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JlBe Bepcuu CUMMETPUIHOTO 3(PPEKTUBHOIO TEH30PA IHEPTUU-UMITYJIBCA FJTEKTPOMATHUTHOTO OIS B JTUHAMO-
ONTUYECKN aKTUBHOMN PEJIITUBUCTCKOM CpeJie IOCTPOEHBI B PAMKAX TETPAIHON 1 3(pUPHON MapaJUrMbl HA OCHOBE
KOBAPMAHTHOI'O BapHUAIMOHHOTO hopMmasm3Ma. [lokazaHo, 9TO CKajsp IJIOTHOCTH SHEPTHH U TEH30D JIaBJIEHUS
COBIIAQJAIOT JUUIs 00enX BEPCHil TEH30pa dHEPIUH-UMILYJIbCA, OJHAKO, BEKTOPHI II0TOKA SHEPIUU OKA3BbIBAIOTCS, B
o0IeM cirydae, HECOBIAJAIONMMU. DTOT MaTeMaTudecKuil pakT nobaBiser HOBYIO apryMEHTAIMIO B JIUCKYC-
cuio, Koropast craproBasia 100 jier Ha3a, mosyvyusia Ha3BaHue nojieMuka MuHkoBckoro-Abparama u cBsI3aHa C
KOPPEKTHBIM OIPE/IeJIEHNEM TOTOKA JIEKTPOMATHUTHON SHEPruM B CIJIONIHON cpeqe. Mbl paccMaTpuBaeM TPH
IIpUMepa: BO-IIEPBBIX, aKCHOHHO-AKTUBHBIN BaKyyM, BO-BTOPBIX, IIPOCTPAHCTBEHHO M30TPOIHAS JIBUKYIIASICS JTH-
3JIEKTPUYECKAs CPEeJia, B-TPEThUX, JTUHAMO-ONTHIECKU-aKTUBHAS CPea. ¥ TOMSHYTHI BO3MOYXKHBIE ITPUIOKEHUS

pa3paboTaHHOrO (hpopMaIU3Ma.
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Introduction

More than a century ago the term Minkowski-Abraham controversy appeared in the scientific lexicon
as the result of discussions of Minkowski [1], Einstein and Laub [2], and Abraham [3]. These discussions
were focused on the correct definition of the energy flux of the electromagnetic field in continuous
material media. The interest to this problem was revived in 1950s - 1970s, in course of systematic
elaboration of covariant theory of electromagnetically active media (see, e.g., [4]- [13]). In the review [14]
Brevik formulated experimental motivation of the interest to this problem, thus giving a new impetus
to investigations of the problem of electromagnetic energy transfer (see, e.g., [15]- [27] for the extension
of discussions).

We attract attention of Readers to the problem of energy transfer in a Cosmic Dark Fluid, which
joins the Dark Energy and Dark Matter constituents and can be considered as an electromagnetically
active chiral medium [28]- [33]. The Dark Fluid is assumed to be electrically neutral, it does not contain
electrically charged particles, however, this cosmic substratum, being a specific quasi-medium, can
influence the electromagnetic field indirectly, and, respectively, can contribute its own electrodynamic
part into the total stress-energy tensor of the Universe. One of the ways, which is open for the Dark
Fluid influence, is the so-called dynamo-optical activity of the moving medium. This term was introduced
in [42] to describe polarization and magnetization of a medium, which moves non-uniformly, i.e., when
the medium flow is characterized by the acceleration, shear, rotation and expansion. When we deal with
dynamo-optical interactions, we are faced with the problem how to separate the dynamo-optical energy
flow and the one of the non-electromagnetic origin; in other words, we are faced again with the classical
alternative associated with the Minkowski-Abraham controversy. There are at least three motives for
studying the mentioned problem just now and namely in this context.

The first motif is connected with the definition of the velocity four-vector, which is the important
player in the theory of the medium motion. On the one hand, there is the classical Landau-Lifshitz
algebraic definition of the velocity four - vector V?, appeared as the time-like eigen-vector of the medium
stress-energy tensor; every cosmic constituent possesses such intrinsic velocity. On the other hand, as
an alternative, there exists a global unit time-like vector field U, appeared in the Einstein-aether
theory [34]- [36], which is associated with the velocity four-vector of some quasi-medium, the dynamic
aether. This global vector field defines the preferred frame of reference [37-39], thus providing the
violation of the Lorentz invariance of the theory [40,41]. The model of dynamic aether is one of the
candidates for describing the Dark Energy phenomenon [43].

