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Introduction

Despite the fact that standard inflationary scenarios based on Einstein’s gravity theory explain
successfully the origin of the large scale structure, the anisotropy of background radiation and the
mechanism for the formation of elementary particles [1–5], that is, they give a consistent method of
explaining the origin of the universe and its further evolution, there are problems that go beyond
this approach, for example, the nature of dark energy [6, 7] at the stage of the repeated expansion
of the universe or construction of the theory of quantum gravity. For this reason, at the present
time, cosmological models based on the modification of Einstein’s gravity are considered [7–9]. In the
framework of this approach, among others, scalar-tensor theories of gravitation and Einstein-Gauss-
Bonnet gravity are considered as well (see, for example, [8, 9]).

We note that the scalar-tensor gravity theories make it possible to explain both stages of accelerated
expansion without attracting dark energy. Also, Gauss-Bonnet scalar arises in the low-energy limit of
the supergravity action for superstrings [8] and Einstein-Gauss-Bonnet gravity can be considered as an
effective theory of quantum gravity.

New methods of exact solutions for cosmological models with scalar-tensor gravity theories and with
Einstein-Gauss-Bonnet gravity were presented earlier in papers [10–14], in which, also, a comparison with
standard models for both: at the level of dynamics and on the parameters of cosmological perturbations
was made.

When analyzing the evolution of the universe at the stage of cosmological inflation, the scalar
field potential plays an important role, which determines the nature of inflationary processes and the
mechanism of generation of elementary particles after the end of inflation, thus, the main task of this
work is to find the main parameters characterizing the modifications of GR for the case of known physical
potentials which were considered in standard cosmology. For this purpose, a method is proposed that
allows us to bring the equations of dynamics in the case of modified gravity theories to the standard
equations of cosmological inflation with Einstein’s gravity.

In the first part of the paper we give the equations of dynamics in a general form, including the
nonminimal coupling of a scalar field with Ricci and Gauss-Bonnet scalars as well as the function that
determines the interaction of a field and its kinetic energy. The second part deals with the method of
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generating new exact solutions from those known for models with minimal coupling. In the third part,
exact solutions are given for models with scalar-tensor gravity for Higgs potential and the general method
for obtaining exact solutions is considered. The fourth part deals with models of inflation with Einstein-
Gauss-Bonnet gravity, the influence of non-minimal coupling on the scalar field potential is shown and
the parameters characterizing this type of gravity are calculated for the potential 𝑉 (𝜑) ∝ cosh2(𝐴𝜑).

1. Equations of cosmological dynamics in Friedmann universe

First, let us write the action that determines the dynamics of the scalar field at the stage of
cosmological inflation in the system of units 8𝜋𝐺 = 𝑐 = 1

𝑆 =

∫︁
𝑑4𝑥

√−𝑔
[︂
1

2
𝐹 (𝜑)𝑅− 1

2
𝜔(𝜑)𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑− 𝑉 (𝜑)− 1

2
𝜉(𝜑)𝑅2

𝐺𝐵

]︂
, (1)

where 𝑅 is the Ricci scalar, 𝜑 is the scalar field and 𝑉 (𝜑) is its potential, the function 𝜔(𝜑) determines
the interaction of the field and its kinetic energy, 𝜉(𝜑) determines the coupling of the scalar field and
Gauss-Bonnet scalar 𝑅2

𝐺𝐵 = 𝑅𝜇𝜈𝜌𝜎𝑅
𝜇𝜈𝜌𝜎 − 4𝑅𝜇𝜈𝑅

𝜇𝜈 +𝑅2.
For the case of a homogeneous, isotropic, spatially flat Friedmann universe, the geometry of which

is determined by the Friedman-Robertson-Walker metric

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
(︀
𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

)︀
, (2)

we obtain the equations of dynamics in the following form [15]

3𝐹𝐻2 + 3𝐻�̇� − 𝜔

2
�̇�2 − 𝑉 (𝜑)− 12𝐻3𝜉 = 0, (3)

