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Introduction

The implementation of a scalar field in general relativity as a source of the gravitational field often
meets with criticism on the basis of the fact that scalar fields are not detected experimentally. By now,
a reasonable from the physical point of view argument, based on the discovery of the Higgs boson in
the LHC experiment in 2000, has appeared. Thus, the scalar field describing the Higgs boson can be
considered as the source of the gravitational field of the early Universe. Moreover, the Higgs field can be
regarded as the inflaton leading to the early acceleration in the expansion of the universe (inflation) [1].

Turning to earlier ideas about the inclusion of the scalar field in gravitation, we give some historical
remarks.

Jordan in 1949 [2] noted that in the Klein-Gordon theory of unification of gravity and
electromagnetism, in assessing the scale of the 5th dimension, a new macroscopic interaction of
gravitational stress, the carrier of which is a scalar field, inevitably arises. Since such a scalar field
led to the estimation of the 5-th dimension through the coordinates of space-time, it subsequently
became known as "compacton."

Fierz (1956) [3], Jordan (1959) [2], Brans and Dicke (1961) proposed the theory of gravity, described
by the metric tensor and the scalar field with non-minimal coupling to gravity. Such a model contains
only one free parameter, the tendency of which to infinity leads to the coincidence of the theory with
general relativity. Later, Bergmann (1968) [5], Nordtvedt (1970) [6] and Wagoner (1970) [7] generalized
the Fierz-Jordan-Brans-Dicke theory to the case more general scalar-tensor theory of gravitation due to
the free function in front of the kinetic term and the introduction of the self-interaction potential for
the scalar field.

Interest in the generalization of scalar-tensor theories of gravitation is caused, in particular, by
the failure of the Fierz-Jordan-Brans-Dicke theory to give fundamentally new (different from general
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relativity) results of calculations for experiments in the solar system on the basis of post-Newtonian
formalism. The tensor-multi-scalar theory of gravity (TMS TG), according to its authors, Damour and
Esposito-Farese [8], provides reasonable predictions for four different observation regimes: 1) quasi-
stationary weak fields regime (in the conditions of the solar system); 2) rapidly varying weak fields
(gravitational waves); 3) quasi-stationary strong fields (neutron stars or black holes); 4) the effects of
mixing strong fields and radiation for gravitational radiation in a system of many compact bodies. A
detailed exposition of the above results can be found in the pioneering work of Damour and Esposito-
Farese in 1992 [8]. It should be noted that TMS TG has much in common with the self-gravitating
nonlinear sigma model [9] and the chiral cosmological model [10].

The tensor-multi-scalar theory of gravitation is a natural extension of the scalar-tensor theory.
Its generalization to an arbitrary number of scalar fields, connected non-minimal with curvature, was
proposed in the papers of 1992 [8] and 1995 [11]. Interest in this model appeared several years ago,
after the statement that the Higgs field supports the early inflation, provided that the Higgs field is
not minimally coupled to the gravity of [1], [12]. Also there are models in which dark matter [13]
and relativistic stars [14] are described. In the paper [13], solutions are found in TMS TG for a
homogeneous and isotropic universe in the Jordan frame by the dynamic system method in the two-field
model. In the work [13] several scalar fields interacting with gravity are considered and dust solutions
are found, as well as the solutions for the era of radiation dominance and matter dominance. By now,
the inflationary model of the universe has become an integral part of the cosmological theory, since it
solves the problems of flatness, horizon, the formation of the large-scale structure of the universe, and
others. At the same time, the inflationary theory is reliably confirmed by the observational data of the
observatories COBE, WMAP, PLANCK, BICEP2. All this suggests that along with the coordination
of new (modified) gravitation theories in quasi-stationary weak gravitational fields in the solar system,
gravitational waves, compact stellar objects, it is necessary to investigate the features of cosmological
inflation to confirm the consistency of inheriting the progress of cosmological models based on general
relativity . In this paper, we conduct a study of cosmological inflation in TMS TG with the inflaton for
the case of two gravitational scalar fields.

It was proposed in [9] the method for constructing solutions for Chiral Cosmological Model (CMC)
using the ansatz method. We are looking for solutions provided that the non-gravitational scalar field
is in the slow-roll regime. Section 2 presents the general equations of TMS TG, the metric of the
two-component CCM and, accordingly, the metric of the homogeneous and isotropic universe is chosen.
Section 3 fixes the choice of non-gravitational matter as the self-interacting scalar field in the Jordan
frame. General equations of cosmological dynamics are given in Section 4. It also presents a simplifica-
tion of the model for the slow-roll regime and specifies the choice of special ansatzes that simplify the
solution of the system of equations of cosmological dynamics for TMS TG. Section 5 is devoted to so-
lutions for the first ansatz, a general algorithm for constructing solutions is indicated, and solutions are
found for the power-law inflation and de Sitter inflation for various choices of self-interacting potentials
of the scalar field. Section 6 presents similar studies for the second ansatz. The Conclusion summarizes
the results and indicates the further directions of the research.

1. General Equations

Following the approach proposed by Damur and Esposito-Farese (1992) [8], we consider TMS TG
in Einstein frame (without a non-minimal interaction of the scalar curvature to the scalar gravitational
fields), when the action of the matter field as a source of gravitation is considered in the "physical"
metric ̃︀𝑔𝜇𝜈 , conformally related to the metric in the Einstein frame 𝑔*𝜇𝜈 : ̃︀𝑔𝜇𝜈 = Ω2(𝜙)𝑔*𝜇𝜈 . Thus, we
consider the tensor-multi-scalar model of the theory of gravity with the action

𝑆 =
1

𝜅*

∫︁
𝑑4𝑥

√−𝑔*
[︂
𝑅*
2

− 1

2
𝑔𝜇𝜈* ℎ𝐴𝐵𝜙

𝐴
,𝜇𝜙

𝐵
,𝜈 −𝑊 (𝜙𝐶)

