac{e_{1}(Y_{4}\varphi)}{f_{2} - f_{1}}\theta_{1} \wedge \theta_{5}.$$

We introduce the notation

$$A_1 \equiv Y_4 \varphi, \quad A_2 \equiv Y_5 \varphi,$$

$$C_1 \equiv e_1 Y_4 (Y_4 \varphi), \quad C_2 \equiv e_2 Y_5 (Y_5 \varphi). \tag{11}$$

$$d\omega_{12} = 0$$
, $d\omega_{13} = 0$, $d\omega_{14} = -C_1\theta_1 \wedge \theta_2 + A_1^2\theta_1 \wedge \theta_3 + \frac{e_2A_1A_2}{(f_2 - f_1)^2}\theta_1 \wedge \theta_5$,

$$\begin{split} d\omega_{15} &= -\frac{3e_1A_1A_2}{2(f_2-f_1)}\theta_1 \wedge \theta_2 - \left(\frac{C_2}{f_2-f_1} - \frac{e_2A_2^2}{(f_2-f_1)^2}\right)\theta_1 \wedge \theta_5, \ d\omega_{23} = 0, \\ d\omega_{24} &= -C_1\theta_1 \wedge \theta_3 + \frac{e_1A_1^2}{2}\theta_1 \wedge \theta_4 + \frac{e_2A_1A_2}{(f_2-f_1)^3}\theta_1 \wedge \theta_5 + \frac{3e_1A_1^2}{2}\theta_2 \wedge \theta_3 + \frac{e_2A_1A_2}{(f_2-f_1)^2}\theta_2 \wedge \theta_5, \\ d\omega_{25} &= -\frac{e_1A_1A_2}{f_2-f_1}\theta_1 \wedge \theta_3 - \left(\frac{C_2}{(f_2-f_1)^2} - \frac{2e_2A_2^2}{(f_2-f_1)^3}\right)\theta_1 \wedge \theta_5 - \left(\frac{C_2}{f_2-f_1} - \frac{e_2A_2^2}{(f_2-f_1)^2}\right)\theta_2 \wedge \theta_5, \\ d\omega_{34} &= -C_1\theta_1 \wedge \theta_4 + \frac{e_2A_1A_2}{(f_2-f_1)^4}\theta_1 \wedge \theta_5 + \frac{3e_1A_1^2}{2}\theta_2 \wedge \theta_4 + \frac{e_2A_1A_2}{(f_2-f_1)^3}\theta_2 \wedge \theta_5 + \frac{e_2A_1A_2}{(f_2-f_1)^2}\theta_3 \wedge \theta_5, \\ d\omega_{35} &= \frac{e_1A_1A_2}{2(f_2-f_1)^3}\theta_1 \wedge \theta_2 + \frac{e_1A_1A_2}{2(f_2-f_1)^2}\theta_1 \wedge \theta_3 - \frac{e_1A_1A_2}{2(f_2-f_1)}\theta_1 \wedge \theta_4 - \left(\frac{C_2}{(f_2-f_1)^3} - \frac{3e_2A_2^2}{(f_2-f_1)^4}\right)\theta_1 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^2} - \frac{2e_2A_2^2}{(f_2-f_1)^3}\right)\theta_2 \wedge \theta_5 - \left(\frac{C_2}{f_2-f_1} - \frac{e_2A_2^2}{(f_2-f_1)^2}\right)\theta_3 \wedge \theta_5, \\ d\omega_{45} &= \frac{e_1A_2A_1}{(f_2-f_1)^4}\theta_1 \wedge \theta_2 + \frac{e_1A_2A_1}{(f_2-f_1)^3}\theta_1 \wedge \theta_3 + \frac{e_1A_2A_1}{(f_2-f_1)^2}\theta_1 \wedge \theta_4 + \left(\frac{C_1}{(f_2-f_1)^3} - \frac{C_2}{(f_2-f_1)^3} + \frac{4e_2A_2}{(f_2-f_1)^3} - \frac{e_1A_1^2}{2(f_2-f_1)^3}\right)\theta_1 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^3} - \frac{3e_1A_1^2}{2(f_2-f_1)^3} + \frac{3e_1A_1^2}{2(f_2-f_1)^3} - \frac{3e_2A_2^2}{2(f_2-f_1)^4}\right)\theta_1 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^3} - \frac{3e_1A_1^2}{2(f_2-f_1)^3} - \frac{3e_2A_2^2}{2(f_2-f_1)^3}\right)\theta_1 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^3} - \frac{3e_1A_1^2}{2(f_2-f_1)^3} - \frac{3e_2A_2^2}{2(f_2-f_1)^3}\right)\theta_1 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^3} - \frac{3e_1A_1^2}{2(f_2-f_1)^3} - \frac{3e_2A_2^2}{2(f_2-f_1)^4}\right)\theta_2 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^3} - \frac{3e_1A_1^2}{2(f_2-f_1)^3} - \frac{3e_2A_2^2}{(f_2-f_1)^4}\right)\theta_2 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^2} - \frac{2e_2A_2^2}{(f_2-f_1)^3}\right)\theta_3 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^4} - \frac{e_2A_2^2}{(f_2-f_1)^4}\right)\theta_2 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^2} - \frac{2e_2A_2^2}{(f_2-f_1)^3}\right)\theta_3 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^4} - \frac{e_2A_2^2}{(f_2-f_1)^4}\right)\theta_4 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^2} - \frac{2e_2A_2^2}{(f_2-f_1)^3}\right)\theta_4 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^2} - \frac{2e_2A_2^2}{(f_2-f_1)^3}\right)\theta_4 \wedge \theta_5 - \left(\frac{C_2}{(f_2-f_1)^2}$$