3𝐹𝐻2 + 2𝐻�̇� + 2𝐹�̇� + 𝐹 +
𝜔

2
�̇�2 − 𝑉 (𝜑)− 8𝐻3𝜉 − 8𝐻�̇�𝜉 − 4𝐻2𝜉 = 0, (4)

𝜔𝜑+ 3𝜔𝐻�̇�+
1

2
�̇�2𝜔′

𝜑 + 𝑉 ′
𝜑 − 6𝐻2𝐹 ′

𝜑 − 3�̇�𝐹 ′
𝜑 + 12𝐻4𝜉′𝜑 + 12𝐻2�̇�𝜉′𝜑 = 0, (5)

where the dot denotes the derivative with respect to time, the Hubble parameter 𝐻 = �̇�/𝑎, 𝑉 ′
𝜑 = 𝑑𝑉/𝑑𝜑.

The three equations (3)-(5) are independent only two, so the dynamics of the universe at the stage
of inflation can be considered on the basis of a system with two nonlinear differential equations for
various cases of the coupling of the scalar field and curvature. Thus, for the analysis of cosmological
dynamics at the early stage of the evolution of the universe we will use the first two equations in (3)-(4).

2. Exact solutions in models with minimal coupling

Consider the case 𝜉 = 0, 𝐹 = 1 which corresponds to the minimal coupling of the scalar field and
curvature or Einstein’s theory of gravity.

In this case, the dynamics equations (3)-(4) can be written in the following form

3𝐻2 =
𝜔(𝜑)

2
�̇�2 + 𝑉 (𝜑), (6)

�̇� = −𝜔(𝜑)
2

�̇�2. (7)

In the context of models with minimal coupling, as a rule, the case 𝜔 = 1 is considered. However
we can also consider models with a new scalar field 𝜙 =

∫︀ √︀
𝜔(𝜑)𝑑𝜑, thus, we have analogous equations

for scalar fields 𝜑 and 𝜙 with different potentials and Hubble parameters.
In many papers the various ways of solving the system of equations (6)-(7) were considered earlier

and a large number of exact solutions are given in the review [16], also, the classification of methods
of exact solutions was considered in the work [17]. In this case, we use the method associated with the
choice of the Hubble parameter (or scale factor), which means the reconstruction of the evolution of
scalar field and its potential from given dynamics.
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Thus, we write the system of equations (6)-(7) for the case 𝜔 = 1 as follows

𝑉 (𝜑) = 3𝐻2 + �̇�, (8)

�̇�2 = −2�̇�. (9)

Thus, we obtain exact solutions of the dynamics equations by specifying the Hubble parameter
corresponding to the accelerated expansion of the universe from the system of equations (8)-(9). Some
exact solutions, given in the paper [16], on the basis of which various scenarios of the early universe
are proposed, are presented in Table 1.

Table 1
Exact solutions in cosmological models with minimal coupling. The scalar field is written with taking
into account its initial value 𝜑− 𝜑0 → 𝜑

Hubble parameter Scalar field evolution Scalar field potential

𝐻(𝑡) = −𝐴𝑡+𝐵 𝜑(𝑡) = ±
√
2𝐴𝑡 𝑉 (𝜑) = 3

(︂
∓
√︁

𝐴
2
𝜑+𝐵

)︂2

−𝐴

𝐻(𝑡) = 𝐵 exp(−𝐴𝑡) 𝜑(𝑡) =
√︁

8𝐵
𝐴

exp
(︀
−𝐴

2
𝑡
)︀

𝑉 (𝜑) = 3𝐴
8
𝜑2
(︀
𝐴
8
𝜑2 −𝐴

)︀

𝐻(𝑡) = −𝐴𝐵
3

tan(𝐴𝑡) 𝜑(𝑡) =
√︁

2𝐵
3

ln
√︁

1+sin(𝐴𝑡)
1−sin(𝐴𝑡)