]︂
+ 𝑆𝑚[𝜓𝑚,Ω

2(𝜙)𝑔*𝜇𝜈 ]. (1)
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To match our notation in the action (1) with the conventions in [8], [14], we can use the relations:
ℎ𝐴𝐵 = 2𝛾𝐴𝐵 , 2𝐵(𝜙) =𝑊 (𝜙𝐶). Here and below (*) means that the analysis is carried out in the Einstein
picture; 𝜅* = 𝜅 is the Einstein gravitational constant, 𝑅* is the scalar curvature, 𝑔* = 𝑑𝑒𝑡(𝑔*𝜇𝜈). To
shorten the record, we use 𝜙,𝜇 = 𝜕𝜇𝜙. The Greek indices 𝜇, 𝜈, ... = 0, 1, 2, 3 define the coordinates of
the space-time. The capital Latin indices 𝐴,𝐵,𝐶, ... = 1, 2...𝑁 give 𝑁 scalar fields. In what follows, the
set of scalar fields

{︀
𝜙1, 𝜙2, ...𝜙𝑁

}︀
will be denoted by 𝜙 :=

{︀
𝜙1, 𝜙2...𝜙𝑁

}︀
.

We determine the Energy-Momentum Tensor (EMT) 𝑇 *
𝜇𝜈 of the non-gravitational field [8], taking

into account that the matter is distributed in the space-time ̃︀𝑔𝜇𝜈 = Ω2(𝜙)𝑔*𝜈

𝑇 (𝑚)*
𝜇𝜈 =

2√−𝑔*
𝛿𝑆𝑚[𝜓𝑚,Ω

2(𝜙)𝑔*𝜌𝜎]

𝛿𝑔𝜇𝜈*
. (2)

In this case, the energy conservation equation takes the form:

▽𝜇*𝑇 (𝑚)*
𝜇𝜈 =

𝜕 log Ω(𝜙)

𝜕𝜙𝐵
𝑇 (𝑚)*▽*

𝜈𝜙
𝐵 , (3)

where the trace of material EMT is defined by contraction with metric tensor 𝑔𝜇𝜈* : 𝑇 (𝑚)* = 𝑇
(𝑚)*
𝜇𝜈 𝑔𝜇𝜈* .

Varying the action (1) with respect to the metric 𝑔𝜇𝜈* , we obtain the equation of the gravitational
field, written in terms of the EMT trace:

𝑅*
𝜇𝜈 = ℎ𝐴𝐵𝜙

𝐴
,𝜇𝜙

𝐵
,𝜈 +𝑊 (𝜙)𝑔*𝜇𝜈 + 𝜅(𝑇 (𝑚)*

𝜇𝜈 − 1

2
𝑇 (𝑚)*𝑔*𝜇𝜈). (4)

Field equations in general form are obtained by varying the action (1) with respect to the fields
𝜙𝐴:

�*𝑔𝜙
𝐴 − Γ𝐴𝐵𝐶(𝜙

𝐷)𝑔𝜇𝜈* ▽*
𝜇 𝜙

𝐵 ▽*
𝜈 𝜙

𝐶 − ℎ𝐴𝐵
𝜕𝑊 (𝜙)

𝜕𝜙𝐵
= −𝜅ℎ𝐴𝐵 𝜕 lnΩ(𝜙)

𝜕𝜙𝐵
𝑇 (𝑚)*, (5)

where �*
𝑔 = ▽*

𝜇▽𝜇* .
The gravitational part of the action (1) in the absence of the second term 𝑆𝑚 corresponds to the

Chiral Cosmological Model (CCM) when choosing natural units, including 𝜅 = 1. Thus, the solutions
obtained in a number of papers for the CCM [20–22], can be considered as vacuum solutions of TMS
TG and confirm the existence of exact solutions of inflationary nature. As noted in the works [20–22],
the consideration of two chiral fields interacting in a kinetic and potential way leads to results that can
not be obtained for a single field.

In the present paper, we introduce the material component 𝑆𝑚 as a scalar source in the standard
Friedmann cosmological model with the self-interacting potential and consider the slow-roll regime.

The scalar component of the action (1) of the gravitational field is chosen in the representation of
the two-component CCM with the metric of the target space:

𝑑𝜎2 = ℎ11𝑑𝜑
2 + ℎ22(𝜑, 𝜒)𝑑𝜒

2. (6)

Here we use the notation for the chiral fields: 𝜙1 = 𝜑, 𝜙2 = 𝜒.
The space-time metric of a homogeneous and isotropic universe will be written in the Friedman-

Robertson-Walker representation (FRW)

𝑑𝑠2* = −𝑑𝑡2* + 𝑎2*(𝑡)𝑑𝑙
2
* = −𝑑𝑡2* + 𝑎2*(𝑡)

(︂
𝑑𝑟2

1− 𝜖𝑟2
+ 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜙2

)︂
, (7)

where 𝜖 = −1,+1.0, which corresponds to an open, closed and spatially flat universe. Note that instead
of considering an open and closed universe, we can remain in the spatially flat universe filled by the
scalar field and the perfect fluid with the equation of state 𝑝𝑐𝑢𝑟 = −3𝜌𝑐𝑢𝑟, 𝜌𝑐𝑢𝑟 = −𝜖/(3𝑎2) [23].
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2. Choice of non-gravitational matter

In cosmological models of inflation, scalar fields with the self-interacting potential as a source of
gravity are actively used. Therefore, we specify the action of matter following [8], as the action of the
scalar field in the Jordan frame:

𝑆𝑚 =

∫︁
𝑑4𝑥
√︀

−̃︀𝑔
[︂
−1

2
𝜓,𝜇𝜓,𝜈̃︀𝑔𝜇𝜈 − ̃︀𝑉 (𝜓)

]︂
. (8)

As is known, there is a conformal connection between Einstein frame and the Jordan frame ̃︀𝑑𝑠2 =

Ω2(𝜙)𝑑𝑠2*. Hereinafter, (̃︀) points to the description in the Jordan frame. Using (7), the following
relations are established:

̃︀𝑑𝑡 = Ω(𝜙)𝑑𝑡*,

̃︀𝑎(𝑡) = Ω(𝜙)𝑎*(𝑡).