By taking the external differential from both sides of the equation $df_1 = e_1(Y_4\varphi)\theta_1 \equiv e_1A_1\theta_1$ (8) and comparing this to $dA_1 = \theta^l Y_l Y_4 \varphi = \theta^l [Y_l, Y_4] + \theta^l Y_4 Y_l \varphi$, we get by using (7)

$$dA_1 = C_1\theta_1 - \frac{3}{2}e_1A_1^2\theta_2 - \frac{e_2A_1A_2}{f_2 - f_1}\theta_5;$$

 dA_2 is similarly calculated.

Using the obtained relations and the second Cartan structure equation $\Omega_{ij} = d\omega_{ij} + \sum_{l=1}^{5} e_l \omega_{il} \wedge \omega_{\tilde{l}j}$, we calculate the curvature 2-form Ω_{ij} of h-space of type {41}:

$$\begin{split} \Omega_{12} &= -\frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_1 \wedge \theta_2, \quad \Omega_{13} = \left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \theta_1 \wedge \theta_2 - \frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_1 \wedge \theta_3, \\ \Omega_{14} &= -\left(C_1 + \frac{e_2 A_2^2}{(f_2 - f_1)^4}\right) \theta_1 \wedge \theta_2 + \left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \theta_1 \wedge \theta_3 - \frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_1 \wedge \theta_4, \\ \Omega_{15} &= -\left(\frac{C_2}{f_2 - f_1} - \frac{e_2 A_2^2}{(f_2 - f_1)^2}\right) \theta_1 \wedge \theta_5, \quad \Omega_{23} = \left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \theta_1 \wedge \theta_3 - \frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_2 \wedge \theta_3, \quad \Omega_{24} &= -\left(C_1 + \frac{e_2 A_2^2}{(f_2 - f_1)^4}\right) \theta_1 \wedge \theta_3 + \left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \theta_1 \wedge \theta_4 + \frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_2 \wedge \theta_3, \quad \Omega_{24} &= -\left(C_1 + \frac{e_2 A_2^2}{(f_2 - f_1)^4}\right) \theta_1 \wedge \theta_3 + \left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \theta_1 \wedge \theta_4 + \frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_2 \wedge \theta_3, \quad \Omega_{24} &= -\left(C_1 + \frac{e_2 A_2^2}{(f_2 - f_1)^4}\right) \theta_1 \wedge \theta_3 + \left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \theta_1 \wedge \theta_4 + \frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_2 \wedge \theta_3, \quad \Omega_{24} &= -\left(C_1 + \frac{e_2 A_2^2}{(f_2 - f_1)^4}\right) \theta_1 \wedge \theta_3 + \left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \theta_1 \wedge \theta_4 + \frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_2 \wedge \theta_3, \quad \Omega_{24} &= -\left(C_1 + \frac{e_2 A_2^2}{(f_2 - f_1)^4}\right) \theta_1 \wedge \theta_3 + \left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \theta_1 \wedge \theta_4 + \frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_2 \wedge \theta_3, \quad \Omega_{24} &= -\left(C_1 + \frac{e_2 A_2^2}{(f_2 - f_1)^4}\right) \theta_1 \wedge \theta_3 + \left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \theta_1 \wedge \theta_4 + \frac{e_2 A_2^2}{(f_2 - f_1)^2} \theta_2 \wedge \theta_3, \quad \Omega_{24} &= -\left(C_1 + \frac{e_2 A_2^2}{(f_2 - f_1)^4}\right) \theta_1 \wedge \theta_3 + \frac{e_2 A_2^2}{(f_2 - f_1)^3} \theta_2 \wedge \theta_4 + \frac{e_2 A_2^2}{(f_2 - f_1)^3} \theta_1 \wedge \theta_4 + \frac$$