The second motif relates to the axionic extension of the cosmic electrodynamics, which is associated
with chirality of the cosmic medium. The pseudoscalar (axion) field interacts with the electromagnetic
field, with vector field presenting the dynamic aether, and with gravitational field. When we study
the waves in the cosmic medium, we deal, in fact, not simply with pure electromagnetic waves, but
with a conglomerate of spin-0, spin-1 and spin-2 modes [33,35]. The corresponding cross-terms in the
total stress-energy tensor admit double interpretation, and we have to postulate: do they belong to the
electromagnetic part of the stress-energy tensor, or, e.g., to the part associated with the axionic Dark
Matter?

The third aspect is connected with the correct reconstruction of the stress-energy tensor of the
electromagnetic field. There exist the canonic and effective stress-energy tensors of the system. The
gravity field equations operate with the symmetric effective stress-energy tensor, which can be introduced
using the variation procedure with respect to the space-time metric. Since, independently of definition,
the velocity four-vector is considered to be normalized by unity, i.e., g, VV* =1, or ¢;U*U* = 1, this
vector quantity depends on metric and thus has to participate in the variational procedure. Nevertheless,
the variational procedures differ in the first and second cases; in order to distinguish them we use later
two terms: the tetrad paradigm, and the aether paradigm, respectively. The first term reflects the fact
that when the velocity is the eigen-vector of the stress-energy tensor, we can take it as the time-like unit
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vector Vi = X (io) of the corresponding tetrad {X (ia)}' The term aether paradigm relates to the case,
when the velocity four-vector is associated with the unit time-like global vector field. In this context
two questions arise. The first question is: whether the whole effective stress-energy tensors obtained by
the variation procedure in the frameworks of the tetrad and aether paradigms, coincide? The second
question is typical for the Minkowski-Abraham controversy: whether the electromagnetic energy flux
vectors in the medium, obtained in the tetrad and aether paradigms, coincide? Why the corresponding
difference can exist?

Also, we have to mention the following detail of discussion. The energy flux four-vector is known
to appear as the result of application of the first or second projection procedure to the stress-energy
tensor of the electromagnetic field (in the first procedure we project all the tensor quantities on the
direction V* and on hyper-surface orthogonal to it; in the second procedure we use the four-vector U?).
However, in the tetrad paradigm the V? four-vector can be obtained as the eigen - vector either of the
total stress-energy tensor, or, e.g., as the one for its pure material constituent, or for the Dark Fluid
constituent. In other words, there exist an additional degree of freedom for modeling of this four-vector.
In the aether paradigm the unique preferred global velocity four-vector plays this principal role, and
there is no additional variants for the choice.

To conclude, there is no a priori fixed answer for the question concerning the structure and
properties of the electromagnetic energy flux four-vector. The goal of this work is to clarify the posed
questions using the model of the so-called dynamo-optical interactions in the framework of the Einstein-
Maxwell-aether-axion theory.

The paper is organized as follows. In Section II we recall the schemes of derivation of the effective
electromagnetic stress-energy tensors in the framework of the tetrad and aether paradigms. In Section
IIT we derive the corresponding stress-energy tensors for the dynamo-optical interactions in the chiral
electrodynamic systems. Section IV contains the analysis of the following three examples: the model of
axionic vacuum, the model of spatially isotropic homogeneous moving dielectric medium, and the model
of dynamo-optically active medium. We discuss the results in Section V.

1. Basic formalism
1.1. Standard elements of the variation procedure
The action functional of the theory, which we consider below, has the standard structure:

— [R+2A
S:/d% _g{ 2K +L(t0tal)}, (1)

where ¢ is the determinant of the metric, R is the Ricci scalar, A is the cosmological constant and
K = 8:—46 is the Einstein constant. The Lagrangian of the physical system as a whole, Lttal), can
include the metric, pseudoscalar field ¢ and its gradient four-vector Vi¢; it can contain vector field
(V¥ or U? ) and the covariant derivative (V,,V* or V,,U¥); the Maxwell tensor Fj,, also can be the
constructive element of the Lagrangian; finally, the Ricci and Riemann tensors can appear, when one
deals with the non-minimal version of the theory (see, e.g., [44]).

The Einstein field equations appear as the result of variation with respect to metric

1
R — igikR = Agir, + HT,»;OMI) , (2)
where R;; is the Ricci tensor, and the effective stress-energy tensor E(I:Otal) has the following formal
definition
(total) __ (_2) )
T, = ﬁégik [v _gL(total)} . (3)
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This tensor is symmetric by definition and has to be divergence-free due to the Bianchi identities:
,Ti(]:Otal) _ Té;otal) ’ v]gTi(l:otal) —0. (4)

The total Lagrangian of the chiral dynamo-optically active system under consideration can be
reconstructed as the sum of four physically distinguished parts

L(total) = L(em) + L(ps) + L(Vect) + L(matter) ; (5)

associated with the electromagnetic, pseudoscalar, vector fields and matter, respectively. Consider them
in more detail.