𝑉 (𝜑) = 𝐴2𝐵(𝐵−1)
3

cosh2
(︁√︁

3
2𝐵

𝜑
)︁
− 𝐴2𝐵2

3

𝐻(𝑡) = 𝐴𝐵
3

tanh(𝐴𝑡) 𝜑(𝑡) =
√︁

− 2𝐵
3

arcsin(tanh(𝐴𝑡)) 𝑉 (𝜑) = 𝐴2𝐵
3

(︁
𝐵 sin2

√︁
− 3

2𝐵
𝜑+ cos2

√︁
− 3

2𝐵
𝜑
)︁

𝐻(𝑡) = 𝐴2𝐵 coth(2𝐵𝑡) 𝜑(𝑡) = 𝐴 ln(tanh(𝐵𝑡)) 𝑉 (𝜑) = 𝐴2𝐵2
[︀
(3𝐴2 − 2) cosh2

(︀
𝜑
𝐴

)︀
+ 2
]︀

𝐻(𝑡) = 𝐴2𝐵 cot(2𝐵𝑡) 𝜑(𝑡) = 𝐴 arctan(cos(2𝐵𝑡)) 𝑉 (𝜑) = 𝐴2𝐵2
[︀
(3𝐴2 − 2) cosh2

(︀
𝜑
𝐴

)︀
− 3𝐴2

]︀

𝐻(𝑡) = 𝐵
3𝑡

− 𝐴
3𝐵

𝜑(𝑡) =
√︁

2𝐵
3

ln(𝑡) 𝑉 (𝜑) = 𝐵(𝐵−1)
3

(︃
𝑒−2

√︁
3

2𝐵 𝜑 − 2𝐴𝑒
−

√︂
3

2𝐵
𝜑

𝐵(𝐵−1)

)︃
+ 𝐴2

3𝐵2

𝐻(𝑡) = 𝐴
[︀
𝐵+4
6𝐴𝐵

𝑡
]︀− 𝐵

𝐵+4 𝜑(𝑡) =
[︀
𝐵+4
6𝐴𝐵

𝑡
]︀ 2
𝐵+4 𝑉 (𝜑) = 3𝐴2𝜑−𝐵

(︁
1− 𝐵2

6
𝜑−2

)︁

𝐻(𝑡) = 𝐴2𝐵
6

coth3(𝐵𝑡) 𝜑(𝑡) = 𝐴
sinh(𝐵𝑡)

𝑉 (𝜑) = 𝐵2

12𝐴2 𝜑
2(𝜑2 +𝐴)

(︁
𝜑4

𝐴2 + 2𝜑2 +𝐴2 − 6
)︁

𝐻(𝑡) = 𝐶 ln(𝐴𝑡+𝐵) 𝜑(𝑡) =
√︁

− 8𝐶
𝐴
(𝐴𝑡+𝐵) 𝑉 (𝜑) = 3𝐶2 ln2

(︀
− 𝐴

8𝐶
𝜑2
)︀
− 8𝐶2

𝜑2

To generate new exact solutions from known ones, we consider the transformations in a general
form (𝐻,𝑉, 𝜑) → (𝐻,𝑈, 𝜙) [17].

Further, we consider the following transformation of the Hubble parameter

𝐻 = 𝑓(𝑡)𝐻, (10)

where 𝑓(𝑡) is an arbitrary function of time.
Taking into account the equations (8)-(9), we get

𝑈(𝜙) = 3𝐻2𝑓2 +
𝑑

𝑑𝑡
(𝑓𝐻), (11)

1

2
�̇�2 = − 𝑑

𝑑𝑡
(𝑓𝐻) =

1

2
�̇�2
(︂
𝑓 + 2𝑓

𝐻

�̇�

)︂
=
𝜔(𝜑)

2
�̇�2. (12)

Thus, the transition from old solutions to new ones is carried out on the basis of the choice of the
function 𝜔(𝜑) ≡ 𝜔(𝐻(𝑡)) in the equation