The influence of matter (8) is transformed to the Einstein frame using the conformal transformation
̃︀𝑔𝜇𝜈 = Ω2(𝜙)𝑔*𝜇𝜈 . Using (2), we obtain EMT:

𝑇 (𝑚)*
𝜇𝜈 = 𝜓*

,𝜇𝜓
*
,𝜈 − 𝑔*𝜇𝜈

[︂
1

2
𝜓*
,𝛼𝜓

*
,𝛽𝑔

𝛼𝛽
* + 𝑉*(𝜓)

]︂
. (9)

Varying (8) over the scalar field 𝜓, taking into account that ̃︀𝑉*(𝜓) = Ω−4(𝜙)𝑉*(𝜓) and ̃︀𝜓 = Ω−1𝜓*, we
arrive at the equation:

�*𝜓 + 𝑉 *
,𝜓 = 0. (10)

The trace of the EMT of non-gravitational matter takes the form: 𝑇 (𝑚)* = −(𝜓*
,𝜇𝜓

,𝜇
* + 4𝑉*(𝜓)).

Then the third term on the right-hand side of the equation (4) is transformed to the form:

𝑇 (𝑚)*
𝜇𝜈 − 1

2
𝑇 (𝑚)*𝑔*𝜇𝜈 = 𝑔*𝜇𝜈𝑉 (𝜓) + 𝜓*

,𝜇𝜓
*
,𝜈 . (11)

3. Cosmological dynamics equation

Equations (4, 5, 10) in the class of metrics (6,7) using the relation (11), are transformed to the
form:

3𝐻*�̇�ℎ22 + 𝜕𝑡(ℎ22�̇�)−
1

2

𝜕ℎ22
𝜕𝜒

�̇�2 +
𝜕𝑊 (𝜑, 𝜒)

𝜕𝜒
= 𝜅

𝜕 lnΩ(𝜑, 𝜒)

𝜕𝜒
(�̇�2

* + 4𝑉*(𝜓)), (12)

𝜑ℎ11 + 3𝐻*�̇�ℎ11 −
1

2

𝜕ℎ22
𝜕𝜑

�̇�2 +
𝜕𝑊 (𝜑, 𝜒)

𝜕𝜑
= 𝜅

𝜕 lnΩ(𝜑, 𝜒)

𝜕𝜑
(�̇�2

* + 4𝑉*(𝜓)), (13)

𝐻2
* =

1

3

[︂
1

2
ℎ11�̇�

2 +
1

2
ℎ22�̇�

2 +𝑊 (𝜑, 𝜒)

]︂
+
𝜅

3

(︂
1

2
�̇�2
* + 𝑉*(𝜓)

)︂
− 𝜖

𝑎2*
, (14)

�̇�* = −
[︂
1

2
ℎ11�̇�

2 +
1

2
ℎ22�̇�

2

]︂
− 𝜅

2
𝜓*

2
+

𝜖

𝑎2*
, (15)

𝜓 + 3𝐻*�̇� + 𝑉 *
,𝜓 = 0. (16)

The system of equations (12 – 16) is the system of cosmological dynamic equations of the model
under consideration. The consequence of equations (14 – 15) can be represented as the equations on the
potential and kinetic constituents:

𝐾(𝑡) =
1

2
ℎ11�̇�

2 +
1

2
ℎ22(𝜑, 𝜒)�̇�

2 +
𝜅

2
𝜓*

2
=

𝜖

𝑎2*
− �̇�*, (17)

𝑊 (𝑡) =

[︂
�̇�* + 3𝐻2

* + 2
𝜖

𝑎2*
− 𝜅𝑉*(𝜓)

]︂
. (18)

Note, that the obtained equations (12, 13) differ by a non-zero right-hand side of the analogous equations
(10.9 – 10.10) in the work [9]. Equations (14, 15) contain additional terms on the right-hand side that
distinguishes them from the equations (10.11 - 10.12) of the work [9].
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3.1 The slow-roll regime and the choice of the special ansatzes

For the analysis of theoretical predictions and their comparison with observational data, a slow-roll
regime for the scalar field (16) is applied. The solution of the system of equations (12 - 16) will be
sought using conditions for slow-roll: |�̇�2| ≪ 𝑉 (𝜓) and |𝜓| ≪ 𝐻|�̇�|, discarding the second derivative 𝜓
and square of the first one �̇�2. Then the system of equations (12 – 16) becomes:

3𝐻*�̇�ℎ22 + 𝜕𝑡(ℎ22�̇�)−
1

2

𝜕ℎ22
𝜕𝜒

�̇�2 +
𝜕𝑊 (𝜑, 𝜒)

𝜕𝜒
= 4𝜅

𝜕 lnΩ(𝜑, 𝜒)

𝜕𝜒
𝑉*(𝜓), (19)

𝜑ℎ11 + 3𝐻*�̇�ℎ11 −
1

2

𝜕ℎ22
𝜕𝜑

�̇�2 +
𝜕𝑊 (𝜑, 𝜒)

𝜕𝜑
= 4𝜅

𝜕 lnΩ(𝜑, 𝜒)

𝜕𝜑
𝑉*(𝜓), (20)

𝐻2
* =

1

3

[︂
1

2
ℎ11�̇�

2 +
1

2
ℎ22�̇�

2 +𝑊 (𝜑, 𝜒)

]︂
+
𝜅

3
𝑉*(𝜓)−

𝜖

𝑎2*
, (21)

�̇�* = −
[︂
1

2
ℎ11�̇�

2 +
1

2
ℎ22�̇�

2

]︂
+

𝜖

𝑎2*
, (22)

3𝐻*�̇� + 𝑉 *
,𝜓 = 0. (23)

Equations for the potential and kinetic parts (17, 18) are:

𝐾(𝑡) =
1

2
ℎ11�̇�

2 +
1

2
ℎ22(𝜑, 𝜒)�̇�

2 =
𝜖

𝑎2*
− �̇�*, (24)

𝑊 (𝑡) =

[︂
�̇�* + 3𝐻2

* + 2
𝜖

𝑎2*
− 𝜅𝑉*(𝜓)

]︂
. (25)

The decomposition method (ansatz method) for finding solutions is described in the work [9]. For
this system, we use the following two decomposition of the kinetic and potential components of the
equations:

ANSATZ 1

ℎ11 = 𝑐𝑜𝑛𝑠𝑡., ℎ11�̇�
2 = −2�̇�*, (26)

ℎ22(𝜑, 𝜒) = ℎ22(𝜒), ℎ22(𝜒)�̇�
2 = 2

𝜖

𝑎2*
, (27)

𝑊 (𝜑, 𝜒) =𝑊1(𝜑) +𝑊2(𝜑) +𝑊3(𝜒), (28)

𝑊1(𝜑(𝑡)) = 3𝐻2
* + �̇�*, (29)

𝑊2(𝜑(𝑡)) +𝑊3(𝜒(𝑡)) = 2
𝜖

𝑎2*
− 𝜅𝑉*(𝜓), (30)

𝜒 =
√
2𝑡. (31)

It should be noted that the dependence of ℎ22 on the field 𝜒 (27) in the metric of the target space
(6) can be eliminated by the transformation �̂� =

∫︀ √︀
ℎ22(𝜒)𝑑𝜒. Nevertheless, the preservation of this

dependence makes it possible to simplify integration of model equations and control the transition of
the phantom zone when the sign of ℎ22(𝜒) is changing.

ANSATZ 2

ℎ11 = 𝑐𝑜𝑛𝑠𝑡, ℎ11�̇�
2 = −2�̇�*, (32)

ℎ22(𝜑, 𝜒) = ℎ22(𝜑), ℎ22(𝜑)�̇�
2 = 2

𝜖

𝑎2*
, (33)

𝑊 (𝜑, 𝜒) =𝑊1(𝜑) +𝑊2(𝜑) +𝑊3(𝜒), (34)

𝑊1(𝜑(𝑡)) = 3𝐻2
* + �̇�*, (35)

𝑊2(𝜑(𝑡)) +𝑊3(𝜒(𝑡)) = 2
𝜖

𝑎2*
− 𝜅𝑉*(𝜓), (36)

𝜒 =
√
2𝑡. (37)
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4. Algorithm for the solution for the 1st ansatz

The equation (20) can be represented as two equations taking into account the chosen decomposition
(28), thus we obtain:

𝜑ℎ11 + 3𝐻*�̇�ℎ11 +
𝜕𝑊1(𝜑)

𝜕𝜑
= 0, (38)

𝜕𝑊2(𝜑)

𝜕𝜑
= 4𝜅𝑉*(𝜓)

𝜕 lnΩ

𝜕𝜑
. (39)

Equation (38) is analogous to (10.27) in the work [9]. From equation (26) the chiral field 𝜑(𝑡) is defined
in quadratures:

𝜑(𝑡) = ±
∫︁ √︂

𝐶 − 2

ℎ11
�̇�*𝑑𝑡, (40)

here 𝐶 = 𝑐𝑜𝑛𝑠𝑡 is the constant of integration. It should be noted that the chiral field 𝜑(𝑡) is always real:
the sign ℎ11 defines the canonical (ℎ11 = +1) or phantom field (ℎ11 = −1). From the equation (29),
knowing the dependence of 𝐻* on 𝑡, one can find the potential of the field 𝑊1(𝜑) using the transition
𝑡→ 𝜑 on the solution (40).

Assuming Ω(𝜑, 𝜒) = Ω1(𝜑)Ω2(𝜒), it is obvious to find that lnΩ(𝜑, 𝜒) = lnΩ1(𝜑) + lnΩ2(𝜒). Then
multiplying (39) by �̇�, we obtain:

�̇�2(𝜑) = 4𝜅𝑉*(𝜓)𝜕𝑡 (lnΩ1(𝜑)) . (41)

To simplify the equation (27), we make the assumption that the chiral field 𝜒(𝑡) depends linearly
on 𝑡:

𝜒(𝑡) =
√
2𝑡, (42)

then (27) is reduced to the form:
ℎ22(𝜒) =

𝜖

𝑎2*

⃒⃒
⃒𝜒=√

2𝑡 . (43)

Let us consider in more detail the equation (19) in this decomposition:

3𝐻*�̇�ℎ22 + 𝜕𝑡(ℎ22�̇�)−
1

2

𝜕ℎ22
𝜕𝜒

�̇�2 +
𝜕𝑊3(𝜒)

𝜕𝜒
= 4𝜅𝑉*(𝜓)

𝜕 lnΩ(𝜑, 𝜒)

𝜕𝜒
. (44)

We multiply (44) by �̇� and perform the transition to the time dependence, taking into account the
results of the section "10.2.1. Specificity of calculations " in the work [9]. As a result, we get

3𝐻*�̇�
2ℎ22 + 𝜕𝑡(ℎ22�̇�)�̇�− 1

2
˙ℎ22�̇�

2 + �̇�3(𝑡) = 4𝜅𝑉*(𝜓)𝛼𝜒�̇�. (45)

Make substitutions:
ℎ22(𝜒)�̇�

2 = 2 𝜖
𝑎2*
,

˙ℎ22�̇�
2 = −4𝜖𝐻*

𝑎2*
− 2ℎ22�̈��̇�,

𝜕𝑡(ℎ22�̇�)�̇� = −4𝜖𝐻*
𝑎2*

− ℎ22�̈��̇�

in equation (45). As a result, we find the time derivative �̇�3(𝑡):

�̇�3(𝑡) = 4𝜅𝑉*(𝜓) ˙(lnΩ2(𝜒))− 4𝜖
𝐻*
𝑎2*
. (46)

