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Две версии симметричного эффективного тензора энергии-импульса электромагнитного поля в динамо-
оптически активной релятивистской среде построены в рамках тетрадной и эфирной парадигмы на основе
ковариантного вариационного формализма. Показано, что скаляр плотности энергии и тензор давления
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сию, которая стартовала 100 лет назад, получила название полемика Минковского-Абрагама и связана с
корректным определением потока электромагнитной энергии в сплошной среде. Мы рассматриваем три
примера: во-первых, аксионно-активный вакуум, во-вторых, пространственно изотропная движущаяся ди-
электрическая среда, в-третьих, динамо-оптически-активная среда. Упомянуты возможные приложения
разработанного формализма.
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Introduction

More than a century ago the term Minkowski-Abraham controversy appeared in the scientific lexicon
as the result of discussions of Minkowski [1], Einstein and Laub [2], and Abraham [3]. These discussions
were focused on the correct definition of the energy flux of the electromagnetic field in continuous
material media. The interest to this problem was revived in 1950s - 1970s, in course of systematic
elaboration of covariant theory of electromagnetically active media (see, e.g., [4]- [13]). In the review [14]
Brevik formulated experimental motivation of the interest to this problem, thus giving a new impetus
to investigations of the problem of electromagnetic energy transfer (see, e.g., [15]- [27] for the extension
of discussions).

We attract attention of Readers to the problem of energy transfer in a Cosmic Dark Fluid, which
joins the Dark Energy and Dark Matter constituents and can be considered as an electromagnetically
active chiral medium [28]- [33]. The Dark Fluid is assumed to be electrically neutral, it does not contain
electrically charged particles, however, this cosmic substratum, being a specific quasi-medium, can
influence the electromagnetic field indirectly, and, respectively, can contribute its own electrodynamic
part into the total stress-energy tensor of the Universe. One of the ways, which is open for the Dark
Fluid influence, is the so-called dynamo-optical activity of the moving medium. This term was introduced
in [42] to describe polarization and magnetization of a medium, which moves non-uniformly, i.e., when
the medium flow is characterized by the acceleration, shear, rotation and expansion. When we deal with
dynamo-optical interactions, we are faced with the problem how to separate the dynamo-optical energy
flow and the one of the non-electromagnetic origin; in other words, we are faced again with the classical
alternative associated with the Minkowski-Abraham controversy. There are at least three motives for
studying the mentioned problem just now and namely in this context.

The first motif is connected with the definition of the velocity four-vector, which is the important
player in the theory of the medium motion. On the one hand, there is the classical Landau-Lifshitz
algebraic definition of the velocity four - vector 𝑉 𝑖, appeared as the time-like eigen-vector of the medium
stress-energy tensor; every cosmic constituent possesses such intrinsic velocity. On the other hand, as
an alternative, there exists a global unit time-like vector field 𝑈 𝑖, appeared in the Einstein-aether
theory [34]- [36], which is associated with the velocity four-vector of some quasi-medium, the dynamic
aether. This global vector field defines the preferred frame of reference [37–39], thus providing the
violation of the Lorentz invariance of the theory [40, 41]. The model of dynamic aether is one of the
candidates for describing the Dark Energy phenomenon [43].

The second motif relates to the axionic extension of the cosmic electrodynamics, which is associated
with chirality of the cosmic medium. The pseudoscalar (axion) field interacts with the electromagnetic
field, with vector field presenting the dynamic aether, and with gravitational field. When we study
the waves in the cosmic medium, we deal, in fact, not simply with pure electromagnetic waves, but
with a conglomerate of spin-0, spin-1 and spin-2 modes [33, 35]. The corresponding cross-terms in the
total stress-energy tensor admit double interpretation, and we have to postulate: do they belong to the
electromagnetic part of the stress-energy tensor, or, e.g., to the part associated with the axionic Dark
Matter?

The third aspect is connected with the correct reconstruction of the stress-energy tensor of the
electromagnetic field. There exist the canonic and effective stress-energy tensors of the system. The
gravity field equations operate with the symmetric effective stress-energy tensor, which can be introduced
using the variation procedure with respect to the space-time metric. Since, independently of definition,
the velocity four-vector is considered to be normalized by unity, i.e., 𝑔𝑖𝑘𝑉 𝑖𝑉 𝑘 = 1, or 𝑔𝑖𝑘𝑈 𝑖𝑈𝑘 = 1, this
vector quantity depends on metric and thus has to participate in the variational procedure. Nevertheless,
the variational procedures differ in the first and second cases; in order to distinguish them we use later
two terms: the tetrad paradigm, and the aether paradigm, respectively. The first term reflects the fact
that when the velocity is the eigen-vector of the stress-energy tensor, we can take it as the time-like unit
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vector 𝑉 𝑖 = 𝑋𝑖
(0) of the corresponding tetrad

{︁
𝑋𝑖

(𝑎)

}︁
. The term aether paradigm relates to the case,

when the velocity four-vector is associated with the unit time-like global vector field. In this context
two questions arise. The first question is: whether the whole effective stress-energy tensors obtained by
the variation procedure in the frameworks of the tetrad and aether paradigms, coincide? The second
question is typical for the Minkowski-Abraham controversy: whether the electromagnetic energy flux
vectors in the medium, obtained in the tetrad and aether paradigms, coincide? Why the corresponding
difference can exist?

Also, we have to mention the following detail of discussion. The energy flux four-vector is known
to appear as the result of application of the first or second projection procedure to the stress-energy
tensor of the electromagnetic field (in the first procedure we project all the tensor quantities on the
direction 𝑉 𝑖 and on hyper-surface orthogonal to it; in the second procedure we use the four-vector 𝑈 𝑖).
However, in the tetrad paradigm the 𝑉 𝑖 four-vector can be obtained as the eigen - vector either of the
total stress-energy tensor, or, e.g., as the one for its pure material constituent, or for the Dark Fluid
constituent. In other words, there exist an additional degree of freedom for modeling of this four-vector.
In the aether paradigm the unique preferred global velocity four-vector plays this principal role, and
there is no additional variants for the choice.

To conclude, there is no a priori fixed answer for the question concerning the structure and
properties of the electromagnetic energy flux four-vector. The goal of this work is to clarify the posed
questions using the model of the so-called dynamo-optical interactions in the framework of the Einstein-
Maxwell-aether-axion theory.

The paper is organized as follows. In Section II we recall the schemes of derivation of the effective
electromagnetic stress-energy tensors in the framework of the tetrad and aether paradigms. In Section
III we derive the corresponding stress-energy tensors for the dynamo-optical interactions in the chiral
electrodynamic systems. Section IV contains the analysis of the following three examples: the model of
axionic vacuum, the model of spatially isotropic homogeneous moving dielectric medium, and the model
of dynamo-optically active medium. We discuss the results in Section V.

1. Basic formalism

1.1. Standard elements of the variation procedure

The action functional of the theory, which we consider below, has the standard structure:

𝑆 =

∫︁
𝑑4𝑥

√
−𝑔
{︂
𝑅+ 2Λ

2𝜅
+ 𝐿(total)

}︂
, (1)

where 𝑔 is the determinant of the metric, 𝑅 is the Ricci scalar, Λ is the cosmological constant and
𝜅 = 8𝜋𝐺

𝑐4
is the Einstein constant. The Lagrangian of the physical system as a whole, 𝐿(total), can

include the metric, pseudoscalar field 𝜑 and its gradient four-vector ∇𝑘𝜑; it can contain vector field
(𝑉 𝑘 or 𝑈 𝑖 ) and the covariant derivative (∇𝑚𝑉

𝑘 or ∇𝑚𝑈
𝑘); the Maxwell tensor 𝐹𝑚𝑛 also can be the

constructive element of the Lagrangian; finally, the Ricci and Riemann tensors can appear, when one
deals with the non-minimal version of the theory (see, e.g., [44]).