1.2. Master equations for the electromagnetic field
We assume that the first (electromagnetic) part is quadratic in the Maxwell tensor F,,
1
Liem) = Zcpqmanqun ] (6)

and other parts of the Lagrangian do not contain the Maxwell tensor. The Maxwell tensor is the anti-
symmetrized derivative of the potential four-vector Ay:

Fpn =VA, — V4, A, =0 A, — 0n A, . (7)
The definition of the Maxwell tensor provides the first subset of master equations of covariant
electrodynamics
which can be standardly rewritten in the compact form using the dual tensor F**:
. 1. _
F*zk = ielkmnan = ka*zk =0. (9)
Here etFmn — w is the Levi-Civita (pseudo) tensor based on the absolutely skew-symmetric symbol

Eikmn (0123 — 1) The linear response tensor C**™" possesses the evident symmetry of indices
CPIMT — _ (PN _ (Mnpq _— __ (P4 (10)

We assume that the tensor CP9™" can depend, first, on pseudoscalar field ¢, second, on the vector field
V* or U'; third, linearly on the gradient four-vector V¢, fourth, linearly on the covariant derivative
ViV or VU, Such assumptions allow us to describe the interactions between electromagnetic field
and pseudoscalar field, on the one hand, and the coupling of the electromagnetic and vector fields. Being

9m" can include the metric, Kronecker deltas, Levi-Civita tensor, as well as, the

the tensor quantity, CP
Riemann, Ricci tensors and Ricci scalar, if one deals with the non-minimal theory.

The second subset of the master equations for the electromagnetic field can be standardly obtained
by variation of the action functional with respect to the potential four-(co)vector A;. This procedure
yields

Vi [C*M ] = f%J’, (11)
where the four-vector J? is the electric current defined formally as

i 1 6L(matter)

It is convenient to use the skew-symmetric induction tensor H** defined as
H* = chmnp, (13)

which is the divergence - free one, when the medium is non-conducting, i.e., J* =
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1.3. Master equation for the pseudoscalar field

We assume that the second (pseudoscalar) part of the Lagrangian is quadratic in the gradient
four-vector V¢, and contain the dimensionless pseudoscalar field ¢ in even combinations

Lipy = 303 [-C™"V,6¥6 + V()] (14)

The constitutive tensor C™" is assumed to depend on the metric, Kronecker deltas, Levi-Civita (pseudo)
tensor, and on the velocity and its covariant derivative. V(¢?) is the potential of the pseudoscalar field;
the parameter Uy is reciprocal to the axion-photon coupling constant ‘1%) = ga~y. Master equations for
the pseudoscalar field have the form

Vi [C"" Vo] + 6V (¢%) = T, (15)

where the pseudoscalar source is explicitly quadratic in the Maxwell tensor

1 7] 1 0
- —__(pgmn — V. = rypgmn
402 FyaFmn a¢c N 4p2 Y FyaFmn (V) ¢ ’ (16)

and can depend on the vector field and its covariant derivative, when the linear response tensor CP4""

j:

is correspondingly extended.
1.4. Master equations for the vector field: I. The tetrad paradigm

The tetrad paradigm assumes that there is no additional part in the Lagrangian, i.e., L(yect) = 0,

(total)

and the velocity four-vector V* is the eigen-vector of the effective stress-energy tensor T},

T3V = Wioran Vi (17)
The vector V* is assumed to be time-like and unit
g ViV =1, (18)
so that the corresponding eigen-value Wgotan)
Wiotay = VTV (19)

can be indicated as the energy density scalar. With this definition (it is usually indicated as the Landau-
Lifshitz definition) the structure of the effective stress-energy tensor is

T = Weoran ViV + PR . (20)

Here the tensor ”PZ-(,EOtaD is symmetric, orthogonal to the velocity V* and describes the total pressure
tensor of the system. In this approach the velocity four-vector has to satisfy the master equations, which
are derived from the conservation law (4). Indeed, the divergence of of the tensor (20) is equal to zero,
when
; 1
VIV Witota Vil + Wieoran Vi(ViVF) + VEPET = 0. (21)

As usual, the projection of (21) on the direction pointed by the velocity V¢ gives the equation of the
energy density evolution
DWiotal) + Wieoran® = Py VAV, (22)

where D = V¥V, is the convective derivative, and ©=V, V" is the extension scalar of the velocity field.
The projection of (21) on the hyper-surface orthogonal to the velocity four-vector yields

Witotany DV® + APVEPLORD — o (23)
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where A% = ¢** — V'V is the projector, which is known to possess the following properties:
A =A% ABV, =0, AI=3, A®A;,=A’. (24)

Thus, the unit time-like velocity four-vector V' in the tetrad paradigm has to satisfy the equations (23).