$$\left(\frac{e_1A_1^2}{2} - \frac{e_2A_2^2}{(f_2 - f_1)^3}\right)\theta_2 \wedge \theta_3 - \frac{e_2A_2^2}{(f_2 - f_1)^2}\theta_2 \wedge \theta_4, \tag{12}$$

$$\Omega_{25} = -\left(\frac{C_2}{(f_2 - f_1)^2} - \frac{2e_2A_2^2}{(f_2 - f_1)^3}\right)\theta_1 \wedge \theta_5 - \left(\frac{C_2}{f_2 - f_1} - \frac{e_2A_2^2}{(f_2 - f_1)^2}\right)\theta_2 \wedge \theta_5,$$

$$\Omega_{34} = -\left(C_1 + \frac{e_2A_2^2}{(f_2 - f_1)^4}\right)\theta_1 \wedge \theta_4 + \left(\frac{e_1A_1^2}{2} - \frac{e_2A_2^2}{(f_2 - f_1)^3}\right)\theta_2 \wedge \theta_4 - \frac{e_2A_2^2}{(f_2 - f_1)^2}\theta_3 \wedge \theta_4,$$

$$\Omega_{35} = -\left(\frac{C_2}{(f_2 - f_1)^3} + \frac{e_1A_1^2}{2(f_2 - f_1)} - \frac{3e_2A_2^2}{(f_2 - f_1)^4}\right)\theta_1 \wedge \theta_5 - \left(\frac{C_2}{(f_2 - f_1)^2} - \frac{2e_2A_2^2}{(f_2 - f_1)^3}\right)\theta_2 \wedge \theta_5 - \left(\frac{C_2}{f_2 - f_1} - \frac{e_2A_2^2}{(f_2 - f_1)^2}\right)\theta_3 \wedge \theta_5,$$

$$\Omega_{45} = \left(\frac{C_1}{(f_2 - f_1)} - \frac{C_2}{(f_2 - f_1)^4} + \frac{4e_2A_2^2}{(f_2 - f_1)^5} - \frac{e_1A_1^2}{2(f_2 - f_1)^2}\right)\theta_1 \wedge \theta_5 - \left(\frac{C_2}{(f_2 - f_1)^3} + \frac{e_1A_1^2}{2(f_2 - f_1)} - \frac{3e_2A_2^2}{(f_2 - f_1)^4}\right)\theta_2 \wedge \theta_5 - \left(\frac{C_2}{(f_2 - f_1)^2} - \frac{2e_2A_2^2}{(f_2 - f_1)^3}\right)\theta_3 \wedge \theta_5 - \left(\frac{C_2}{f_2 - f_1} - \frac{e_2A_2^2}{(f_2 - f_1)^2}\right)\theta_4 \wedge \theta_5.$$