The Einstein field equations appear as the result of variation with respect to metric

𝑅𝑖𝑘 −
1

2
𝑔𝑖𝑘𝑅 = Λ𝑔𝑖𝑘 + 𝜅𝑇

(total)
𝑖𝑘 , (2)

where 𝑅𝑖𝑘 is the Ricci tensor, and the effective stress-energy tensor 𝑇 (total)
𝑖𝑘 has the following formal

definition

𝑇
(total)
𝑖𝑘 ≡ (−2)√

−𝑔
𝛿

𝛿𝑔𝑖𝑘
[︀√

−𝑔𝐿(total)

]︀
. (3)
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This tensor is symmetric by definition and has to be divergence-free due to the Bianchi identities:

𝑇
(total)
𝑖𝑘 = 𝑇

(total)
𝑘𝑖 , ∇𝑘𝑇

(total)
𝑖𝑘 = 0 . (4)

The total Lagrangian of the chiral dynamo-optically active system under consideration can be
reconstructed as the sum of four physically distinguished parts

𝐿(total) = 𝐿(em) + 𝐿(ps) + 𝐿(vect) + 𝐿(matter) , (5)

associated with the electromagnetic, pseudoscalar, vector fields and matter, respectively. Consider them
in more detail.

1.2. Master equations for the electromagnetic field

We assume that the first (electromagnetic) part is quadratic in the Maxwell tensor 𝐹𝑝𝑞

𝐿(em) =
1

4
𝐶𝑝𝑞𝑚𝑛𝐹𝑝𝑞𝐹𝑚𝑛 , (6)

and other parts of the Lagrangian do not contain the Maxwell tensor. The Maxwell tensor is the anti-
symmetrized derivative of the potential four-vector 𝐴𝑘:

𝐹𝑚𝑛 ≡ ∇𝑚𝐴𝑛 −∇𝑛𝐴𝑚 = 𝜕𝑚𝐴𝑛 − 𝜕𝑛𝐴𝑚 . (7)

The definition of the Maxwell tensor provides the first subset of master equations of covariant
electrodynamics

∇𝑙𝐹𝑚𝑛 +∇𝑛𝐹𝑙𝑚 +∇𝑚𝐹𝑛𝑙 = 0 , (8)

which can be standardly rewritten in the compact form using the dual tensor 𝐹 *𝑖𝑘:

𝐹 *𝑖𝑘 ≡ 1

2
𝜖𝑖𝑘𝑚𝑛𝐹𝑚𝑛 ⇒ ∇𝑘𝐹

*𝑖𝑘 = 0 . (9)

Here 𝜖𝑖𝑘𝑚𝑛 = 𝐸𝑖𝑘𝑚𝑛
√
−𝑔 is the Levi-Civita (pseudo) tensor based on the absolutely skew-symmetric symbol

𝐸𝑖𝑘𝑚𝑛 (𝐸0123 = 1). The linear response tensor 𝐶𝑖𝑘𝑚𝑛 possesses the evident symmetry of indices

𝐶𝑝𝑞𝑚𝑛 = −𝐶𝑞𝑝𝑚𝑛 = 𝐶𝑚𝑛𝑝𝑞 = −𝐶𝑝𝑞𝑛𝑚 . (10)

We assume that the tensor 𝐶𝑝𝑞𝑚𝑛 can depend, first, on pseudoscalar field 𝜑, second, on the vector field
𝑉 𝑖 or 𝑈 𝑖; third, linearly on the gradient four-vector ∇𝑘𝜑, fourth, linearly on the covariant derivative
∇𝑘𝑉

𝑖 or ∇𝑘𝑈
𝑖. Such assumptions allow us to describe the interactions between electromagnetic field

and pseudoscalar field, on the one hand, and the coupling of the electromagnetic and vector fields. Being
the tensor quantity, 𝐶𝑝𝑞𝑚𝑛 can include the metric, Kronecker deltas, Levi-Civita tensor, as well as, the
Riemann, Ricci tensors and Ricci scalar, if one deals with the non-minimal theory.

The second subset of the master equations for the electromagnetic field can be standardly obtained
by variation of the action functional with respect to the potential four-(co)vector 𝐴𝑖. This procedure
yields

∇𝑘

[︀
𝐶𝑖𝑘𝑚𝑛𝐹𝑚𝑛

]︀
= −4𝜋

𝑐
𝐽 𝑖 , (11)

where the four-vector 𝐽 𝑖 is the electric current defined formally as

𝐽 𝑖 ≡ 1

4𝜋

𝛿𝐿(matter)

𝛿𝐴𝑖
. (12)

It is convenient to use the skew-symmetric induction tensor 𝐻𝑖𝑘 defined as

𝐻𝑖𝑘 ≡ 𝐶𝑖𝑘𝑚𝑛𝐹𝑚𝑛 , (13)

which is the divergence - free one, when the medium is non-conducting, i.e., 𝐽 𝑖 = 0.
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1.3. Master equation for the pseudoscalar field

We assume that the second (pseudoscalar) part of the Lagrangian is quadratic in the gradient
four-vector ∇𝑘𝜑, and contain the dimensionless pseudoscalar field 𝜑 in even combinations

𝐿(ps) =
1

2
Ψ2

0

[︀
−𝒞𝑚𝑛∇𝑚𝜑∇𝑛𝜑+ 𝒱(𝜑2)

]︀
. (14)

The constitutive tensor 𝒞𝑚𝑛 is assumed to depend on the metric, Kronecker deltas, Levi-Civita (pseudo)
tensor, and on the velocity and its covariant derivative. 𝒱(𝜑2) is the potential of the pseudoscalar field;
the parameter Ψ0 is reciprocal to the axion-photon coupling constant 1

Ψ0
= 𝑔𝐴𝛾𝛾 . Master equations for

the pseudoscalar field have the form

∇𝑚 [𝒞𝑚𝑛∇𝑛𝜑] + 𝜑𝒱 ′(𝜑2) = 𝒥 , (15)

where the pseudoscalar source is explicitly quadratic in the Maxwell tensor

𝒥 = − 1

4Ψ2
0

𝐹𝑝𝑞𝐹𝑚𝑛
𝜕

𝜕𝜑
𝐶𝑝𝑞𝑚𝑛 +

1

4Ψ2
0

∇𝑗

[︂
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕

𝜕(∇𝑗𝜑)
𝐶𝑝𝑞𝑚𝑛

]︂
, (16)

and can depend on the vector field and its covariant derivative, when the linear response tensor 𝐶𝑝𝑞𝑚𝑛

is correspondingly extended.

1.4. Master equations for the vector field: I. The tetrad paradigm

The tetrad paradigm assumes that there is no additional part in the Lagrangian, i.e., 𝐿(vect) = 0,
and the velocity four-vector 𝑉 𝑖 is the eigen-vector of the effective stress-energy tensor 𝑇 (total)

𝑖𝑘 :

𝑇
(total)
𝑖𝑘 𝑉 𝑘 =𝑊(total)𝑉𝑖 . (17)

The vector 𝑉 𝑖 is assumed to be time-like and unit

𝑔𝑖𝑘𝑉
𝑖𝑉 𝑘 = 1 , (18)

so that the corresponding eigen-value 𝑊(total)

𝑊(total) = 𝑉 𝑖𝑇
(total)
𝑖𝑘 𝑉 𝑘 (19)

can be indicated as the energy density scalar. With this definition (it is usually indicated as the Landau-
Lifshitz definition) the structure of the effective stress-energy tensor is

𝑇
(total)
𝑖𝑘 =𝑊(total)𝑉𝑖𝑉𝑘 + 𝒫(total)

𝑖𝑘 . (20)

Here the tensor 𝒫(total)
𝑖𝑘 is symmetric, orthogonal to the velocity 𝑉 𝑖 and describes the total pressure

tensor of the system. In this approach the velocity four-vector has to satisfy the master equations, which
are derived from the conservation law (4). Indeed, the divergence of of the tensor (20) is equal to zero,
when

𝑉 𝑘∇𝑘[𝑊(total)𝑉𝑖] +𝑊(total)𝑉𝑖(∇𝑘𝑉
𝑘) +∇𝑘𝒫(total)

𝑖𝑘 = 0 . (21)

As usual, the projection of (21) on the direction pointed by the velocity 𝑉 𝑖 gives the equation of the
energy density evolution

𝐷𝑊(total) +𝑊(total)Θ = 𝒫(total)
𝑖𝑘 ∇𝑘𝑉 𝑖 , (22)

where 𝐷 ≡ 𝑉 𝑘∇𝑘 is the convective derivative, and Θ=∇𝑘𝑉
𝑘 is the extension scalar of the velocity field.