The velocity four-vector V? can be included into the set of tetrad vectors X (ia); the index (a) takes
the values (0), (1), (2), (3), and X(io) = V' This quartet of four-vectors satisfies the orthogonality -

normalization conditions

9ik X ()X (o) = Ma)(v) » (25)

X4 = 4P

a)(b
RO X

where 7(4)(5) denotes the Minkowski matrix, diagonal (1, -1, -1, —1). Clearly, the tetrad four-vectors

are linked by the relation containing the metric, thus, we have to define the working formulas for the
6Xga)
5gik
the variation of (26) yields

variation . This procedure is described in [17], we recall the main details of this procedure. First,

—_ n(o)(@) q D P q
6971 = 0D [ X7, 0XP, + X0, 0XE, | (27)

thus, we obtain the consequence
X}ga)(;gquéb) = [X}(,a)5X(pC)77(C)(b) + 5ng)X¢§b)77(a)(d)] ) (28)
Second, the variation §.X (1 ) can be decomposed as the linear combination of the tetrad four-vectors:

i oy (f)
3X(a) = X5 ¥(a) (29)

If we put (29) into (28) we obtain
y(@)®) L y®)(a) — 5gquZ()a)X(§b) ) (30)

Generally, the object Y(®)®) has the symmetric and antisymmetric parts, Y (@) =y (@)(®) 4 yla)®)]
however, only the symmetric part is assumed to be formed by the metric variation; this idea gives
immediately that

i 1 i i
0X{a) = 709" [Xo()0g + Xa@] (31)
and consequently, for the velocity four-vector we have

Vi1 i i oV; 1
ogre 1 [Vp‘sq + Vq&p] T GgPe -3 (Vogiq + Vagip] - (32)

When the linear response tensor C**”*" depends on the covariant derivative of the velocity four-vector,
we need to prepare the formula for variation of V,,V*:

SV V' = Vi 5V + VoTE | =

1 1 1
= 09" (0L m Vg + 0LV Vy) + 7 (Vo9ma + Vagmp) Viggre — 1 (8L Gmg + 0L gmp) V' VidgP? . (33)

Clearly, it contains the terms of the type V,d0¢gP?, and thus the variation procedure requires the
corresponding integration by part, when we calculate the stress-energy tensor of the electromagnetic
field.
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1.5. Master equations for the vector field: II. The aether paradigm

The aether paradigm assumes that there exist an additional time-like vector field U?, and it has to
be included into variation procedure as an independent player. To be more precise, the corresponding
part of the Lagrangian is non-vanishing

Livect) = == [MgpgUPU? — 1) + K8 W, U™V, U"] , (34)

1
2k
the function A is the Lagrange multiplier providing the vector field to be normalized by unity; the
Jacobson’s constitutive tensor K% is of the form

Kabmn = Clgabgmn + 026%62 + 03(52531 + C4Uangmn , (35)

where Cy, C3, C5 and C4 are the phenomenological parameters (see, e.g., [34]). The term (34) is the
participant of three variation procedures. First, the variation with respect to the Lagrange multiplier
A yields gp,UPU? = 1, i.e., the vector field is normalized by unity, and thus it is time-like everywhere;
these properties support the idea to consider this vector field as the one of a global velocity. Second, the
variation of the total action functional with respect to the vector field U’ gives following equation:

A 1 ab " 1 b 1 ocremn ] ocramn
EUJ EV“ (K, VU] + HCNJU UPNVoUn + 5 Fog Fonn i Vi [quan 07
e & m n ; 7\112 m n =0 36
SUEVindVad T+ S UEV1 [Vind Vi (Wﬁ)] (36)
This equation can be rewritten in the well-known form
Vo =1 + kI 1 kI v 2 U, (37)
where the following definitions are used:
a _ ab' n (U) _ rnrrb
JG = K", (VyU"), L= = CyV;U"U Vo Uy (38)
® 1 6C’qu" 1 ocreymn
I =-F Fpny ——— — 39
J 47 Pe U Vz 3(VZUJ) ( )
(@) _ 9 8C’m" 1., ocmn
I 7\11 m®Vn \II mPVn 4
] 3V vl[ 0V e (40)

Clearly, using the projection of the equation (37) on the direction U’ and the normalization condition
we can obtain the Lagrange multiplier