Consider the general picture of the solution, taking into account that in the slow-roll regime 𝑉*(𝜓) ≈
𝑐𝑜𝑛𝑠𝑡, 𝐻* ≈ 𝑐𝑜𝑛𝑠𝑡.. Then we can perform the integration over time in (41) and (46). As a result, we
obtain:

𝑊2(𝜑(𝑡)) = 4𝜅𝑉*(𝜓) lnΩ1(𝜑(𝑡)), (47)
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𝑊3(𝜒(𝑡)) = 4𝜅𝑉*(𝜓)(lnΩ2(𝜒(𝑡))) +
2𝜖

𝑎2*
. (48)

Thus the solution (47, 48) for 𝑊2(𝜑(𝑡)) and 𝑊3(𝜒(𝑡)) contains arbitrary functions of conformal
transformation Ω1(𝜑(𝑡)) and Ω2(𝜒(𝑡)). In the framework of slow-roll conditions the relations 𝑉*(𝜓) ≈
𝑐𝑜𝑛𝑠𝑡, 𝐻* ≈ 𝑐𝑜𝑛𝑠𝑡 lead to the following: �̇�2(𝑡) ≈ 0 from (26) and (40). That is, the field 𝜑 is constant.
The situation of slow-roll regime for a material field leads to a similar situation for the first field 𝜑(𝑡),
and hence the potential 𝑊1(𝜑) will be constant.

On the basis of the analysis above, the algorithm for generating solutions is as follows. Define
the inflationary expansion of the universe, choose the scale factor 𝑎*(𝑡) (or, equivalently, the Hubble
parameter 𝐻*(𝑡)) and find the inflation potential 𝑉*(𝜑) as a function of time solving the equation (23).
Using this data, we can determine the dependence of the first field on time from (40). The dependence
of the potential 𝑊1(𝜑(𝑡)) on time is determined from the equation (29), after which transition from
the time dependence to the dependence on the field 𝜑 on the basis of the solution of the equation
(40). The second component of the potential 𝑊2(𝜑(𝑡)) is determined by integrating the equation (41).
The remaining part of the potential 𝑊3(𝜒) is determined by integrating the equation (46). Taking into
account the slow-roll regime, the result of such integration is represented by the formulas (47, 48), which
contain arbitrary functions of the conformal transition Ω1(𝜑) and Ω2(𝜒).

4.1 Power law inflation with given potential

In Friedmann cosmology the power law evolution of the scale factor has a special significance, since
it describes the radiation stage and stage of the matter domination in the evolution of the universe.
In inflationary models, the power law evolution of a scale factor allows us to find exact solutions for
the background equations and to investigate in detail the equations for cosmological perturbations,
calculation of the power spectrum and the spectral parameters (see, for example, [9]).

4.1.1 𝑎*(𝑡) = 𝑐𝑡𝑚, 𝑉*(𝜓) = −𝐷 ln𝜓

The choice of the logarithmic potential is related to its use in inflation models, for example, in the
work [24].

The solution for the scalar field 𝜓 is found from the equation (23) for the chosen dependences of
the potential 𝑉*(𝜓) and of the scale factor 𝑎*(𝑡):

𝜓(𝑡) = 𝑡

√︂
𝐷

3𝑚
. (49)

Here 𝐷,𝑚 = 𝑐𝑜𝑛𝑠𝑡 and 𝑚 > 0. In order to satisfy the slow-roll conditions for the field 𝜓, we require
fulfillment of the condition 𝐷 ≪ 3𝑚.

The Hubble parameter for power law evolution takes the form:

𝐻*(𝑡) =
𝑚

𝑡
. (50)

The dependence of the field 𝜑(𝑡) on time is found from the equation (40):

𝜑(𝑡) =
√
2𝑚 ln 𝑡. (51)

To find the potential of the field 𝑊1(𝜑), substitute the value 𝐻*(𝑡) from (50) into the equation (29)
and then perform the transition from the time dependence to the dependence on the field 𝜑(𝑡). As a
result, we get:

𝑊1(𝜑) = 𝑚(3𝑚− 1) exp

(︃
−𝜑
√︂

2

𝑚

)︃
. (52)

The solution for the potential 𝑊2(𝜑) is determined from the equation (41) as follows. We substitute
the dependence of non-gravitational field 𝜓 on the time 𝑡 to (41) and perform the integration. Then
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we restore the dependence on 𝜑, using the solution (51). As a result, we obtain the expression for
determining the potential 𝑊2(𝜑) of the following form:

𝑊2(𝜑) = −4𝐷𝜅

[︃
𝜔1 ln

√︂
𝐷

3𝑚
+

1√
2𝑚

∫︁
𝜑𝑑𝜔1

]︃
, (53)

where 𝜔1 = lnΩ1.

Using (43) the component of the chiral metric ℎ22(𝜒) in the case of power law inflation becomes:

ℎ22(𝜒) =
𝜖2𝑚

𝑐2𝜒2𝑚

⃒⃒
⃒𝜒=√

2𝑡 . (54)

Now we can find the functional dependence of the potential 𝑊3(𝜒), substituting in the equation
(46) the potential scalar field 𝑉*(𝜓) = −𝐷 ln𝜓, the scale factor 𝑎*(𝑡) = 𝑐𝑡𝑚, the field 𝜒 (42) and the
Hubble parameter (49). Then integrating the resulting equation, we perform the transition from 𝑡 to 𝜒:
𝑡 = 𝜒√

2
, finally get:

𝑊3(𝜑) = −4𝐷𝜅

[︃
𝜔2 ln

√︂
𝐷

6𝑚
+

∫︁
ln𝜒𝑑𝜔2

]︃
, (55)

where 𝜔2 = lnΩ2.

Thus, the solution obtained is determined by the formulas (49 - 55) and does not use additional
conditions on slow-roll approximation.

4.1.2 𝑎*(𝑡) = 𝑐𝑡𝑚, 𝑉*(𝜓) = 𝐵𝜓𝑘.