The projection of (21) on the hyper-surface orthogonal to the velocity four-vector yields

𝑊(total)𝐷𝑉
𝑠 +∆𝑖𝑠∇𝑘𝒫(total)

𝑖𝑘 = 0 , (23)
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where ∆𝑖𝑠 ≡ 𝑔𝑖𝑠 − 𝑉 𝑖𝑉 𝑠 is the projector, which is known to possess the following properties:

∆𝑖𝑠 = ∆𝑠𝑖 , ∆𝑖𝑠𝑉𝑠 = 0 , ∆𝑠
𝑠 = 3 , ∆𝑖𝑠∆𝑗𝑠 = ∆𝑖

𝑗 . (24)

Thus, the unit time-like velocity four-vector 𝑉 𝑖 in the tetrad paradigm has to satisfy the equations (23).
The velocity four-vector 𝑉 𝑖 can be included into the set of tetrad vectors 𝑋𝑖

(𝑎); the index (𝑎) takes
the values (0), (1), (2), (3), and 𝑋𝑖

(0) ≡ 𝑉 𝑖. This quartet of four-vectors satisfies the orthogonality -
normalization conditions

𝑔𝑖𝑘𝑋
𝑖
(𝑎)𝑋

𝑘
(𝑏) = 𝜂(𝑎)(𝑏) , (25)

𝜂(𝑎)(𝑏)𝑋𝑝
(𝑎)𝑋

𝑞
(𝑏) = 𝑔𝑝𝑞 , (26)

where 𝜂(𝑎)(𝑏) denotes the Minkowski matrix, diagonal (1,−1,−1,−1). Clearly, the tetrad four-vectors
are linked by the relation containing the metric, thus, we have to define the working formulas for the

variation
𝛿𝑋𝑗

(𝑎)

𝛿𝑔𝑖𝑘
. This procedure is described in [17], we recall the main details of this procedure. First,

the variation of (26) yields

𝛿𝑔𝑝𝑞 = 𝜂(𝑐)(𝑑)
[︁
𝑋𝑞

(𝑑)𝛿𝑋
𝑝
(𝑐) +𝑋𝑝

(𝑐)𝛿𝑋
𝑞
(𝑑)

]︁
, (27)

thus, we obtain the consequence

𝑋(𝑎)
𝑝 𝛿𝑔𝑝𝑞𝑋(𝑏)

𝑞 =
[︁
𝑋(𝑎)
𝑝 𝛿𝑋𝑝

(𝑐)𝜂
(𝑐)(𝑏) + 𝛿𝑋𝑞

(𝑑)𝑋
(𝑏)
𝑞 𝜂(𝑎)(𝑑)

]︁
. (28)

Second, the variation 𝛿𝑋𝑖
(𝑎) can be decomposed as the linear combination of the tetrad four-vectors:

𝛿𝑋𝑖
(𝑎) = 𝑋𝑖

(𝑓)𝑌
(𝑓)

(𝑎) . (29)

If we put (29) into (28) we obtain

𝑌 (𝑎)(𝑏) + 𝑌 (𝑏)(𝑎) = 𝛿𝑔𝑝𝑞𝑋(𝑎)
𝑝 𝑋(𝑏)

𝑞 . (30)

Generally, the object 𝑌 (𝑎)(𝑏) has the symmetric and antisymmetric parts, 𝑌 (𝑎)(𝑏) = 𝑌 ((𝑎)(𝑏)) + 𝑌 [(𝑎)(𝑏)],
however, only the symmetric part is assumed to be formed by the metric variation; this idea gives
immediately that

𝛿𝑋𝑖
(𝑎) =

1

4
𝛿𝑔𝑝𝑞

[︀
𝑋𝑝(𝑎)𝛿

𝑖
𝑞 +𝑋𝑞(𝑎)𝛿

𝑖
𝑝

]︀
, (31)

and consequently, for the velocity four-vector we have

𝛿𝑉 𝑖

𝛿𝑔𝑝𝑞
=

1

4

[︀
𝑉𝑝𝛿

𝑖
𝑞 + 𝑉𝑞𝛿

𝑖
𝑝

]︀
,

𝛿𝑉𝑖
𝛿𝑔𝑝𝑞

= −1

4
[𝑉𝑝𝑔𝑖𝑞 + 𝑉𝑞𝑔𝑖𝑝] . (32)

When the linear response tensor 𝐶𝑖𝑘𝑚𝑛 depends on the covariant derivative of the velocity four-vector,
we need to prepare the formula for variation of ∇𝑚𝑉

𝑙:

𝛿[∇𝑚𝑉
𝑙] = ∇𝑚(𝛿𝑉 𝑙) + 𝑉 𝑛𝛿Γ𝑙𝑚𝑛 =

=
1

4
𝛿𝑔𝑝𝑞

(︀
𝛿𝑙𝑝∇𝑚𝑉𝑞 + 𝛿𝑙𝑞∇𝑚𝑉𝑝

)︀
+

1

4
(𝑉𝑝𝑔𝑚𝑞 + 𝑉𝑞𝑔𝑚𝑝)∇𝑙𝛿𝑔𝑝𝑞 − 1

4

(︀
𝛿𝑙𝑝𝑔𝑚𝑞 + 𝛿𝑙𝑞𝑔𝑚𝑝

)︀
𝑉 𝑛∇𝑛𝛿𝑔

𝑝𝑞 . (33)

Clearly, it contains the terms of the type ∇𝑛𝛿𝑔
𝑝𝑞, and thus the variation procedure requires the

corresponding integration by part, when we calculate the stress-energy tensor of the electromagnetic
field.
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1.5. Master equations for the vector field: II. The aether paradigm

The aether paradigm assumes that there exist an additional time-like vector field 𝑈 𝑖, and it has to
be included into variation procedure as an independent player. To be more precise, the corresponding
part of the Lagrangian is non-vanishing

𝐿(vect) =
1

2𝜅

[︀
𝜆(𝑔𝑝𝑞𝑈

𝑝𝑈𝑞 − 1) +𝐾𝑎𝑏
𝑚𝑛∇𝑎𝑈

𝑚∇𝑏𝑈
𝑛
]︀
, (34)

the function 𝜆 is the Lagrange multiplier providing the vector field to be normalized by unity; the
Jacobson’s constitutive tensor 𝐾𝑎𝑏

𝑚𝑛 is of the form

𝐾𝑎𝑏
𝑚𝑛 = 𝐶1𝑔

𝑎𝑏𝑔𝑚𝑛 + 𝐶2𝛿
𝑎
𝑚𝛿

𝑏
𝑛 + 𝐶3𝛿

𝑎
𝑛𝛿
𝑏
𝑚 + 𝐶4𝑈

𝑎𝑈 𝑏𝑔𝑚𝑛 , (35)

where 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are the phenomenological parameters (see, e.g., [34]). The term (34) is the
participant of three variation procedures. First, the variation with respect to the Lagrange multiplier
𝜆 yields 𝑔𝑝𝑞𝑈𝑝𝑈𝑞 = 1, i.e., the vector field is normalized by unity, and thus it is time-like everywhere;
these properties support the idea to consider this vector field as the one of a global velocity. Second, the
variation of the total action functional with respect to the vector field 𝑈 𝑖 gives following equation:

𝜆

𝜅
𝑈𝑗 −

1

𝜅
∇𝑎

[︀
𝐾𝑎𝑏

𝑗𝑛∇𝑏𝑈
𝑛
]︀
+

1

𝜅
𝐶4∇𝑗𝑈

𝑛𝑈 𝑏∇𝑏𝑈𝑛 +
1

4
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝑈 𝑗
− 1

4
∇𝑙

[︂
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑈 𝑗)

]︂
−

− 1

2
Ψ2

0∇𝑚𝜑∇𝑛𝜑
𝜕𝐶𝑚𝑛

𝜕𝑈 𝑗
+

1

2
Ψ2

0∇𝑙

[︂
∇𝑚𝜑∇𝑛𝜑

𝜕𝐶𝑚𝑛

𝜕(∇𝑙𝑈 𝑗)