A=U7 [Vaj‘} L m‘ﬁ)} . (41)
As well, using the projector A% = ¢g?* — UU*, we can obtain the equation

ATV TG = A9 1+ k1" k)] (42)
which includes the velocity four-vector but does not contain the Lagrange multiplier.
1.6. Standard auxiliary tensor quantities and their interpretation

1.6.1 Decomposition of the covariant derivative of the velocity four-vector

The covariant derivative Vi is known to be presented as the decomposition on the longitudinal and
transversal components with respect to chosen velocity four-vector; when we deal with the vector field
U?, we have, respectively:

1 1
Vi=UDU,+Vy, D=U"V,, Vpy=Al'V,, Al=6"-UTU, (43)
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where D is the convective derivative, and A} is the projector. In these terms the tensor V;Uj can be
represented as follows:

1
ViU = U DUy, + 04, + wir, + gAikga (44)

where DU? is the acceleration four-vector, o;; is the symmetric trace-free shear tensor, wj; is the
skew-symmetric vorticity tensor, and © is the expansion scalar. The definitions of these quantities are

well-known
1

1 L 1
DU, =U"V,,, Uy, on= 3 (ViUk"kaUi) —gAik@7

1 /L L L
Wik = 5 (viUk_kai) , 0=V, 0" =V, U™. (45)

The terms acceleration, shear, vorticity and expansion relate in this case to the aether flow. When we
deal with the velocity four-vector V?, the decomposition is similar.

1.6.2 Decomposition of the Maxwell tensor F;, and of the induction tensor H™"™

Electrodynamics of continuous media operates with the quartet of four-vectors D?, E*, H* and B*.
When one deals with the velocity four-vector V¥, these quantities are defined as follows:

D'=H*V,, H,=H;V* FE=F"*,, B =F;V*. (46)

When we work in the aether paradigm, we have to replace V¥ with U*. The four-vectors D, E*, H®
and B? are orthogonal to the corresponding velocity four-vector. In these terms the tensors Fjy, Er,

H%* and H*"* can be represented as follows:
Fy, = E;Vi, — ELV; — €emn B™V"™,  F}, = BiVi, — By Vi + €ikmn E™V" | (47)
H* = D'Vk — Dy — gbmrpg v HYF = H'VE — gRYVE 4 R DV, (48)
E‘ can be interpreted as the four-vector of electric field found in the frame of reference associated

with the velocity four-vector V™. B* describes the magnetic induction, D? corresponds to the electric
induction, H; can be indicated as the four-vector of the magnetic field.

1.6.3 Decomposition of the linear response tensor

The tensor C**™" symmetric with respect to the pair index transposition C™"* = C%#mn_ also

can be decomposed using the appropriate vector field; when we deal with the four-vector V¥ the
corresponding decomposition is (see, e.g., [1,2] for details):

. 1 ] . ) ]
C«zkmn _ 5 [Ezmvkvn _ Eznvkvm + Eknvzvm _ Ekmvlvn} _
1 Q — mns 1 i m., n n,,m mn 7 %
3" (i 3 [ (VT =V A (Vi =V )] (49)
The new two-indices tensors are defined as follows:
gim — QClkmndVn , (qul)pq _ _inpikclkmnnmnq , I/pm _ T}pikczkmnvn , (50)

where np;r = €pingV?. The tensors g5, and (,tfl)z-;€ are symmetric, I/lk is, in general, non-symmetric;
they are orthogonal to V', i.e.

eaxVE=0, (W HaVi=0, y*vi=0=y"V. (51)

The tensor g is interpreted as the dielectric permeability tensor found in the frame of reference
associated with the velocity four-vector V; the tensor (u~!);x describes the magnetic impermeability

k

of the medium; the tensor v,” contains the so-called magneto-electric coeflicients of the medium. This

interpretation is based on the formula
D' =é*E, —v'B*, H;=v,*Ep + (u Y )aB*, (52)

which can be directly obtained using the definitions presented above.
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2. Effective stress-energy tensor of the electromagnetic field in a dynamo-optically active
medium

A number of details of the variation formalism based on the tetrad and aether paradigms coincide.

For instance, the following auxiliary variational identities are of common use:

o o o 1 0y/—g 1
Fgr0 =0 GgE =0 gl =0 U5 = et (53
8g1s 1 ) Setsrt 1,
Sg =3 [91i9ks + Gikgis] » Sg* 0p =0, gk = §El "git - (54)

However, all the details of procedures, which relate to variation with respect to velocity four-vector and
its covariant derivative, have to be considered individually, if we follow tetrad or aether paradigms.