𝑓 + 2𝑓
𝐻

�̇�
= 𝑓(𝐻) + 𝑓 ′𝐻𝐻 = 𝜔(𝐻(𝑡)). (13)

For the case of a constant function 𝜔(𝐻(𝑡)) = 𝑛 = 𝑐𝑜𝑛𝑠𝑡, from the equation (13), we obtain

𝑓(𝐻(𝑡)) = 𝑛+
𝜆

𝐻
, (14)

where 𝜆 is the constant of integration.
Thus, taking into account the equations (10)-(12), we can write the relations between new and

initial exact solutions for the function (14):

𝐻 = 𝑛𝐻 + 𝜆, (15)
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𝑎(𝑡) = 𝐶𝑎𝑛(𝑡) exp(𝜆𝑡), 𝐶 = 𝑎0/𝑎
𝑛
0 , (16)

𝑈(𝜙) = 3𝑛2𝐻2 + 6𝜆𝑛𝐻 + 𝑛�̇� + 3𝜆2, (17)

𝜙 = ±√
𝑛𝜑, (18)

where the sign of the parameter 𝑛 determines the relationship between models with canonical and
phantom fields.

Let us demonstrate this method using the example of the model with Higgs potential and with
Hubble parameter 𝐻(𝑡) = 𝐵 exp(−𝐴𝑡) to which the scale factor is 𝑎(𝑡) = 𝑎0 exp

(︀
−𝐵
𝐴𝑒

−𝐴𝑡)︀, which
implies a double exponential expansion for the case when 𝐴 < 0.

On the basis of the transformations (15)-(18), we write down the new exact solutions

𝐻 = 𝑛𝐵 exp(−𝐴𝑡) + 𝜆, (19)

𝑎(𝑡) = 𝑎0 exp

(︂
𝜆𝑡− 𝑛𝐵

𝐴
𝑒−𝐴𝑡

)︂
, (20)

𝜙 = ±
√︂

8𝑛𝐵

𝐴
exp

(︂
−𝐴

2
𝑡

)︂
, (21)

𝑈(𝜙) =
3𝐴2

64
𝜙4 +

(︂
3𝐴𝜆

4
− 𝐴2

8

)︂
𝜙2 + 3𝜆2, (22)

that is, we get Higgs potential with a different dynamics, also, for the case 𝜆 = 𝐴/6, we get the potential

𝑈(𝜙) =
3𝐴2

64
𝜙4 + 3𝜆2, (23)

corresponding to chaotic inflation.
We note that, writing the initial equations (8)-(9) in the context of the Ivanov-Salopek-Bond

method, the description of which is given in the review [16],

𝑉 (𝜑) = 3𝐻2 − 2𝐻 ′2
𝜑 , (24)

�̇� = −2𝐻 ′
𝜑, (25)

it is possible to represent the equation (17) in terms of a scalar field

𝑈(𝜙(𝜑)) = 3𝑛2𝐻2 + 6𝜆𝑛𝐻 − 2𝑛𝐻 ′2
𝜑 + 3𝜆2. (26)

Also, based on the equations (11)–(13), one can consider more complicated transformations of exact
cosmological solutions in models with minimal coupling by choosing the functions 𝜔(𝐻(𝑡)) or 𝑓(𝑡).

3. Cosmological models with scalar-tensor gravity

Scalar-tensor theories of gravitation are a possible alternative of Einstein’s gravity for describing
the dynamics of the universe, in the context of which, the problem of the interpretation of dark energy
in the repeated stage of accelerated expansion is solved by modifying GR.

In this case, we will consider a material scalar fields, this approach is based on the possibility of
the conformal transformation of metric 𝑔𝜇𝜈 = 𝐹 (𝜑)𝑔𝜇𝜈 from the Jordan frame (with the geometrical
scalar fields) to the Einstein frame [9].