]︂
= 0 . (36)

This equation can be rewritten in the well-known form

∇𝑎𝒥 𝑎
𝑗 = 𝐼

(U)
𝑗 + 𝜅𝐼

(F)
𝑗 + 𝜅𝐼

(𝜑)
𝑗 + 𝜆 𝑈𝑗 , (37)

where the following definitions are used:

𝒥 𝑎
𝑗 = 𝐾𝑎𝑏

𝑗𝑛(∇𝑏𝑈
𝑛) , 𝐼

(U)
𝑗 = 𝐶4∇𝑗𝑈

𝑛𝑈 𝑏∇𝑏𝑈𝑛 , (38)

𝐼
(F)
𝑗 =

1

4
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝑈 𝑗
− 1

4
∇𝑙

[︂
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑈 𝑗)

]︂
, (39)

𝐼
(𝜑)
𝑗 = −1

2
Ψ2

0∇𝑚𝜑∇𝑛𝜑
𝜕𝐶𝑚𝑛

𝜕𝑈 𝑗
+

1

2
Ψ2

0∇𝑙

[︂
∇𝑚𝜑∇𝑛𝜑

𝜕𝐶𝑚𝑛

𝜕(∇𝑙𝑈 𝑗)

]︂
. (40)

Clearly, using the projection of the equation (37) on the direction 𝑈 𝑗 and the normalization condition
we can obtain the Lagrange multiplier

𝜆 = 𝑈 𝑗
[︁
∇𝑎𝒥 𝑎

𝑗 − 𝐼
(U)
𝑗 − 𝜅𝐼

(F)
𝑗 − 𝜅𝐼

(𝜑)
𝑗

]︁
. (41)

As well, using the projector ∆𝑖𝑘 = 𝑔𝑖𝑘 − 𝑈 𝑖𝑈𝑘, we can obtain the equation

∆𝑠𝑗∇𝑎𝒥 𝑎
𝑗 = ∆𝑠𝑗

[︁
𝐼
(U)
𝑗 + 𝜅𝐼

(F)
𝑗 + 𝜅𝐼

(𝜑)
𝑗

]︁
, (42)

which includes the velocity four-vector but does not contain the Lagrange multiplier.

1.6. Standard auxiliary tensor quantities and their interpretation

1.6.1 Decomposition of the covariant derivative of the velocity four-vector

The covariant derivative ∇𝑘 is known to be presented as the decomposition on the longitudinal and
transversal components with respect to chosen velocity four-vector; when we deal with the vector field
𝑈 𝑖, we have, respectively:

∇𝑘 = 𝑈𝑖𝐷𝑈𝑘 +
⊥
∇𝑘 , 𝐷 ≡ 𝑈𝑚∇𝑚 ,

⊥
∇𝑘 ≡ ∆𝑚

𝑘 ∇𝑚 , ∆𝑚
𝑘 ≡ 𝛿𝑚𝑘 − 𝑈𝑚𝑈𝑘 , (43)



Динамо-оптически активные среды: новые аспекты полемики Минковского-Абрагама 39

where 𝐷 is the convective derivative, and ∆𝑚
𝑘 is the projector. In these terms the tensor ∇𝑖𝑈𝑘 can be

represented as follows:

∇𝑖𝑈𝑘 = 𝑈𝑖𝐷𝑈𝑘 + 𝜎𝑖𝑘 + 𝜔𝑖𝑘 +
1

3
∆𝑖𝑘Θ , (44)

where 𝐷𝑈 𝑖 is the acceleration four-vector, 𝜎𝑖𝑘 is the symmetric trace-free shear tensor, 𝜔𝑖𝑘 is the
skew-symmetric vorticity tensor, and Θ is the expansion scalar. The definitions of these quantities are
well-known

𝐷𝑈𝑘 ≡ 𝑈𝑚∇𝑚𝑈𝑘 , 𝜎𝑖𝑘 ≡ 1

2

(︂
⊥
∇𝑖𝑈𝑘+

⊥
∇𝑘𝑈𝑖

)︂
−1

3
∆𝑖𝑘Θ ,

𝜔𝑖𝑘 ≡ 1

2

(︂
⊥
∇𝑖𝑈𝑘−

⊥
∇𝑘𝑈𝑖

)︂
, Θ ≡ ∇𝑚𝑈

𝑚 =
⊥
∇𝑚𝑈

𝑚 . (45)

The terms acceleration, shear, vorticity and expansion relate in this case to the aether flow. When we
deal with the velocity four-vector 𝑉 𝑖, the decomposition is similar.

1.6.2 Decomposition of the Maxwell tensor 𝐹𝑖𝑘 and of the induction tensor 𝐻𝑚𝑛

Electrodynamics of continuous media operates with the quartet of four-vectors 𝐷𝑖, 𝐸𝑖, 𝐻𝑖 and 𝐵𝑖.
When one deals with the velocity four-vector 𝑉 𝑘, these quantities are defined as follows:

𝐷𝑖 ≡ 𝐻𝑖𝑘𝑉𝑘 , 𝐻𝑖 ≡ 𝐻*
𝑖𝑘𝑉

𝑘 , 𝐸𝑖 ≡ 𝐹 𝑖𝑘𝑉𝑘 , 𝐵𝑖 ≡ 𝐹 *
𝑖𝑘𝑉

𝑘 . (46)

When we work in the aether paradigm, we have to replace 𝑉 𝑘 with 𝑈𝑘. The four-vectors 𝐷𝑖, 𝐸𝑖, 𝐻𝑖

and 𝐵𝑖 are orthogonal to the corresponding velocity four-vector. In these terms the tensors 𝐹𝑖𝑘, 𝐹 *
𝑖𝑘,

𝐻𝑖𝑘 and 𝐻*𝑖𝑘 can be represented as follows:

𝐹𝑖𝑘 = 𝐸𝑖𝑉𝑘 − 𝐸𝑘𝑉𝑖 − 𝜖𝑖𝑘𝑚𝑛𝐵
𝑚𝑉 𝑛 , 𝐹 *

𝑖𝑘 = 𝐵𝑖𝑉𝑘 −𝐵𝑘𝑉𝑖 + 𝜖𝑖𝑘𝑚𝑛𝐸
𝑚𝑉 𝑛 , (47)

𝐻𝑖𝑘 = 𝐷𝑖𝑉 𝑘 −𝐷𝑘𝑉 𝑖 − 𝜖𝑖𝑘𝑚𝑛𝐻𝑚𝑉𝑛 , 𝐻*𝑖𝑘 = 𝐻𝑖𝑉 𝑘 −𝐻𝑘𝑉 𝑖 + 𝜖𝑖𝑘𝑚𝑛𝐷𝑚𝑉𝑛 . (48)

𝐸𝑖 can be interpreted as the four-vector of electric field found in the frame of reference associated
with the velocity four-vector 𝑉 𝑚. 𝐵𝑖 describes the magnetic induction, 𝐷𝑖 corresponds to the electric
induction, 𝐻𝑖 can be indicated as the four-vector of the magnetic field.

1.6.3 Decomposition of the linear response tensor

The tensor 𝐶𝑖𝑘𝑚𝑛 symmetric with respect to the pair index transposition 𝐶𝑚𝑛𝑖𝑘 = 𝐶𝑖𝑘𝑚𝑛, also
can be decomposed using the appropriate vector field; when we deal with the four-vector 𝑉 𝑘 the
corresponding decomposition is (see, e.g., [1, 2] for details):

𝐶𝑖𝑘𝑚𝑛 =
1

2

[︀
𝜀𝑖𝑚𝑉 𝑘𝑉 𝑛 − 𝜀𝑖𝑛𝑉 𝑘𝑉 𝑚 + 𝜀𝑘𝑛𝑉 𝑖𝑉 𝑚 − 𝜀𝑘𝑚𝑉 𝑖𝑉 𝑛

]︀
−

− 1

2
𝜂𝑖𝑘𝑙(𝜇−1)𝑙𝑠𝜂

𝑚𝑛𝑠−1

2

[︀
𝜂𝑖𝑘𝑙(𝑉 𝑚𝜈 𝑛

𝑙 −𝑉 𝑛𝜈 𝑚
𝑙 )+𝜂𝑙𝑚𝑛(𝑉 𝑖𝜈 𝑘

𝑙 −𝑉 𝑘𝜈 𝑖
𝑙 )
]︀
. (49)

The new two-indices tensors are defined as follows:

𝜀𝑖𝑚 = 2𝐶𝑖𝑘𝑚𝑛𝑉𝑘𝑉𝑛 , (𝜇−1)𝑝𝑞 = −1

2
𝜂𝑝𝑖𝑘𝐶

𝑖𝑘𝑚𝑛𝜂𝑚𝑛𝑞 , 𝜈 𝑚
𝑝 = 𝜂𝑝𝑖𝑘𝐶

𝑖𝑘𝑚𝑛𝑉𝑛 , (50)

where 𝜂𝑝𝑖𝑘 ≡ 𝜖𝑝𝑖𝑘𝑞𝑉
𝑞. The tensors 𝜀𝑖𝑘 and (𝜇−1)𝑖𝑘 are symmetric, 𝜈 𝑘

𝑙 is, in general, non-symmetric;
they are orthogonal to 𝑉 𝑖, i.e.