2. H-spaces (H_{41}, g) of constant curvature.

Theorem 1. The necessary and sufficient condition for an h-space (H_{41}, g) of type $\{41\}$ to be a space of constant curvature $K: \Omega_{ij} = K\theta_i \wedge \theta_j$, is $K_{1312} = 0$, which is equivalent to

$$D \equiv \frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3} = 0, \tag{13}$$

moreover, $K_{ijkl} = 0$, $\rho_{ij} = 0$ for all (ij) and $(kl) \neq (ij)$, that is $\Omega_{ij} = 0$, and any h-space H_{41} of type $\{41\}$ of constant curvature is flat.

Proof. We write the curvature 2-form as

$$\Omega_{ij} \equiv \sum_{(kl)} K_{ijkl} \theta_k \wedge \theta_l \quad (k, l = 1, ..., 5, k < l)$$
(14)

and put $K_{ijij} \equiv \rho_{ij}$, then the formula (14) takes the form

$$\Omega_{ij} = \rho_{ij}\theta_i \wedge \theta_j + \sum_{(kl) \neq (ij)} K_{ijkl}\theta_k \wedge \theta_l \quad (i, j, k, l = 1, ..., 5, i < j, k < l),$$

where, by virtue of (12),

$$\rho_{12} = -\frac{e_2 A_2^2}{(f_2 - f_1)^2} = \rho_{13} = \rho_{14} = \rho_{23} = \rho_{24} = \rho_{34},$$

$$\rho_{15} = -\frac{C_2}{f_2 - f_1} + \frac{e_2 A_2^2}{(f_2 - f_1)^2} = \rho_{25} = \rho_{35} = \rho_{45},$$
(15)

and among the coefficients K_{ijkl} for $(kl) \neq (ij)$ are nonzero only

$$K_{1312} = \frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}, \ K_{1412} = -C_1 - \frac{e_2 A_2^2}{(f_2 - f_1)^4},$$

$$K_{1413} = K_{1312} = K_{2313}, \quad K_{2413} = K_{1412}, \quad K_{2414} = K_{1312} = K_{2423},$$

$$K_{2515} = -\frac{C_2}{(f_2 - f_1)^2} + \frac{2e_2A_2^2}{(f_2 - f_1)^3}, \quad K_{3414} = K_{1412},$$

$$K_{3515} = -\frac{C_2}{(f_2 - f_1)^3} - \frac{e_1A_1^2}{2(f_2 - f_1)} + \frac{3e_2A_2^2}{(f_2 - f_1)^4},$$

$$K_{3525} = K_{2515}, \quad K_{4525} = K_{3515}, \quad K_{4535} = K_{2515},$$

$$K_{4515} = \frac{C_1}{f_2 - f_1} - \frac{C_2}{(f_2 - f_1)^4} - \frac{e_1A_1^2}{2(f_2 - f_1)^2} + \frac{4e_2A_2^2}{(f_2 - f_1)^5},$$

$$(16)$$

Equating K_{ijkl} with $(k,l) \neq (i,j)$, i,j,k,l=1,...,5, to zero, we get the following five conditions:

$$\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3} \equiv D = 0, \tag{17}$$

$$-C_1 - \frac{e_2 A_2^2}{(f_2 - f_1)^4} = 0, (18)$$

$$-\frac{C_2}{(f_2 - f_1)^2} + \frac{2e_2A_2^2}{(f_2 - f_1)^3} = 0, (19)$$

$$-\frac{C_2}{(f_2 - f_1)^3} - \frac{e_1 A_1^2}{2(f_2 - f_1)} + \frac{3e_2 A_2^2}{(f_2 - f_1)^4} = 0, (20)$$

$$\frac{C_1}{f_2 - f_1} - \frac{C_2}{(f_2 - f_1)^4} - \frac{e_1 A_1^2}{2(f_2 - f_1)^2} + \frac{4e_2 A_2^2}{(f_2 - f_1)^5} = 0.$$
(21)