In the case of cosmological models with scalar-tensor gravity 𝜉 = 0, 𝜔 = 𝜔(𝜑), 𝐹 = 𝐹 (𝜑) we write
the dynamical equations (3)–(4) in the form

𝜔(𝜑)

2
�̇�2 + 𝑉 (𝜑) = 3𝐹𝐻2 + 3𝐻�̇� , (27)

𝜔(𝜑)�̇�2 = 𝐻�̇� − 2𝐹�̇� − 𝐹 . (28)



Exact solutions in Friedmann cosmology with scalar fields 35

Further, on the basis of the following representation of the functions 𝐹 (𝜑) and 𝜔(𝜑)

𝐹 (𝑡) = 1− 𝛽𝑆𝑇
𝑎2(𝑡)

, 𝐹 (𝜑) = 1− 𝛽𝑆𝑇
𝑎2(𝜑)

, (29)

𝜔(𝑡) = 1− 𝛽𝑆𝑇

(︂
3𝐻2

�̇�𝑎2

)︂
, 𝜔(𝜑) = 1 + 3𝛽𝑆𝑇

(︂
𝐻

𝑎𝐻 ′

)︂2

, (30)

where 𝛽𝑆𝑇 is a constant parameter that determines the nonminimal coupling for the case of scalar-tensor
gravity theories, we obtain equations similar to (8)–(9)

𝑉 (𝑡) = 3𝐻2 + �̇�, 𝑉 (𝜑) = 3𝐻2 − 2𝐻 ′2, (31)

�̇�2 = −2�̇�, �̇� = −2𝐻 ′. (32)

As an example, we consider the initial model with Einstein’s gravity and Higgs potential (19)–(22).
From the equations (29)–(30) we obtain

𝐹 (𝜙) = 1− 𝛽𝑆𝑇
𝑎20

(︂
𝐴𝜙2

8𝑛𝐵

)︂2𝜆/𝐴

exp

(︂
1

4
𝜙2

)︂
, (33)

𝜔(𝜙) = 1 +
3𝛽𝑆𝑇
𝑎20𝐴

2

(︂
𝐴𝜙+

8𝜆

𝜙

)︂2(︂
𝐴𝜙2

8𝑛𝐵

)︂2𝜆/𝐴

exp

(︂
1

4
𝜙2

)︂
. (34)

Thus, based on the equations (29)–(32), the exact solutions can be translated from models with
minimal coupling to the case of scalar-tensor gravity theories and one can obtain the corresponding
parameters of such theories.

4. Models with nonminimal coupling between a scalar field and Gauss-Bonnet scalar

For the case of models with nonminimal coupling between a scalar field and Gauss-Bonnet scalar,
corresponding to 𝐹 = 1 in the equations (3)–(4), we obtain the dynamical equations in the following
form

3𝐻2 =
𝜔(𝜑)

2
�̇�2 + 𝑉 (𝜑) + 12𝜉𝐻3, (35)

− 2�̇� = 𝜔(𝜑)�̇�2 − 4𝜉𝐻2 − 4𝜉𝐻(2�̇� −𝐻2). (36)

To find the exact solutions we write this system of equations in terms of the generating function 𝑔(𝑡)

𝑉 (𝜑) = 3𝐻2 + 5𝐻𝑔 + �̇� + �̇�, (37)

𝜔(𝜑)

2
�̇�2 = 𝐻𝑔 − �̇� − �̇�, (38)

𝑔 = −2𝜉𝐻2. (39)

We note that the function 𝑔 determines the difference between Hubble parameters for the Einstein’s
gravity (or minimal coupling) and Einstein-Gauss-Bonnet gravity 𝑔 = 𝐻𝐸 −𝐻, in the case when 𝑔 = 0

the equations (37)–(38) are reduced to (8)–(9) and 𝜉 = 𝑐𝑜𝑛𝑠𝑡.
Further, we consider, separately, two cases:
∙ The case when 𝜔(𝜑) = 1.
For this case we consider the function 𝑔, which is defined from equation