𝜀𝑖𝑘𝑉
𝑘 = 0 , (𝜇−1)𝑖𝑘𝑉

𝑘 = 0 , 𝜈 𝑘
𝑙 𝑉

𝑙 = 0 = 𝜈 𝑘
𝑙 𝑉𝑘 . (51)

The tensor 𝜀𝑖𝑘 is interpreted as the dielectric permeability tensor found in the frame of reference
associated with the velocity four-vector 𝑉 𝑖; the tensor (𝜇−1)𝑖𝑘 describes the magnetic impermeability
of the medium; the tensor 𝜈 𝑘

𝑖 contains the so-called magneto-electric coefficients of the medium. This
interpretation is based on the formula

𝐷𝑖 = 𝜖𝑖𝑘𝐸𝑘 − 𝜈 𝑖
𝑘 𝐵

𝑘 , 𝐻𝑖 = 𝜈 𝑘
𝑖 𝐸𝑘 + (𝜇−1)𝑖𝑘𝐵

𝑘 , (52)

which can be directly obtained using the definitions presented above.
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2. Effective stress-energy tensor of the electromagnetic field in a dynamo-optically active
medium

A number of details of the variation formalism based on the tetrad and aether paradigms coincide.
For instance, the following auxiliary variational identities are of common use:

𝛿

𝛿𝑔𝑖𝑘
𝜑 = 0 ,

𝛿

𝛿𝑔𝑖𝑘
∇𝑚𝜑 = 0 ,

𝛿

𝛿𝑔𝑖𝑘
𝐹𝑚𝑛 = 0 ,

1√
−𝑔

𝛿
√
−𝑔

𝛿𝑔𝑖𝑘
= −1

2
𝑔𝑖𝑘 , (53)

𝛿𝑔𝑙𝑠
𝛿𝑔𝑖𝑘

= −1

2
[𝑔𝑙𝑖𝑔𝑘𝑠 + 𝑔𝑙𝑘𝑔𝑖𝑠] ,

𝛿

𝛿𝑔𝑖𝑘
𝛿𝑞𝑝 = 0 ,

𝛿𝜖𝑙𝑠𝑟𝑡

𝛿𝑔𝑖𝑘
=

1

2
𝜖𝑙𝑠𝑟𝑡𝑔𝑖𝑘 . (54)

However, all the details of procedures, which relate to variation with respect to velocity four-vector and
its covariant derivative, have to be considered individually, if we follow tetrad or aether paradigms.

2.1. Calculations in the framework of the tetrad paradigm

In the framework of the tetrad formalism we use the following definition of the electromagnetic
stress-energy tensor:

𝑇
(em)
𝑖𝑘 = − 1

2
√
−𝑔

𝛿

𝛿𝑔𝑖𝑘
[︀√

−𝑔𝐹𝑝𝑞𝐹𝑚𝑛𝐶𝑝𝑞𝑚𝑛
]︀
. (55)

Taking into account (53) we obtain immediately

𝑇
(em)
𝑖𝑘 =

1

4
𝐹𝑝𝑞𝐹𝑚𝑛𝐶

𝑝𝑞𝑚𝑛 − 1

2
𝐹𝑝𝑞𝐹𝑚𝑛

𝛿

𝛿𝑔𝑖𝑘
𝐶𝑝𝑞𝑚𝑛 . (56)

The first term is the scalar 1
4𝐻

𝑚𝑛𝐹𝑚𝑛, which is the part of all known stress-energy tensors of the
electromagnetic field in media; the difference between them appears due to the second term. Keeping in
mind (54) we can rewrite (56) as follows:

𝑇
(em)
𝑖𝑘 =

1

4
𝐹𝑝𝑞𝐹𝑚𝑛

{︂
𝑔𝑖𝑘

[︂
𝐶𝑝𝑞𝑚𝑛 − 𝜖𝑙𝑠𝑟𝑡

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝜖𝑙𝑠𝑟𝑡

]︂
− (𝛿𝑙𝑖𝛿

𝑠
𝑘 + 𝛿𝑙𝑘𝛿

𝑠
𝑖 )

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝑔𝑙𝑠
−

−1

2

(︁
𝑉𝑖𝛿

𝑗
𝑘 + 𝑉𝑘𝛿

𝑗
𝑖

)︁ 𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝑉 𝑗
− 1

2

(︁
𝛿𝑗𝑖∇𝑙𝑉𝑘 + 𝛿𝑗𝑘∇𝑙𝑉𝑖

)︁ 𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑉 𝑗)

}︂
+

+
1

8
∇𝑗

[︂
(𝑉𝑖𝑔𝑙𝑘 + 𝑉𝑘𝑔𝑙𝑖)𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑉 𝑗)

]︂
− 1

8

(︁
𝛿𝑗𝑖 𝑔𝑙𝑘 + 𝛿𝑗𝑘𝑔𝑙𝑖

)︁
∇𝑠

[︂
𝐹𝑝𝑞𝐹𝑚𝑛𝑉

𝑠 𝜕𝐶
𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑉 𝑗)

]︂
. (57)

One has to stress that we deal with the example of the theory, in which the stress-energy tensor contains
not only the Maxwell tensor, but its covariant derivative ∇𝑠𝐹𝑚𝑛 also, since the linear response tensor
𝐶𝑝𝑞𝑚𝑛 is assumed to contain the dynamo-optical terms, i.e., since 𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑉 𝑗)
̸= 0.

2.2. Calculations in the framework of the aether paradigm

Now we consider the vector field 𝑈 𝑗 to be independent on the variation of the metric, i.e., in contrast
to (32), we have 𝛿𝑈𝑗

𝛿𝑔𝑖𝑘
= 0. Also, we keep in mind, that the variation of the term 1

2𝜆(𝑔𝑚𝑛𝑈
𝑚𝑈𝑛 − 1)

with respect to metric 𝑔𝑖𝑘 gives the contribution 𝜆𝑈𝑖𝑈𝑘 into the total stress-energy tensor. The quantity
𝜆 given by (41) contains the part 𝐼(F)𝑗 , which according to (39) is quadratic in the Maxwell tensor; we
add this term to the stress-energy tensor of the electromagnetic field. The variation of the covariant
derivative also differ from (33), being of the following form:

𝛿(∇𝑙𝑈
𝑗) = −1

2

[︁
𝛿𝑗(𝑖𝑔𝑘)𝑙𝑈

𝑛∇𝑛 + 𝛿𝑗(𝑖𝑈𝑘)∇𝑙 − 𝑈(𝑖𝑔𝑘)𝑙∇𝑗
]︁
𝛿𝑔𝑖𝑘 . (58)
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We use here and below the standard definition of the symmetrization: 𝐴(𝑖𝐵𝑘) ≡ 1
2 (𝐴𝑖𝐵𝑘+𝐴𝑘𝐵𝑖). Now

the stress-energy tensor of the electromagnetic field can be written in the following form

𝒯 (em)
𝑖𝑘 =

1

4
𝐹𝑝𝑞𝐹𝑚𝑛

{︂
𝑔𝑖𝑘

[︂
𝐶𝑝𝑞𝑚𝑛 − 𝜖𝑙𝑠𝑟𝑡

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝜖𝑙𝑠𝑟𝑡

]︂
− (𝛿𝑙𝑖𝛿

𝑠
𝑘 + 𝛿𝑙𝑘𝛿

𝑠
𝑖 )