The case of the monomial potential 𝑉*(𝜓) = 𝐵𝜓𝑘 was considered in various inflationary models
both for the massive scalar field 𝑉 (𝜑) ∝ 𝜑2, and in the case of a quantum 𝜑4 model.

The dependence of the field 𝜓 on time is determined from the equation (23):

𝜓 =
(︀
𝑄𝑡2 + 𝐶1

)︀ 1
2−𝑘 , 𝑘 ̸= 2, (56)

where 𝑄 = 𝐵𝑘(𝑘−2)
6𝑚 . In the following we set the constant 𝐶1 equal to zero: 𝐶1 = 0.

The case 𝑘 = 2 leads to the solution

𝜓 = 𝜓0𝑒
−𝐵𝑡2

3𝑚 , 𝑘 = 2, (57)

Here 𝐵,𝑚, 𝑘, 𝜓0 are constants. The scale factor does not changed, therefore 𝐻*, 𝜑(𝑡),𝑊1(𝜑) are also
remain unchanged in accordance with (50-52).

The solution for the potential 𝑊2(𝜑) is defined from the equation (41):

𝑊2(𝜑) = 4𝜅𝐵𝑄
𝑘

2−𝑘

∫︁
exp

[︃
2𝑘𝜑√︀

2𝑚(2− 𝑘)

]︃
𝑑𝜔1, 𝑘 ̸= 2. (58)

In the case 𝑘 = 2 we obtain

𝑊2(𝜑) = 4𝜅𝐵𝜓0

∫︁
exp

[︂
− 2𝐵

3𝑚
exp

(︂
2𝜑√
2𝑚

)︂]︂
𝑑𝜔1, 𝑘 = 2. (59)

Here the function 𝜔1(𝜑) = lnΩ1(𝜑).

The procedure for finding 𝑊3(𝜒) is the same as for previous cases. The value of the chiral field
𝜒(𝑡) remains the same as in the formulas (42). The value of ℎ22(𝜒) will be:

ℎ22(𝜒) =
𝜖2𝑚

𝑐2𝑡2𝑚

⃒⃒
⃒𝜒=√

2𝑡 . (60)

The functional dependence of the potential 𝑊3(𝑡) takes the form

𝑊3(𝜒) = 4𝜅𝐵

(︂
𝑄

2

)︂− 𝑘
2−𝑘

∫︁
𝜒

2𝑘
2−𝑘 𝑑𝜔2 +

2𝜖

𝑎2*
, 𝑘 ̸= 2. (61)
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where the function 𝜔2(𝜒) = lnΩ2(𝜒).

𝑊3(𝜒) = 4𝜅𝐵

∫︁
exp

(︂
−𝐵𝜒

2

3𝑚

)︂
𝑑𝜔2 +

2𝜖

𝑎2*
, 𝑘 = 2. (62)

4.1.3 𝑎*(𝑡) = 𝑐𝑡𝑚, 𝑉*(𝜓) = 𝑉0 exp(𝜇𝜓)

The exponential potential in inflationary models leads to an exact solution within the framework
of power law inflation. Consider this potential for our model.

The solution for the scalar field 𝜓 is found from the equation (23) with the condition of the selected
values of the potential 𝑉*(𝜓) and scale factor 𝑎*(𝑡):

𝜓 = 𝜇(−1) ln

(︂
6𝑚

𝑡2𝑉0𝜇2

)︂
. (63)

Here 𝜇,𝑚, 𝑉0 = 𝑐𝑜𝑛𝑠𝑡. The scale factor is unchanged, therefore 𝐻*, 𝜑(𝑡),𝑊1(𝜑) are unchanged in
accordance with (50-52).

The solution for the potential 𝑊2(𝜑) is defined from the equation (41):

𝑊2(𝜑) =
24𝜅𝑚

𝜇2

∫︁
𝑒−

√
2
𝑚𝜑𝑑𝜔1. (64)

The condition on the field 𝜒 and on ℎ22(𝜒) remains the same (42, 43), respectively.
The functional dependence of the field potential 𝑊3(𝜒) is determined by integration (46) and has

the form:
𝑊3(𝜒) =

48𝜅𝑚

𝜇2

∫︁
𝜒−2𝑑𝜔2 +

2𝜖

𝑎2*
. (65)

Thus, in this section we have obtained examples of exact solutions for power law inflation and for
logarithmic, power law and exponential potentials.

4.2 De Sitter solution with given potential

De Sitter’s solution in inflationary cosmology has an important application for the calculation of
cosmological parameters and is associated with the approach of slow-roll. Considering the exponential
evolution of the scale factor in the spatially flat Friedmann model of the universe with a scalar field,
the exact solution says that the potential 𝑉 (𝜑) and the field 𝜑 is constant. Let us consider the possible
exact solutions in our model.

4.2.1 Features of the solution algorithm for 𝑎*(𝑡) = 𝑎0 exp(𝐻0𝑡)

The de Sitter solution 𝑎*(𝑡) = 𝑎0 exp(𝐻0𝑡) means the constancy of the Hubble parameter 𝐻* =

𝐻0 = 𝑐𝑜𝑛𝑠𝑡. Then, from equation (22) taking into account the first equation from the system ANSATZ
1, we get that �̇� = 0. It means that the multiplication by �̇�, used in the derivation of the equation (41)
and beyond, is not applicable in this case. Therefore, let us return to a special study of the original
equations (19) - (23).