Given the formulas (10), (11) and (5), the equation (17) becomes

$$\frac{4e_1\varepsilon^2}{(f_2 - f_1)A^2} - \frac{e_2(f_2')^2}{2(f_2 - f_1)^7} = 0$$

where $f_2' = df_2/dx^5$. Differentiating it with respect to x^3 , we find $\varepsilon = 0$, after that from (13) we get $f_2' = 0$, it follows $A_1 = A_2 = 0$, $C_1 \equiv e_1 Y_4(A_1) = 0$, $C_2 \equiv e_2 Y_5(A_2) = 0$. In this case, the conditions (17)-(21) are carried out identically, moreover, $\rho_{ij} \equiv 0$ for all i, j = 1, ...5. Hence, $\Omega_{ij} = 0$ for all i, j = 1, ...5, therefore K = 0, and h-space (H_{41}, g) is flat. Q.E.D.

3. Integrability conditions of the Eisenhart equation.

Theorem 2. Any solution (k, g, ψ) of the Eisenhart equation

$$\nabla k(Y, Z, W) = 2g(Y, Z)W\psi + g(W, Z)Y\psi + g(Y, W)Z\psi,$$

which is equivalent after change $k = b + 2\psi g$ to the equation

$$\nabla b(Y, Z, W) = g(W, Z)Y\psi + g(Y, W)Z\psi, \tag{22}$$

in h-space (H_{41},g) of type $\{41\}$ of non-constant curvature satisfies the condition

$$\psi = c_1 \left(2f_1 + \frac{1}{2}f_2 \right) + const = c_1 \varphi + const, \tag{23}$$

where the function φ is defined by the relation (10), and c_1 is an arbitrary constant.

P r o o f. In view of the invariance of the quantities f_i and the tensor nature of the equality (23), it suffices to prove it in the canonical skew-frame (5), where the equation (22) takes the form

$$d\bar{b}_{pq} + \sum_{h=1}^{5} e_h \left(\bar{b}_{hq} \omega_{p\tilde{h}} + \bar{b}_{ph} \omega_{q\tilde{h}} \right) = (Y_q \psi) \theta_p + (Y_p \psi) \theta_q, \tag{24}$$

here $\omega_{p\bar{h}}$ is defined by the formulas (9), and \bar{b}_{pq} are the components of the tensor b in the skew-frame (5).

By differentiating the Eisenhart equation (24), we obtain its integrability conditions:

$$\bar{b}_{ph}\Omega^{h}{}_{q} + \bar{b}_{hq}\Omega^{h}{}_{p} = \psi_{ph}\theta^{h} \wedge \theta_{q} + \psi_{hq}\theta^{h} \wedge \theta_{p}, \tag{25}$$

where $\Omega^h_p = e_h \Omega_{\tilde{h}p}$, $\psi_{ph} \equiv -Y_h Y_p \psi - \gamma^l_{ph} Y_l \psi = \psi_{hp}$. By equating the coefficients for identical basic 2-forms $\theta_{\alpha} \wedge \theta_{\beta}$ left and right in (25), for (pq) = (13) and $(\alpha\beta) = (24)$ we find

$$\left(\frac{e_1 A_1^2}{2} - \frac{e_2 A_2^2}{(f_2 - f_1)^3}\right) \bar{b}_{11} = 0.$$

If $\bar{b}_{11} \neq 0$, then it follows (13), and, by Theorem 1, (H_{41}, g) is a space of constant curvature. As this contradicts the assumption, we have $\bar{b}_{11} = 0$. We similarly get

$$\bar{b}_{12} = \bar{b}_{13} = \bar{b}_{15} = \bar{b}_{22} = \bar{b}_{25} = \bar{b}_{34} = \bar{b}_{35} = \bar{b}_{44} = \bar{b}_{45} = 0.$$
 (26)