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝑔𝑙𝑠

}︂
+

−1

4
𝑈𝑖𝑈𝑘𝑈

𝑗

{︂
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝑈 𝑗
−∇𝑙

[︂
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑈 𝑗)

]︂}︂
−

−1

8
∇𝑙

[︂(︁
𝛿𝑗𝑖𝑈𝑘 + 𝛿𝑗𝑘𝑈𝑖

)︁
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑈 𝑗)

]︂
+

+
1

8
∇𝑗

[︂
(𝑈𝑖𝑔𝑙𝑘 + 𝑈𝑘𝑔𝑙𝑖)𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑈 𝑗)

]︂
− 1

8

(︁
𝛿𝑗𝑖 𝑔𝑙𝑘 + 𝛿𝑗𝑘𝑔𝑙𝑖

)︁
∇𝑛

[︂
𝐹𝑝𝑞𝐹𝑚𝑛𝑈

𝑛 𝜕𝐶
𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑈 𝑗)

]︂
. (59)

Let us recall how to reconstruct the basic (irreducible) elements of the stress-energy tensor of the
electromagnetic field.

2.3. Energy density, energy flux four-vector and the pressure tensor of the electromagnetic
field: Do they differ in the tetrad and aether paradigms?

The standard decomposition of the symmetric effective stress-energy tensor contains three basic
elements: the energy density scalar 𝑊 , the flux four-vector 𝒬𝑘 and the pressure tensor 𝒫𝑖𝑘. In the
framework of the tetrad paradigm they are defined, respectively, as

𝑊 ≡ 𝑉 𝑚𝑇 (em)
𝑚𝑛 𝑉 𝑛 , (60)

𝒬𝑘 ≡ 𝑉 𝑚𝑇 (em)
𝑚𝑛 ∆𝑘𝑛 = ∆𝑘𝑚𝑇 (em)

𝑚𝑛 𝑉 𝑛 , (61)

𝒫𝑖𝑘 ≡ ∆𝑖𝑚𝑇 (em)
𝑚𝑛 ∆𝑘𝑛 . (62)

In order to obtain the corresponding quantities in the framework of the aether paradigm we have to
replace 𝑈 𝑗 with 𝑉 𝑗 and 𝑇 (em)

𝑚𝑛 with 𝒯 (em)
𝑚𝑛 . We are interested to calculate the difference

𝜏𝑖𝑘 ≡ 𝒯 (em)
𝑖𝑘 − 𝑇

(em)
𝑖𝑘 . (63)

When 𝑈 𝑗 = 𝑉 𝑗 , we obtain immediately that 𝜏𝑖𝑘 is of the form:

𝜏𝑖𝑘 =
1

4
𝑈(𝑖∆

𝑗
𝑘)

{︂
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝑈 𝑗
−∇𝑙

[︂
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑈 𝑗)

]︂}︂
. (64)

Clearly, the energy density scalars and pressure tensors, calculated using the tetrad and aether
paradigms, coincide:

𝑈 𝑖𝜏𝑖𝑘𝑈
𝑘 = 0 ⇒𝑊 (aether) =𝑊 (tetrad) , (65)

∆𝑖
𝑚𝜏𝑖𝑘∆

𝑘
𝑛 = 0 ⇒ 𝒫(aether)

𝑚𝑛 = 𝒫(tetrad)
𝑚𝑛 . (66)

Only the flux four-vectors differ:

𝒬ℎ
(aether) −𝒬ℎ

(tetrad) = ∆𝑖ℎ𝜏𝑖𝑘𝑈
𝑘 =

1

8
∆𝑗ℎ

{︂
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕𝑈 𝑗
−∇𝑙

[︂
𝐹𝑝𝑞𝐹𝑚𝑛

𝜕𝐶𝑝𝑞𝑚𝑛

𝜕(∇𝑙𝑈 𝑗

]︂}︂
. (67)

Thus, we have to return to the Minkowski-Abraham controversy and to discuss this difference. Let us
consider three model before starting to analyze the problem.
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3. Three examples of the linear response tensor

3.1. Axionic vacuum

In the first example the linear response tensor is assumed to contain neither velocity four-vector,
nor its covariant derivative:

𝐶𝑝𝑞𝑚𝑛(vacuum) =
1

2
(𝑔𝑝𝑞𝑚𝑛 + 𝜑 𝜖𝑝𝑞𝑚𝑛) . (68)

Here and below we use the auxiliary tensor

𝑔𝑝𝑞𝑚𝑛 ≡ 𝑔𝑝𝑚𝑔𝑞𝑛 − 𝑔𝑝𝑛𝑔𝑞𝑚 . (69)

Using the definitions (50) we obtain

𝜀𝑖𝑚 = ∆𝑖𝑚 , (𝜇−1)𝑝𝑞 = ∆𝑝𝑞 , 𝜈 𝑚
𝑝 = −𝜑∆𝑚

𝑝 . (70)

Since 𝜈 𝑚
𝑝 ̸= 0, this medium possesses magnetoelectric properties, which are provided by the presence

of the pseudoscalar field 𝜑. Calculations in both: tetrad and aether paradigms (see (57) and (59),
respectively), give the same traceless tensor

𝑇
(vacuum)
𝑖𝑘 = 𝒯 (vacuum)

𝑖𝑘 =
1

4
𝑔𝑖𝑘𝐹𝑚𝑛𝐹

𝑚𝑛 − 𝐹𝑖𝑚𝐹
𝑚
𝑘 . (71)

In other words, the stress-energy tensors do not differ one from another, and they do not contain axionic
field. Respectively, the energy density scalars, energy flux four-vectors and pressure tensors

𝑊 = −1

2
(𝐸𝑚𝐸𝑚 +𝐵𝑚𝐵𝑚) , 𝒬𝑗 = −𝜂𝑗𝑚𝑛𝐸𝑚𝐵𝑛 ,

𝒫𝑝𝑞 = 1

2
∆𝑝𝑞 (𝐸𝑚𝐸𝑚 +𝐵𝑚𝐵𝑚)− (𝐸𝑝𝐸𝑞 +𝐵𝑝𝐵𝑞) . (72)

formally coincide for both definitions of the velocity four vector, 𝑉 𝑖 and 𝑈 𝑖.

3.2. Spatially isotropic homogeneous moving dielectric medium

3.2.1 Calculations in the context of the tetrad paradigm

The linear response tensor contains now terms quadratic in the velocity four-vector:

𝐶𝑝𝑞𝑚𝑛 = 𝐶𝑝𝑞𝑚𝑛(0) + 𝐶𝑝𝑞𝑚𝑛(𝜑) , (73)

𝐶𝑝𝑞𝑚𝑛(0) =
1

2𝜇
[(𝑔𝑝𝑚𝑔𝑞𝑛−𝑔𝑝𝑛𝑔𝑞𝑚) + (𝜀𝜇−1) (𝑔𝑝𝑚𝑉 𝑞𝑉 𝑛−𝑔𝑝𝑛𝑉 𝑞𝑉 𝑚+𝑔𝑞𝑛𝑉 𝑝𝑉 𝑚−𝑔𝑞𝑚𝑉 𝑝𝑉 𝑛)] , (74)

𝐶𝑝𝑞𝑚𝑛(𝜑) ≡ 1

2
𝜑
[︀
𝜖𝑝𝑞𝑚𝑛 + 𝜈𝑔𝑟ℎ𝑉

ℎ (𝑉 𝑝𝜖𝑟𝑞𝑚𝑛 − 𝑉 𝑞𝜖𝑟𝑝𝑚𝑛 + 𝑉 𝑚𝜖𝑟𝑛𝑝𝑞 − 𝑉 𝑛𝜖𝑟𝑚𝑝𝑞)
]︀
. (75)

Using the definitions (50) we again calculate the permittivity tensors and the tensor of magneto-electric
coefficients:

𝜀𝑖𝑚 = 𝜀∆𝑖𝑚 , (𝜇−1)𝑝𝑞 =
1

𝜇
∆𝑝𝑞 , 𝜈 𝑚

𝑝 = −𝜑∆𝑚
𝑝 (1 + 𝜈) . (76)