2.1. Calculations in the framework of the tetrad paradigm

In the framework of the tetrad formalism we use the following definition of the electromagnetic
stress-energy tensor:
1 )
e — - C [/ gF, F,,CP"] 55
ik 2\/jg 5ng [ 9L pq ] ( )

Taking into account (53) we obtain immediately
(em) _ 1 mn 1 g mn
T, ~ = szqunCm — QFP‘IF’"”(;QWCM . (56)
The first term is the scalar iH MmN B n, which is the part of all known stress-energy tensors of the

electromagnetic field in media; the difference between them appears due to the second term. Keeping in
mind (54) we can rewrite (56) as follows:

(em) _ 1 mn lsr ocramn lcs l ¢s ocramn
T, = Zquan {gik {Cpq — et aaert | T (6;05 + 056;) “ogh
Lo g S\ ocramt 1 y \ ocramn
3 (ol +viol) g =5 (Vv +0lVi%) 55
1_. oCcramn 1/ . oCpamn
A% % [ F an : Y 5j 5J 1 s F an 5 ; .
gV [(V*‘””V’“gl) pa a(vlw)} s (dlou+0on) ¥ [ paFmnV a(vlw)} (57)

One has to stress that we deal with the example of the theory, in which the stress-energy tensor contains
not only the Maxwell tensor, but its covariant derivative V4 F,,,, also, since the linear response tensor
acramn

CPa™™ ig assumed to contain the dynamo-optical terms, i.e., since FCA%) # 0.

2.2. Calculations in the framework of the aether paradigm

Now we consider the vector field U7 to be independent on the variation of the metric, i.e., in contrast
to (32), we have ;fi = 0. Also, we keep in mind, that the variation of the term %)\(ganmU” -1

with respect to metric g** gives the contribution AU;Uy, into the total stress-energy tensor. The quantity
(F)
J

A given by (41) contains the part I/, which according to (39) is quadratic in the Maxwell tensor; we
add this term to the stress-energy tensor of the electromagnetic field. The variation of the covariant

derivative also differ from (33), being of the following form:

_ 17 . R
S(ViU?) = =5 [Hi90uU" Vo + 6,Ui) Vi = Ugsgn V7] g™ (58)
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We use here and below the standard definition of the symmetrization: A; By = %(Ain—FAkBi). Now
the stress-energy tensor of the electromagnetic field can be written in the following form

pgmn pgmn
7;5:“1) e inqun {gzk |:C’qun _ 6lsrt oC :| _ (5552 + 52(5;) oC }+

6€l87’t W
_iUiUkUj {quan 86;% Vi [FPqu" ;C;’;”:J } -
SR ——)
+ évj (Uigix + Urgis) quanaa(C;;;njnJ - é <5’jglk + 5%%) Vi {quanUng(C;);;;] i

Let us recall how to reconstruct the basic (irreducible) elements of the stress-energy tensor of the
electromagnetic field.

2.3. Energy density, energy flux four-vector and the pressure tensor of the electromagnetic
field: Do they differ in the tetrad and aether paradigms?

The standard decomposition of the symmetric effective stress-energy tensor contains three basic
elements: the energy density scalar W, the flux four-vector Q% and the pressure tensor P**. In the
framework of the tetrad paradigm they are defined, respectively, as

W =ymrlemyn, (60)
QF = VT AR = AR (61)
Pk = Atmplem) Akn (62)

In order to obtain the corresponding quantities in the framework of the aether paradigm we have to
replace U J with V7 and Ty(,fyrfl ) with Tn(fﬁn). We are interested to calculate the difference

Tik = ,Egcem) — ﬂ(gm) . (63)

When U’ = V7, we obtain immediately that 7;; is of the form:

— Y, |FpyFop e

907 DV, (64)

1 pCramn pCramn
o s [ i

Clearly, the energy density scalars and pressure tensors, calculated using the tetrad and aether
paradigms, coincide:

UiTikUk =0 = W(aether) — W(tetrad) , (65)
AL Tk =0 = plcthen) = plictrad) (66)

Only the flux four-vectors differ:

: 1., aCramn aCramn
e~ Gor =300 = 30 [ [ S

Thus, we have to return to the Minkowski-Abraham controversy and to discuss this difference. Let us
consider three model before starting to analyze the problem.
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3. Three examples of the linear response tensor
3.1. Axionic vacuum

In the first example the linear response tensor is assumed to contain neither velocity four-vector,

nor its covariant derivative:

1 ,
P = g (g (68)
Here and below we use the auxiliary tensor
grimnt = ghmgtt — gt g™ (69)
Using the definitions (50) we obtain
gim = AIm (/fl)pq =0y, Vv =—0AL. (70)