From the equation (24), where ω_{hs} are defined by the formulas (9), (10) and (5), for (pq) = (11), (12), (33), (34) and (35), using the equalities (26) and considering that $\xi_4^4 \neq 0, \xi_5^5 \neq 0$, we find

$$\xi^{1} \partial_{1} \psi = 0, \ \xi^{1} \partial_{1} \psi + \xi^{2} \partial_{2} \psi = 0, \ \xi^{1} \partial_{1} \psi + \xi^{2} \partial_{2} \psi + \xi^{3} \partial_{3} \psi = 0, \tag{27}$$

$$Y_i \bar{b}_{33} = 0 \ (i = 1, ..., 5),$$
 (28)

$$\partial_4 \psi = 2e_1 \bar{b}_{33} f_1',\tag{29}$$

$$\partial_5 \psi = \frac{1}{2} e_1 \bar{b}_{33} f_2'. \tag{30}$$

From the equation (27) we derive $\psi = \psi(x^4, x^5)$ by using the formulas (5). Then from the equation (28) it follows $\bar{b}_{33} = e_1 c_1 = const.$ By integrating the equations (29) and (30), we obtain

$$\psi = c_1 \left(2f_1 + \frac{f_2}{2} \right) + \text{const} = c_1 \varphi + const.$$

Q.E.D.

4. Main theorems.

Theorem 3. Any covariantly constant symmetric tensor b_{ij} in h-space (H_{41}, g) of type $\{41\}$ of non-constant curvature is proportional to the metric tensor:

$$b_{ij} = c_2 g_{ij} \qquad (c_2 = const).$$

P r o o f. In the skew-normal frame (5) the equation $b_{ij,k} = 0$ takes the form

$$d\bar{b}_{pq} + \sum_{h=1}^{5} e_h \left(\bar{b}_{hq} \omega_{p\tilde{h}} + \bar{b}_{ph} \omega_{q\tilde{h}} \right) = 0.$$
(31)

The integrability conditions for the equations (31) are obtained from (25) for $\psi = const$ and have the form

$$\bar{b}_{ph}\Omega^h{}_q + \bar{b}_{hq}\Omega^h{}_p = 0. ag{32}$$

Hence, as in the previous case, we obtain the equalities (26) in h-space (H_{41},g) of non-constant curvature. From (32) for (pq)=(14),(33) it follows $D\bar{b}_{24}=D\bar{b}_{33}=0$, and since in h-space (H_{41},g) of non-constant curvature $D\neq 0$, then $\bar{b}_{24}=\bar{b}_{33}=0$. From (31) for (pq)=(14),(23),(55) we find $d\bar{b}_{14}=0$, $d\bar{b}_{23}=0$ and $d\bar{b}_{55}=0$, whence it follows that \bar{b}_{14} , \bar{b}_{23} and \bar{b}_{55} are constant.

From (32) for (pq) = (13) we find

$$D(\bar{b}_{14} - \bar{b}_{23}) = 0,$$

from here for $D \neq 0$ we have $\bar{b}_{14} = \bar{b}_{23}$, after that from (31) for (pq) = (45) we derive

$$(e_2\bar{b}_{55} - e_1\bar{b}_{14})A_2 = 0,$$

$$(e_2\bar{b}_{55} - e_1\bar{b}_{14})A_1 = 0.$$

If $(e_2\bar{b}_{55} - e_1\bar{b}_{14}) \neq 0$ then $A_1 = A_2 = 0$; this implies (13) and by Theorem 1 (H_{41}, g) has constant curvature, which contradicts the assumption. Therefore, $e_1\bar{b}_{14} = e_1\bar{b}_{23} = e_2\bar{b}_{55}$. Putting $\bar{b}_{14} = e_1c_2$ we find finally $\bar{b}_{pq} = c_2\bar{g}_{pq}$, where (\bar{g}_{pq}) is defined by (6). Q.E.D.

Since the vector field X is an affine motion in (H_{41}, g) , if and only if $(L_X g)_{,k} = 0$, then the theorem (3) implies

Theorem 4. Every affine motion X in an h-space (H_{41}, g) of type $\{41\}$ of non-constant curvature is an infinitesimal homothety: $L_X g = cg$, c = const.