Thus, 𝜀 characterizes the dielectric permittivity; 𝜇 is the constant of magnetic permeability; 𝑛 =
√
𝜀𝜇

is the refraction index; 𝜈 is the magnetoelectric constant. When 𝜀 = 1, 𝜇 = 1, 𝜈 = 0, the tensor 𝐶𝑝𝑞𝑚𝑛

converts into 𝐶𝑝𝑞𝑚𝑛(vacuum) (68). The stress-energy tensor calculated using (57) can be presented in two
forms. The first representation contains the Maxwell tensor:
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𝑇
(isotropic)
𝑖𝑘 =

1

4
𝑔𝑖𝑘𝐹𝑝𝑞𝐹𝑚𝑛𝐶

𝑝𝑞𝑚𝑛
(0) − 1

2
[𝑔𝑝𝑖𝐹𝑘𝑞 + 𝑔𝑝𝑘𝐹𝑖𝑞]𝐶

𝑝𝑞𝑚𝑛
(0) 𝐹𝑚𝑛 . (77)

The term 𝐶𝑝𝑞𝑚𝑛(𝜑) disappears from the stress-energy tensor of the electromagnetic field due to the relations
(32), and due to the identity

𝐹 𝑖𝑚𝐹 *
𝑘𝑚 =

1

4
𝛿𝑖𝑘𝐹

𝑚𝑛𝐹 *
𝑚𝑛 . (78)

The second form of the stress-energy tensor contains the four-vectors 𝐸𝑖 and 𝐵𝑘:

𝑇
(isotropic)
𝑖𝑘 =

(︂
1

2
𝑔𝑖𝑘 − 𝑉𝑖𝑉𝑘

)︂(︂
𝜀𝐸𝑚𝐸𝑚 +

1

𝜇
𝐵𝑚𝐵𝑚

)︂
−
(︂
𝜀𝐸𝑖𝐸𝑘 +

1

𝜇
𝐵𝑖𝐵𝑘

)︂
−

− 1

2

(︂
𝜀+

1

𝜇

)︂
(𝑉𝑖𝜂𝑘𝑚𝑛 + 𝑉𝑘𝜂𝑖𝑚𝑛)𝐸

𝑚𝐵𝑛 . (79)

Clearly, the tensor (79) is traceless, and it contains neither the parameter 𝜈, nor the pseudoscalar (axion)
field. The formulas

𝑊 = −1

2

(︂
𝜀𝐸𝑚𝐸𝑚 +

1

𝜇
𝐵𝑚𝐵𝑚

)︂
, 𝒬𝑗 = −1

2

(︂
𝜀+

1

𝜇

)︂
𝜂𝑗𝑚𝑛𝐸𝑚𝐵𝑛 ,

𝒫𝑝𝑞 = 1

2
∆𝑝𝑞

(︂
𝜀𝐸𝑚𝐸𝑚 +

1

𝜇
𝐵𝑚𝐵𝑚

)︂
−
(︂
𝜀𝐸𝑝𝐸𝑞 +

1

𝜇
𝐵𝑝𝐵𝑞

)︂
(80)

describe the energy density of the electromagnetic field, energy flux four-vector and pressure tensor,
respectively, when 𝜖 ̸= 1, 𝜇 ̸= 1, 𝜈 ̸= 0.

3.2.2 Calculations in the context of the aether paradigm

Calculations based on the formula (59) yields the following stress-energy tensor:

𝒯 (isotropic)
𝑖𝑘 =

(︂
1

2
𝑔𝑖𝑘 − 𝑈𝑖𝑈𝑘

)︂(︂
𝜀𝐸𝑚𝐸𝑚 +

1

𝜇
𝐵𝑚𝐵𝑚

)︂
−
(︂
𝜀𝐸𝑖𝐸𝑘 +

1

𝜇
𝐵𝑖𝐵𝑘

)︂
−

− 1

𝜇
(𝑈𝑖𝜂𝑘𝑚𝑛 + 𝑈𝑘𝜂𝑖𝑚𝑛)𝐸

𝑚𝐵𝑛 . (81)

Clearly, the corresponding energy-density scalar and the pressure tensor

𝒲 = −1

2

(︂
𝜀𝐸𝑚𝐸𝑚 +

1

𝜇
𝐵𝑚𝐵𝑚

)︂
, (82)

𝒫𝑝𝑞 = 1

2
∆𝑝𝑞

(︂
𝜀𝐸𝑚𝐸𝑚 +

1

𝜇
𝐵𝑚𝐵𝑚

)︂
−
(︂
𝜀𝐸𝑝𝐸𝑞 +

1

𝜇
𝐵𝑝𝐵𝑞

)︂
(83)

coincide with the ones obtained in the framework of the tetrad paradigm. However, the energy flux
four-vector

𝒬𝑗 = − 1

𝜇
𝜂𝑗𝑚𝑛𝐸𝑚𝐵𝑛 (84)

differs from the one given by (80) by the constant multiplier 1
2 (𝑛

2 +1), which is in evident concordance
with (67).
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3.3. Dynamo-optically active medium

We work in the linear electrodynamics of the chiral (quasi)medium, i.e., adding a new sophisticated
element into the linear response tensor 𝐶𝑝𝑞𝑚𝑛 we obtain a new additional term in the corresponding
stress-energy tensor. That is why, as the third example, we consider the model with the linear response
tensor, which is simplified to have the following form in the framework of the tetrad paradigm:

𝐶𝑝𝑞𝑚𝑛 =
1

2
𝑔𝑝𝑞𝑚𝑛 +𝑋 𝑙𝑠𝑝𝑞𝑚𝑛𝑔𝑗𝑠∇𝑙𝑉

𝑗 . (85)

When we deal with the aether paradigm, we have to replace 𝑉 𝑖 with 𝑈 𝑖. In other words, we consider
the dynamo-optically active vacuum with 𝜀=1, 𝜇=1, 𝜈=0. The new constitutive tensor

𝑋 𝑙𝑠𝑝𝑞𝑚𝑛 =
1

4
𝑔𝑎𝑟𝑉

𝑟𝑔𝑏𝑡𝑉
𝑡
[︀
𝛼
(︀
𝑔𝑝𝑞𝑙𝑎𝑔𝑚𝑛𝑠𝑏 + 𝑔𝑚𝑛𝑙𝑎𝑔𝑝𝑞𝑠𝑏

)︀
− 𝛾

(︀
𝜖𝑝𝑞𝑙𝑎𝜖𝑠𝑚𝑛𝑏 + 𝜖𝑝𝑞𝑠𝑎𝜖𝑙𝑚𝑛𝑏

)︀]︀
(86)

is assumed to contain two new coupling constants 𝛼 and 𝛾 (see [30] for the complete representation of
this constitutive tensor). In order to interpret these coupling constants, we calculate the tensors 𝜀𝑖𝑘,(︀
𝜇−1

)︀𝑖𝑘 and 𝜈𝑖𝑘, and obtain that

𝜀𝑖𝑘 = ∆𝑖𝑘 + 𝛼
⊥
∇(𝑖𝑉 𝑘) ,

(︀
𝜇−1

)︀𝑖𝑘
= ∆𝑖𝑘 + 𝛾

⊥
∇(𝑖𝑉 𝑘) , 𝜈𝑖𝑘 = 0 . (87)

Thus, the parameter 𝛼 is associated with the dynamo-optically induced dielectric susceptibility, while
𝛾 relates to the dynamo-optically induced magnetic susceptibility. Now we are ready for calculations of
the stress-energy tensor components.