Since v, # 0, this medium possesses magnetoelectric properties, which are provided by the presence
of the pseudoscalar field ¢. Calculations in both: tetrad and aether paradigms (see (57) and (59),
respectively), give the same traceless tensor

vacuum vacuum 1 mn m

In other words, the stress-energy tensors do not differ one from another, and they do not contain axionic
field. Respectively, the energy density scalars, energy flux four-vectors and pressure tensors

1 , ,
W=~ (E"Ey+B"By), @ =-1"""EnB.,

1
PP = §qu (E"E,, + B"B,,) — (EPE*+ B’BY) . (72)
formally coincide for both definitions of the velocity four vector, V* and U*.
3.2. Spatially isotropic homogeneous moving dielectric medium

3.2.1 Calculations in the context of the tetrad paradigm

The linear response tensor contains now terms quadratic in the velocity four-vector:

pgmn __ pgmn pgmn
C = C(o) + C(¢) , (73)
1
O™ = 5, (079" =g g"™) + (1) (97" VIV g VIV g VIV g VIV (T
1
Cf}(g)mn = §¢ [qumn + l/grth (Vperqmn o qurpmn + Vmernpq _ Vnermpq)] . (75)
Using the definitions (50) we again calculate the permittivity tensors and the tensor of magneto-electric

coefficients:

) . _ 1 m m
gim — €A1m7 (u l)pq — ;AP117 Vp = —¢Ap (1 + V) . (76)

Thus, £ characterizes the dielectric permittivity; p is the constant of magnetic permeability; n = /e

is the refraction index; v is the magnetoelectric constant. When ¢ = 1, 4 = 1, v = 0, the tensor CP4"™"

pgmn
C(vacuum)

forms. The first representation contains the Maxwell tensor:

converts into (68). The stress-energy tensor calculated using (57) can be presented in two
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isotropi 1 mn 1 mn
plisotropic) _ 198 Epa FrnnCl™ = 5 [99iFiq + 9k Fia) Clgy™ Fonn (77)

The term Cg’g)m " disappears from the stress-energy tensor of the electromagnetic field due to the relations
(32), and due to the identity

. 1.
F"Ey = (0" Eyy (78)

The second form of the stress-energy tensor contains the four-vectors E* and B*:

isotropic 1 1 1
2 " p

1 1
- 5 (5 + M) (‘/i?]kmn + anzmn) E™B™. (79)

Clearly, the tensor (79) is traceless, and it contains neither the parameter v, nor the pseudoscalar (axion)
field. The formulas

1 1 . 1 1 :
W=—- (eEmEm + BmBm> , = (e + ) """ Em B
2 7 H

1 1 1
Pt = A <5EmEm + MBmBm) - <5Equ + MB”BQ) (80)

describe the energy density of the electromagnetic field, energy flux four-vector and pressure tensor,
respectively, when e # 1, yu # 1, v # 0.

3.2.2 Calculations in the context of the aether paradigm

Calculations based on the formula (59) yields the following stress-energy tensor:

isotropic 1 1 1
7256 troRie) — 9k —UiUy | | eE"Epy + —B" By, | — | BBy + —BiBy | —
2 " .

1

Clearly, the corresponding energy-density scalar and the pressure tensor

W= 1 ( E™E,, + 1B’”Bm> , (82)
2 %
1 1 1
PP = S AP <5EmEm + MBmBm> - (sEqu + MB”B‘?> (83)

coincide with the ones obtained in the framework of the tetrad paradigm. However, the energy flux
four-vector

_ 1 .
Q) = _;njmnEmBn (84)

differs from the one given by (80) by the constant multiplier 1(n? + 1), which is in evident concordance
with (67).
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3.3. Dynamo-optically active medium

We work in the linear electrodynamics of the chiral (quasi)medium, i.e., adding a new sophisticated
element into the linear response tensor CP4™" we obtain a new additional term in the corresponding
stress-energy tensor. That is why, as the third example, we consider the model with the linear response
tensor, which is simplified to have the following form in the framework of the tetrad paradigm:

cpamn — %gpqmn + Xlqumngjsvlvj ) (85)

When we deal with the aether paradigm, we have to replace V? with U?. In other words, we consider
the dynamo-optically active vacuum with e=1, u=1, v=0. The new constitutive tensor

X 'lspgmn _ igarvrgbtvt [Ot (gpqlagmnsb + gmnlagPQSb) — (epqlaesmnb + quSaElmnb)] (86)

is assumed to contain two new coupling constants a and v (see [30] for the complete representation of
this constitutive tensor). In order to interpret these coupling constants, we calculate the tensors £’*,

(u’l)ik and v**, and obtain that
cik — Ak +a$(ivk) ( —1\F _ Ak L (it k) ik _
= N (7 A R A VA A I L S (87)

Thus, the parameter « is associated with the dynamo-optically induced dielectric susceptibility, while
~ relates to the dynamo-optically induced magnetic susceptibility. Now we are ready for calculations of
the stress-energy tensor components.