The equation (22) becomes

0 = −1

2
ℎ22(𝜒)�̇�

2 +
𝜖

𝑎2*
. (66)

Obviously, two cases should be distinguished: 𝜖 = 0 and 𝜖 ̸= 0.
Let us consider the first case when 𝜖 = 0.
The solution of the system (19) - (23) is obtained directly and represents

𝜑 = 𝑐𝑜𝑛𝑠𝑡., 𝜒 = 𝑐𝑜𝑛𝑠𝑡., 𝜓 = 𝑐𝑜𝑛𝑠𝑡., (67)

𝑊1 = 3𝐻0, 𝑊1 = 𝑐𝑜𝑛𝑠𝑡., (68)



76 S. V. Chervon, A. S. Kubasov, K.A. Bolshakova

𝑊2 +𝑊3 = −𝜅𝑉*, 𝑊2 = 𝑐𝑜𝑛𝑠𝑡., 𝑊3 = 𝑐𝑜𝑛𝑠𝑡., 𝑉* = 𝑐𝑜𝑛𝑠𝑡.. (69)

Thus, in the solution there are only relations to constants.
The case 𝜖 ̸= 0 requires more detailed description.
Assuming in equation (66), that 𝜖 ̸= 0 and 𝜒 =

√
2𝑡, we obtain

ℎ22(𝜒) =
𝜖

𝑎2*
= 𝜖𝑎−2

0 𝑒−
√
2𝐻0𝜒. (70)

Further, using this result, the equation (19) is reduced to the form

2
√
2𝐻0ℎ22(𝜒) +

𝜕𝑊3(𝜒)

𝜕𝜒
= 4𝜅

𝜕𝜔2

𝜕𝜒
𝑉*(𝜓(𝑡)). (71)

Multiplying the resulting equation by �̇� and integrating with respect to time, we obtain

𝑊3(𝜒) = 2𝜖𝑎−2
0 𝑒−

√
2𝐻0𝜒 + 4𝜅

∫︁
𝑉*(𝜓(𝑡))𝜔2𝑑𝑡. (72)

Thus, the equation for determining the dependence of the potential 𝑊3(𝜒) may be obtained if the
potential of non-gravitational field 𝑉*(𝜓(𝑡)) is defined and the dependence 𝜔 = 𝜔2(𝜓(𝑡)) is known.

Taking into account the results obtained for the de Sitter space, the equation (20) is reduced to
the form

𝜕𝑊2(𝜑)

𝜕𝜑
= 4𝜅𝑉*(𝜓(𝑡))

𝜕𝜔1(𝜑)

𝜕𝜑
. (73)

An example of a solution of this equation is the case when

𝑊2 =𝑊
(0)
2 = 𝑐𝑜𝑛𝑠𝑡., 𝜔1 = 𝜔

(0)
1 = 𝑐𝑜𝑛𝑠𝑡.. (74)

Using this solution, we consider the equation (21). Direct substitution of the obtained data into (21)
leads to the equation

0 =𝑊
(0)
2 + 4𝜅

∫︁
𝑉*(𝜓(𝑡))𝜔2𝑑𝑡+ 𝜅𝑉*(𝜓(𝑡)). (75)

Differentiating the equation (75) in time, we arrive at the differential equation

4𝑉*𝜔2 + 𝑉* = 0, (76)

from which by integration we can determine the relationship between a suitable conformal transformation
and the potential of a non-gravitational field

Ω2(𝜑(𝑡)) = 𝑉*(𝜓(𝑡))
−1/4. (77)

The resulting relation allows us to write down the solution for the potential 𝑊3(𝜒)

𝑊3(𝜒) = 2𝜖𝑎−2
0 𝑒−

√
2𝐻0𝜒 −𝑊

(0)
2 − 𝜅𝑉*(𝜓(𝑡)), (78)

which is true for any given potential of the non-gravitational field.

4.2.2 𝑎*(𝑡) = 𝑎0 exp(𝐻0𝑡), 𝑉*(𝜓) = −𝐷 ln𝜓

It is obvious that the Hubble parameter will be equal to some constant:

𝐻* = 𝑐𝑜𝑛𝑠𝑡. = 𝐻0 > 0. (79)

Solving the equation (23) in the slow-roll approximation, we obtain the following dependence of the field
𝜓 on time:

𝜓 =

√︂
2𝐷𝑡

3𝐻0
. (80)
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Substituting the obtained in (80) dependence into the potential of the non-gravitational field

𝑉*(𝜓) = −𝐷 ln𝜓, (81)

and, restoring 𝜒 from 𝑡, we obtain

𝑉*(𝜒) = −𝐷
2
ln

⃒⃒
⃒⃒
⃒

√
2𝐷𝜒

3𝐻0

⃒⃒
⃒⃒
⃒ . (82)

Further, we define 𝑊3(𝜒) from equation (78)

𝑊3(𝜒) = 2𝜖𝑎−2
0 𝑒−

√
2𝐻0𝜒 −𝑊

(0)
2 + 𝜅

𝐷

2
ln

⃒⃒
⃒⃒
⃒

√
2𝐷𝜒

3𝐻0

⃒⃒
⃒⃒
⃒ . (83)

Extracting the dependence on 𝜒, we represent the solution in the following form

𝑊3(𝜒) = 2𝜖𝑎−2
0 𝑒−

√
2𝐻0𝜒 + 𝜅

𝐷

2
ln |𝜒|+ 𝐶3, (84)

where 𝐶3 = −𝑊 (0)
2 + 𝜅𝐷2 ln

⃒⃒
⃒
√
2𝐷

3𝐻0

⃒⃒
⃒ .

Thus, the solution is defined by formulae (68,70,74,77,80,82,84).

4.2.3 𝑎*(𝑡) = 𝑎0 exp(𝐻0𝑡), 𝑉*(𝜓) = 𝑉0 exp(𝜇𝜓)

Solving equation (23) in the slow-roll approximation, we obtain the dependence of the field 𝜓 on 𝑡:

𝜓 =
1

𝜇
ln

(︂
3𝐻0

𝑉0𝜇2𝑡

)︂
. (85)

Substituting obtained result in (85) solution for 𝜓 in the definition of the potential

𝑉*(𝜓) = 𝑉0 exp (𝜇𝜓) , (86)

we obtain

𝑉*(𝜓) =
3𝐻0

√
2

𝜇2𝜒
. (87)

Similarly to the previous case, we find the potential 𝑊3(𝜒):

𝑊3(𝜒) = 2𝜖𝑎−2
0 𝑒−

√
2𝐻0𝜒 −𝑊

(0)
2 + 𝜅

3𝐻0

√
2

𝜇2𝜒
. (88)

Thus, the solution is defined by formulae (68, 70, 74, 77, 85, 87) and (88).