3.3.1 Analysis based on the tetrad paradigm

We use the already obtained tensor (71) and present the whole stress-energy tensor in the following
tentative form:

𝑇
(dynamo)
𝑖𝑘 − 𝑇

(vacuum)
𝑖𝑘 =

=
1

4
𝐹𝑝𝑞𝐹𝑚𝑛

{︃
𝑔𝑖𝑘(∇𝑙𝑉𝑠)

[︂
𝑋 𝑙𝑠𝑝𝑞𝑚𝑛 − 𝜖𝑓ℎ𝑟𝑡

𝜕𝑋 𝑙𝑠𝑝𝑞𝑚𝑛

𝜕𝜖𝑓ℎ𝑟𝑡

]︂
−
(︀
𝛿𝑙𝑖𝛿

𝑠
𝑘 + 𝛿𝑙𝑘𝛿

𝑠
𝑖

)︀
(∇ℎ𝑉

𝑗)
𝜕
(︀
𝑋ℎ𝑓𝑝𝑞𝑚𝑛𝑔𝑗𝑓

)︀
𝜕𝑔𝑙𝑠

−

−1

2

(︁
𝑉𝑖𝛿

𝑗
𝑘 + 𝑉𝑘𝛿

𝑗
𝑖

)︁
(∇𝑙𝑉𝑠)

𝜕𝑋 𝑙𝑠𝑝𝑞𝑚𝑛

𝜕𝑉 𝑗
− 1

2
(𝑔𝑖𝑠∇𝑙𝑉𝑘 + 𝑔𝑘𝑠∇𝑙𝑉𝑖) 𝑋

𝑙𝑠𝑝𝑞𝑚𝑛

}︂
+

+
1

8
∇ℎ

{︀
𝐹𝑝𝑞𝐹𝑚𝑛

[︀
(𝑉𝑖𝑔𝑙𝑘 + 𝑉𝑘𝑔𝑙𝑖)𝑋

𝑙ℎ𝑝𝑞𝑚𝑛 − (𝑔𝑖𝑠𝑔𝑙𝑘 + 𝑔𝑘𝑠𝑔𝑙𝑖)𝑉
ℎ𝑋 𝑙𝑠𝑝𝑞𝑚𝑛

]︀}︀
, (88)

where the tensor 𝑋 𝑙𝑠𝑝𝑞𝑚𝑛 is given by (86). Further routine but cumbersome calculations give the
following result:

𝑇
(dynamo)
𝑖𝑘 = 𝑇

(vacuum)
𝑖𝑘 +

+

(︂
1

2
𝑔𝑖𝑘 − 𝑉𝑖𝑉𝑘

)︂(︀
𝛼𝐸𝑙𝐸𝑠 + 𝛾𝐵𝑙𝐵𝑠

)︀ ⊥
∇(𝑙𝑉𝑠) −

1

2

[︀
𝛼𝐸𝑙𝐸𝑠 + 𝛾𝐵𝑙𝐵𝑠

]︀ ⊥
∇𝑙𝑉(𝑘𝑔𝑖)𝑠−

−1

2

[︀
𝛼𝐸𝑠𝑉(𝑖𝐸𝑘) − 𝛾𝐵𝑠𝑉(𝑖𝐵𝑘)

]︀
𝐷𝑉𝑠 − 𝛼𝐸𝑗𝐸(𝑖

⊥
∇𝑘)𝑉𝑗−

−
[︁
𝛼𝐵𝑚𝐸(𝑠𝜂

𝑙)
𝑚(𝑘𝑉𝑖) − 𝛾𝐸𝑚𝐵(𝑠𝜂

𝑙)
𝑚(𝑘𝑉𝑖)

]︁ ⊥
∇𝑙𝑉𝑠+

+
1

2
∇ℎ

{︀
𝛼𝐸ℎ𝑉(𝑖𝐸𝑘) − 𝛾𝐵ℎ𝑉(𝑖𝐵𝑘) − 𝑉 ℎ [𝛼𝐸𝑖𝐸𝑘 − 𝛾𝐵𝑖𝐵𝑘]

}︀
. (89)
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We are interested to find the energy flux four-vector associated with this tensor; it is now of the following
form:

𝒬ℎ
(tetrad) ≡ ∆ℎ𝑖𝑇

(dynamo)
𝑖𝑘 𝑉 𝑘 =

= 𝜂ℎ𝑚𝑛𝐵𝑚𝐸𝑛 +
1

4
∆ℎ
𝑠

⊥
∇𝑙

(︀
𝛼𝐸𝑙𝐸𝑠 − 𝛾𝐵𝑙𝐵𝑠

)︀
+

1

2

[︁
𝛼𝐵𝑚𝜂ℎ𝑚(𝑙𝐸𝑠) − 𝛾𝐸𝑚𝜂ℎ𝑚(𝑙𝐵𝑠)

]︁ ⊥
∇(𝑙𝑉 𝑠) . (90)

Keeping in mind that according to (45)
⊥
∇(𝑙𝑉 𝑠) = 𝜎𝑙𝑠+ 1

3Θ∆𝑙𝑠, we can say that the energy flux depends
on the shear tensor 𝜎𝑙𝑠 and on the expansion scalar Θ of the velocity flow, but it ignores the acceleration
and rotation of the dynamo-optically active medium described by the presented model.

3.3.2 Analysis based on the aether paradigm

In order to describe the stress-energy tensor in the framework of the aether paradigm, we use the
consequence of the formulas (63) and (64), which now can be written as follows:

𝒯 (dynamo)
𝑖𝑘 − 𝑇

(dynamo)
𝑖𝑘 =

= − 1

2
𝑈(𝑖∆𝑘)𝑠

⊥
∇𝑙

[︀
𝛼𝐸𝑙𝐸𝑠 − 𝛾𝐵𝑙𝐵𝑠

]︀
+

⊥
∇𝑙𝑈𝑠

[︁
𝛼𝐵𝑚𝐸(𝑠𝜂

𝑙)
𝑚(𝑘𝑈𝑖) + 𝛾𝐸𝑚𝐵(𝑠𝜂

𝑙)
𝑚(𝑘𝑈𝑖)

]︁
. (91)

As it was mentioned above, only the flux four-vectors do not coincide for these two approaches, giving
the following difference:

𝒬ℎ
(aether) −𝒬ℎ

(tetrad) =

= −1

4
∆ℎ
𝑠

⊥
∇𝑙

(︀
𝛼𝐸𝑙𝐸𝑠 − 𝛾𝐵𝑙𝐵𝑠

)︀
− 1

2
𝜂ℎ𝑚𝑙 [𝛼𝐸𝑠𝐵

𝑚 + 𝛾𝐵𝑠𝐸
𝑚]

⊥
∇(𝑙𝑈𝑠) . (92)

This final result is
𝒬ℎ

(aether) = 𝜂ℎ𝑚𝑛𝐵𝑚𝐸𝑛 − 𝛾𝐸𝑚𝜂ℎ𝑚(𝑙𝐵𝑠)
⊥
∇(𝑙𝑉 𝑠) , (93)

i.e., the energy flux four-vector in the dynamo-optically active medium, calculated in the approach,
which we indicated as aether paradigm, does not contain the susceptibility parameter 𝛼, but includes
the parameter 𝛾.

Conclusion

Readers could ask the authors, what is an expediency to follow sophisticated calculations presented
above? Are there some applications of the developed formalism? Answering the last question we would
like to recall only one fact. The interpretation of the outstanding astronomical event GW170817 / GRB
170817A (see [47]), which is connected with the discovery of gravitational waves and gamma-rays from
a binary neutron star merger, is based on the standard model of the electromagnetic wave propagation
and the energy transfer. In other words, for the interpretation of this event the standard formula for
the electromagnetic energy flux in vacuum was used. Let us imagine now, that the dynamic aether
really exists, that this aether is dynamo-optically active, and that the electromagnetic radiation from
the binary system propagates indeed inside the dynamic aether. Then we have to use the formula (93)
for estimations . Since we keep in mind the cosmological context, we consider the aether flow to possess
only the expansion, so that the covariant derivative of the velocity four-vector of the aether has the
form ∇𝑖𝑈𝑘 = 𝐻(𝑡)∆𝑖𝑘, where 𝐻(𝑡) = 1

3Θ is the Hubble function. Then the formula (93) reduces to
𝒬ℎ

(aether) = 𝜂ℎ𝑚𝑛𝐵𝑚𝐸𝑛[1 + 𝛾𝐻(𝑡)], and the energy flux four-vector differs from the Poynting vector
by the multiplier [1 + 𝛾𝐻(𝑡)]. Is it possible to find this multiplier from observations? It is a not easy
question, but certainly it is very interesting one, and we hope to return to this problem in a special
work.
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