𝐻𝑔 − �̇� = 0, (40)

i.e. 𝑔(𝑡) = 𝑎(𝑡)𝛼𝐺𝐵 , where 𝛼𝐺𝐵 is a constant parameter that determines a coupling of the field and
Gauss-Bonnet scalar.
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In this case, from (37)–(39), we get the system of equations

𝑉 (𝜑) = 3𝐻2 + �̇� + 6�̇�𝛼𝐺𝐵 , (41)

�̇�2 = −2�̇�, (42)

𝜉 = −
(︁𝛼𝐺𝐵

2

)︁ 𝑎3
�̇�2

. (43)

Thus, in this case, the potential will differ from the model in Einstein’s gravity by the term 𝑈𝐺𝐵 =

6�̇�𝛼𝐺𝐵 , which appears due to the coupling of the field and Gauss-Bonnet scalar.
To illustrate the influence of nonminimal coupling of a scalar field and Gauss-Bonnet scalar, we

consider the model with quadratic potential, Hubble parameter 𝐻(𝑡) = −𝐴𝑡+𝐵 from Tab. 1 and with
the scale factor

𝑎(𝑡) = 𝑎0 exp

(︂
𝐵𝑡− 𝐴

2
𝑡2
)︂
. (44)

From the equations (41) and (43), for the case 𝜑(𝑡) =
√
2𝐴 𝑡, we obtain

𝑉 (𝜑) = 3

(︃
−
√︂
𝐴

2
𝜑+𝐵

)︃2

+ 6𝑎0𝛼𝐺𝐵

(︃
−
√︂
𝐴

2
𝜑+𝐵

)︃
exp

(︂
𝐵𝜑√
2𝐴

− 1

4
𝜑2
)︂
−𝐴, (45)

𝜉(𝑡) =
𝑎0𝛼𝐺𝐵

2

⎡
⎣
exp

(︁
𝐵2−(𝐴𝑡−𝐵)2

2𝐴

)︁

𝐴(𝐴𝑡−𝐵)
+

√︂
𝜋

2𝐴3
𝑒

𝐵2

2𝐴 𝑒𝑟𝑓

(︂
𝐴𝑡−𝐵√

2𝐴

)︂⎤
⎦+ 𝑐𝑜𝑛𝑠𝑡, (46)

𝜉(𝜑) =
𝑎0𝛼𝐺𝐵

2

⎡
⎢⎢⎣
exp

(︂
1
2𝐴

(︂
𝐵2 −

(︁√︁
𝐴
2 𝜑−𝐵

)︁2)︂)︂

𝐴
(︁√︁

𝐴
2 𝜑−𝐵

)︁ +

√︂
𝜋

2𝐴3
𝑒

𝐵2

2𝐴 𝑒𝑟𝑓

⎛
⎝

√︁
𝐴
2 𝜑−𝐵
√
2𝐴

⎞
⎠

⎤
⎥⎥⎦+ 𝑐𝑜𝑛𝑠𝑡. (47)

The potentials (45) for the case of Einstein gravity theory and Einstein-Gauss-Bonnet gravity are
shown in Figure. 1, the nonzero energy of vacuum was taken into account when constructing the graphs,
i.e. 𝑉 → 𝑉 + 𝑐𝑜𝑛𝑠𝑡.

Fig. 1. The potential 𝑉𝐸 for Einstein’s gravity with parameter 𝛼𝐺𝐵 = 0 and the potential 𝑉𝐺𝐵 corresponding
to Einstein-Gauss-Bonnet gravity with parameter 𝛼𝐺𝐵 = 1.