Since any two solutions h_1 and h_2 of the Eisenhart equation (3) with the same right-hand side can differ only by the covariantly constant tensor b, from the theorem 2 and the linearity of the equation (3) it follows that the general solution of the Eisenhart equation in an h-space (H_{41}, g) of non-constant curvature can be written in the form $c_1h + b$ or, by virtue of the theorem 3, in the form $c_1h + c_2g$, where $h = a + 2\varphi g$, g and a are defined in the skew-normal frame (5) by canonical forms (6) [4], c_1 , c_2 are constant. From here it follows

Theorem 5. A vector field X is a projective motion in an h-space (H_{41}, g) of non-constant curvature if and only if

$$L_X g = c_1 h + c_2 g \equiv c_1 (a + 2\varphi g) + c_2 g,$$

where φ is the defining function of the projective motion X, g and a are defined in the skew-normal frame (5) by canonical forms (6), c_1 , c_2 are arbitrary constants.

Theorem 5 implies

Theorem 6. If an h-space (H_{41}, g) of type $\{41\}$ of non-constant curvature admits a r-dimensional non-homothetic projective Lie algebra P_r , then this algebra contains a (r-1)-dimensional homothetic subalgebra.

Proof. If (X_1, \ldots, X_r) is the basis of the Lie algebra P_r , then $L_{X_s}g = \underset{s}{c_1}h + \underset{s}{c_2}g$, $s = 1, \ldots, r$, where one of the constants $\underset{s}{c_1}$, for example, $\underset{s}{c_1}$ is nonzero (otherwise P_r consists of homotheties). In the new basis $Z_1 = X_1$, $Z_\tau = \underset{s}{c_1}X_\tau - \underset{s}{c_1}X_1$ we have $L_{Z_\tau}g = (\underset{s}{c_1}\underset{s}{c_2} - \underset{s}{c_2}\underset{s}{c_1}y_1, \quad y_1, \quad y_2, \quad y_3, \quad y_4, \quad y_5, \quad y_5,$

References

- 1. Aminova A.V. Projective transformations of pseudo-Riemannian manifolds. J. Math. Sci., 2003, 113 (3), pp. 367–470.
- 2. Aminova. A.V. Lie algebras of infinitesimal projective transformations of Lorentz manifolds. *Russian Math Surveys*, 1995, V. 50:1, pp. 69–142.
- 3. Aminova A.V. Projective transformations of pseudo-Riemannian manifolds. Moskow: Yanus-K Publ., 2003.
- 4. Aminova A.V., Khakimov D.R. On projective motions of 5-dimensional spaces II. h-spaces of the type $\{41\}$. Space, Time and Fundamental Interactions, 2019, no. 1, pp. 45–55.

Авторы

Аминова Ася Васильевна, д-р ф.-м. н., профессор, кафедра теории относительности и гравитации, Институт физики, Казанский (Приволжский) федеральный университет, ул. Кремлевская, д. 18, г. Казань, 420008, Россия.

E-mail: asya.aminova@kpfu.ru

Хакимов Джамолиддин Рахмонович, аспирант, кафедра геометрии, отделение математики, Институт математики и механики им. Н. И. Лобачевского, Казанский (Приволжский) федеральный университет, ул. Кремлевская, д. 18, г. Казань, 420008, Россия.

E-mail: dzhamoliddink@mail.ru

Просьба ссылаться на эту статью следующим образом:

Аминова А. В., Хакимов Д. Р. H-пространства (H_{41}, g) типа $\{41\}$: проективно-групповые свойства // Пространство, время и фундаментальные взаимодействия. 2019. № 4. С. 4—12.

Authors

Aminova Asya Vasilyevna, Doctor of Physics and Mathematics, Professor, Department of General Relativity and Gravitation, Kazan Federal University, 18 Kremlyovskaya St., Kazan, 420008, Russia. E-mail: asya.aminova@kpfu.ru

Khakimov Dzhamoliddin Rakhmonovich, Department of Geometry, N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 18 Kremlyovskaya St., Kazan, 420008, Russia. E-mail: dzhamoliddink@mail.ru

Please cite this article in English as:

Aminova A. V., Khakimov D. R. H-spaces (H_{41}, g) of type $\{41\}$: projective-group properties. Space, Time and Fundamental Interactions, 2019, no. 4, pp. 4–12.