3.3.1 Analysis based on the tetrad paradigm

We use the already obtained tensor (71) and present the whole stress-energy tensor in the following

tentative form:
(dynamo) (vacuum)
,‘Tik - Tik -

1 lspgmn hrtaXlqumn lgs l ¢s j a(thpqmngjf)
= 1 FoaFmn {gik(les) [X pamn — ¢l “Hehrt | T (6;07 + 03,97 (VhVJ)T_

1 ) . o X lspgmn 1 soamn
-3 (Viéi + me) (ViV5) —avi 2 (91sViVi + grs ViV;) X594 } +
1
+ gvh {FoqFomn [(Vigie + Viegus) X7 — (gisgu + grsgs) VI X'PIm] ) (88)

where the tensor X!*P4™" is given by (86). Further routine but cumbersome calculations give the

following result:

Ti(;ynamo) _ Ti(lslacuum)_F

1 L 1 L
+ (ng-k — Vin) (aE'E* +yB'B*) V (V) — 3 [@E'E® +vB'B*] V, V(3,915 —
1 . L
-5 [aE*V(;Eyy — vB*V(;By)]| DV, — aEVE;V ) V;—

iR
- [aBmE(Snl)m(kVi) - VEmB(S”l)m(sz‘)] ViVt

1
+ ivh {aE"V;Ey,y — vB"V;Byy — V" [aE;E), — vB; By} . (89)
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We are interested to find the energy flux four-vector associated with this tensor; it is now of the following
form:
h — Ahipp(d Ik —
Q(tetrad) =A lT‘ik RYE =

1,4 1 = ,
=n"" B, E, + ZAQV; (aE'E® —yB'B*) + 5 {aanhm(lES) - 'yEmnhm(lBs)] viye) (90)

1

Keeping in mind that according to (45) VIV = ol 4 %GA“, we can say that the energy flux depends
on the shear tensor o'* and on the expansion scalar © of the velocity flow, but it ignores the acceleration
and rotation of the dynamo-optically active medium described by the presented model.

3.3.2 Analysis based on the aether paradigm

In order to describe the stress-energy tensor in the framework of the aether paradigm, we use the
consequence of the formulas (63) and (64), which now can be written as follows:

7;§€dynamo) . Ti(];iynamo) o

= ALY [@BE — BB U, [aBmECH) U 4 AEMBED U, 91
= 5 (i k)svl [O‘ Y ]+Vl s |& M mk i) T Mm@ | - (91)

As it was mentioned above, only the flux four-vectors do not coincide for these two approaches, giving
the following difference:

h h
Q(aether) - Q(tetrad) =

1,4 1 L
= —ZA’;W (aE'E® —yB'B®) - §"h i [0BsB™ +yB,E™ VU (92)

This final result is
g — B,y — v B By VOV 93
Q(aether) = mLn =7 N maLs) ) ( )

i.e., the energy flux four-vector in the dynamo-optically active medium, calculated in the approach,
which we indicated as aether paradigm, does not contain the susceptibility parameter «, but includes
the parameter ~.

Conclusion

Readers could ask the authors, what is an expediency to follow sophisticated calculations presented
above? Are there some applications of the developed formalism? Answering the last question we would
like to recall only one fact. The interpretation of the outstanding astronomical event GW170817 / GRB
170817A (see [47]), which is connected with the discovery of gravitational waves and gamma-rays from
a binary neutron star merger, is based on the standard model of the electromagnetic wave propagation
and the energy transfer. In other words, for the interpretation of this event the standard formula for
the electromagnetic energy flux in vacuum was used. Let us imagine now, that the dynamic aether
really exists, that this aether is dynamo-optically active, and that the electromagnetic radiation from
the binary system propagates indeed inside the dynamic aether. Then we have to use the formula (93)
for estimations . Since we keep in mind the cosmological context, we consider the aether flow to possess
only the expansion, so that the covariant derivative of the velocity four-vector of the aether has the
form V;Uy = H(t)Ak, where H(t) = 1O is the Hubble function. Then the formula (93) reduces to
Q?acthcr) = n""B,,E,[1 + vH(t)], and the energy flux four-vector differs from the Poynting vector
by the multiplier [1 + vH (t)]. Is it possible to find this multiplier from observations? It is a not easy
question, but certainly it is very interesting one, and we hope to return to this problem in a special

work.
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