Thus, the coupling of the scalar field with Gauss-Bonnet scalar creates an additional state of a false
vacuum, from which the scalar field passes into the state of a true vacuum. This type of potential is
often considered in the context of string theory and supergravity [8] which corresponds to the original
assertion that Gauss-Bonnet scalar arises in the low-energy limit for the string’s action.
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∙ The case when 𝜔(𝜑) ̸= 1.
For the present case we consider the function 𝑔 which we will define from equation

5𝐻𝑔 + �̇� = 0, (48)

i.e. 𝑔 = 𝑎−5𝛼𝐺𝐵 .
Thus, on the basis of the following representation of the functions 𝑔(𝑡) and 𝜔(𝑡)

𝑔 = 𝑎−5𝛼𝐺𝐵 , 𝜔(𝑡) = 1− 𝛼𝐺𝐵

(︂
6�̇�

�̇�𝑎6

)︂
, (49)

we obtain the system of equations
𝑉 (𝜑) = 3𝐻2 + �̇�, (50)

�̇�2 = −2�̇�, (51)

𝜉 = − 𝛼𝐺𝐵
2𝑎3�̇�2

, (52)

which also allows us to use the exact solutions given earlier for cosmological models with Einstein-Gauss-
Bonnet gravity.

For the model determined by Hubble parameter 𝐻(𝑡) = 𝐴2𝐵 coth(2𝐵𝑡) with constant 𝐴 =
√︀

8/5

we obtain
𝜉(𝑡) =

25𝛼𝐺𝐵
128𝑎50𝐵

3 tanh(4𝐵𝑡)
+ 𝑐𝑜𝑛𝑠𝑡, (53)

𝜔(𝑡) = 1 +
3𝛼𝐺𝐵 cosh(2𝐵𝑡)

𝑎50𝐵 sinh3(2𝐵𝑡)
. (54)

After substituting the inverse relation 𝑡 = 𝑡(𝜑) we get the functions

𝜉(𝜑) =
25𝛼𝐺𝐵
128𝑎50𝐵

3

⎡
⎣1
4
cosh

(︂
𝜑

𝐴

)︂
+

1

cosh
(︁
𝜑
𝐴

)︁

⎤
⎦+ 𝑐𝑜𝑛𝑠𝑡, (55)

𝜔(𝜑) = 1 +
3𝛼𝐺𝐵
8𝑎50𝐵

[︂
2 cosh3

(︂
𝜑

𝐴

)︂
− 3 cosh

(︂
𝜑

𝐴

)︂]︂
, (56)

which correspond to potential 𝑉 (𝜑) = 𝐴2𝐵2
[︁
(3𝐴2 − 2) cosh2

(︁
𝜑
𝐴

)︁
+ 2
]︁

in cosmological models with
Einstein-Gauss-Bonnet gravity.

5. Conclusion

In this paper, the methods for obtaining new exact solutions of cosmological dynamical equations at
the early (inflationary) stage of the universe’s evolution from known ones are considered. The proposed
approach makes it possible to use the solutions obtained for the case of minimal coupling of a scalar
field and curvature (Einstein’s gravity) to generate new solutions in the same type of models, but with
nonminimal coupling involving scalar-tensor gravity theories and the Einstein-Gauss-Bonnet gravity.

Since the physical mechanisms for implementing the inflationary scenario are directly related to
the potential of the scalar field, the proposed approach is aimed at using exact solutions for physical
potentials obtained in standard cosmological models for generalization to models with modified gravity.

We also note that the proposed approach can be used in approximate methods such as the slow-roll
approximation [18], when neglecting the contribution of the field’s kinetic energy to the dynamics of
the universe at the inflationary stage, or the kinetic approximation implying a quasilinear connection of
kinetic energy of a scalar field with state parameter considered in papers [19,20].

It is obvious that the analysis of cosmological dynamics can be carried out without connection to
standard cosmological models, however, the presence of such connection allows one to consider modified
gravity theories as a certain parametrized extension of general relativity associated with the values of
constants 𝛽𝑆𝑇 and 𝛼𝐺𝐵 .



38 I. V. Fomin

Acknowledgements
This work was finalized during the author’s visit in 2018 to the University of KwaZulu-Natal.

Author is thankful to ACRU and the Director Professor S.D. Maharaj for warm hospitality and the
NFR for financial support. Also, this work was partly supported by RFBR grants 16-02-00488 A and
16-08-00618 A.

References

1. Starobinsky A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B., 1980,
vol. 91, pp. 99-102.
2. Guth A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev.
D., 1981, vol. 23, pp. 347-356.
3. Linde A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity,
Isotropy and Primordial Monopole Problems. Phys. Lett. B., 1982, vol. 108, pp. 389-393.
4. Linde A.D. Particle physics and inflationary cosmology. Contemp. Concepts Phys., 1990, vol. 5, pp. 1-362.
5. Liddle A.R., Lyth D.H. Cosmological Inflation and Large-Scale Structure. Cambridge.: Cambridge University
Press, 2000. 414 p.
6. Frieman J., Turner M., Huterer D. Dark Energy and the Accelerating Universe. Ann. Rev. Astron. Astrophys.,
2008, vol. 46. pp. 385-432.
7. Nojiri S., Odintsov S.D. Modified non-local-F(R) gravity as the key for the inflation and dark energy. Phys.
Lett. B., 2008, vol. 659, pp. 821-826.
8. Clifton T., Ferreira P.G., Padilla A., Skordis C. Modified Gravity and Cosmology. Phys. Rept., 2012, vol. 513,
pp.1-189.
9. Faraoni V. Cosmology in Scalar-Tensor Gravity. Dordrecht.: Cluwer Academic Publisher, 2004. 414 p.
10. Fomin I.V., Chervon S.V. The exact inflationary solutions in generalized scalar-tensor gravity theories.
arXiv:1711.06870 [gr-qc]
11. Fomin I.V., Chervon S.V. On inflation with explicit parametric connection between GR and scalar-tensor
gravity. arXiv:1802.10462 [gr-qc]
12. Fomin I.V., Chervon S.V. Exact inflation in Einstein–Gauss–Bonnet gravity, Grav. Cosmol., 2017, vol. 23,
no. 4, pp. 367-374.
13. Fomin I.V., Chervon S.V. A new approach to exact solutions construction in scalar cosmology with a
Gauss–Bonnet term. Mod. Phys. Lett. A., 2017, vol. 32, no. 25, p. 1750129.
14. Fomin I.V., Morozov A.N. The high-frequency gravitational waves in exact inflationary models with Gauss-
Bonnet term. J. Phys. Conf. Ser., 2017, vol. 798, no. 1, p. 012088.
15. De Felice A., Tsujikawa S., Elliston J., Tavakol R. Chaotic inflation in modified gravitational theories. JCAP,
2011, vol. 1108, p. 021.
16. Chervon S.V., Fomin I.V. The method of generating functions in exact scalar field cosmology.
arXiv:1704.08712 [gr-qc]
17. Fomin I.V., Chervon S.V. Exact and Approximate Solutions in the Friedmann Cosmology. Russ. Phys. J.,
2017, vol. 60, no. 3, pp. 427-440.
18. Liddle A.R., Parsons P., Barrow J.D. Formalizing the slow roll approximation in inflation. Phys. Rev. D.,
1994, vol. 50, pp. 7222-7232.
19. Fomin I.V. The models of cosmological inflation in the context of kinetic approximation. J. Phys. Conf.
Ser., 2016, vol. 731, no. 1, p. 012004.
20. Fomin I.V. Cosmological inflation models in the kinetic approximation. Theor. Math. Phys., 2017, vol. 191,
no. 2, pp. 781-791.

Authors

Fomin Igor Vladimirovich, Ph.D., Associate Professor of Physics Department, researcher in the
Laboratory of Electrodynamics of Moving Media, Bauman Moscow State Technical University, 2-nd
Baumanskaya str., 5, Moscow, 105005, Russia.
E-mail: ingvor@inbox.ru

Please cite this article in English as:
Fomin I.V. Exact solutions in Friedmann cosmology with scalar fields. Space, Time and Fundamental
Interactions, 2018, no. 1, pp. 31–38.