4.2.4 𝑎*(𝑡) = 𝑎0 exp(𝐻0𝑡), 𝑉*(𝜓) = 𝐵𝜓𝑘

Solving equation (23) in slow-roll regime, we obtain the following dependence of the field 𝜓 on time
𝑡:

𝜓 = (𝑈𝑡)
1

2−𝑘 , 𝑘 ̸= 2, (89)

where 𝑈 = 𝐵𝑘(𝑘−2)
3𝐻0

.
The case when 𝑘 = 2 leads to the following dependence 𝜓 on time 𝑡

𝜓 = exp

(︂
− 2𝐵

3𝐻0
𝑡

)︂
, 𝑘 = 2, (90)

Let us consider the solution (89) in the case 𝑘 ̸= 2 . Substituting the solution (89) into given
potential

𝑉*(𝜓) = 𝐵𝜓𝑘, (91)
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we obtain

𝑉*(𝜒) = 𝐵
(︁
𝑈𝜒/

√
2
)︁ 𝑘

2−𝑘
. (92)

In the standard way, we find the potential 𝑊3(𝜒) from the solution (78)

𝑊3(𝜒) = 2𝜖𝑎−2
0 𝑒−

√
2𝐻0𝜒 −𝑊

(0)
2 + 𝜅𝐵

(︁
𝑈𝜒/

√
2
)︁ 𝑘

2−𝑘
. (93)

The solution for this case is defined by formulae (68,70,74,77,89,92,93).
The case 𝑘 = 2 leads to the following solution:

𝜓 = exp

(︂
− 2𝐵𝜒

3
√
2𝐻0

)︂
, (94)

𝑉*(𝜒) = 𝐵 exp

(︂
− 4𝐵𝜒

3
√
2𝐻0

)︂
, (95)

𝑊3(𝜒) = 2𝜖𝑎−2
0 𝑒−

√
2𝐻0𝜒 −𝑊

(0)
2 + 𝜅𝐵 exp

(︂
− 4𝐵𝜒

3
√
2𝐻0

)︂
. (96)

5. Algorithm for the solution for the 2nd ansatz

To simplify the equation for the connection of the components of the chiral metric ℎ22(𝜑) to (33),
we assume that the chiral field 𝜒 depends linearly on 𝑡 (37), then

ℎ22(𝜑(𝑡)) =
𝜖

𝑎2*(𝑡)
. (97)

We represent the equation (20) as two equations taking into account the chosen decomposition
(32):

𝜑ℎ11 + 3𝐻*�̇�ℎ11 +
𝜕𝑊1(𝜑)

𝜕𝜑
= 0, (98)

− 1

2

𝜕ℎ22(𝜑)

𝜕𝜑
�̇�2 +

𝜕𝑊2(𝜑)

𝜕𝜑
= 4𝜅𝑉 *(𝜓)

𝜕 lnΩ

𝜕𝜑
. (99)

The equation (98) similarly to (10.27) of the work [9] and to the equation (38). From equation (32) the
chiral field 𝜑 is defined in quadratures by formula (40).

We assume that Ω(𝜑, 𝜒) = Ω1(𝜑)Ω2(𝜒), and, obviously : lnΩ(𝜑, 𝜒) = lnΩ1(𝜑) + lnΩ2(𝜒). Then
multiplying (99) by �̇�, and taking into account the relations (33) and (37), we obtain

�̇�2(𝜑) = 4𝜅𝑉*(𝜓)𝜔1 − 2
𝜖𝑎*
𝑎3*

, (100)

where 𝜔1 = lnΩ1. The resulting equation is similar to the equation on �̇�2(𝜑) (47). The difference is the
right side, containing a scale factor.

Let us consider in more detail the equation (19) in this decomposition:

3𝐻*�̇�ℎ22 + 𝜕𝑡(ℎ22�̇�) +
𝜕𝑊3(𝜒)

𝜕𝜒
= 4𝜅𝑉*(𝜓)

𝜕 lnΩ2(𝜒)

𝜕𝜒
. (101)

We make the transition to the time dependence, taking into account the results of the section "10.2.1.
Specificity of calculations" in work [9]. To this end, we multiply the equation (101) by �̇� and obtain

3𝐻*�̇�
2ℎ22 + 𝜕𝑡(ℎ22�̇�)�̇�+ �̇�3(𝑡) = 4𝜅𝑉*(𝜓)𝜕𝑡(lnΩ2(𝜒)). (102)

From this equation we obtain �̇�3(𝑡), substituting ℎ22 from (97) and 𝜒 from (37). The result is

�̇�3(𝑡) = 4𝜅𝑉*(𝜓)𝜕𝑡(lnΩ2(𝜒))− 2𝐻*
𝜖

𝑎2*
. (103)
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The algorithm for generating solutions is similar to that used for the system of equations ANSATZ
1. Specify the scale factor 𝑎(𝑡), which is responsible for the inflation solution, and the potential of the
scalar field 𝑉 (𝜓). Using this data, one can find functional dependences for the potentials of chiral fields
𝑊1(𝜑) from (98),𝑊2(𝜑) from (100) and 𝑊3(𝜒) from (103). In this way, we investigated the solutions
for the power law and de Sitter inflation for the potentials of the scalar field by the following types:
𝑉*(𝜓) = −𝐷 ln𝜓, 𝑉*(𝜓) = 𝐵𝜓𝑘, 𝑉*(𝜓) = 𝑉0 exp(𝜇𝜓).

5.1 Power law inflation for given potentials

When we are considering power law inflation, some solution formulae remain the same as for the
system of equations ANSATZ 1. Namely, 𝜑(𝑡) and 𝑊1(𝜑) are represented by the formulae (51) and
(52) respectively. Let us reproduce these formulae

𝑊1(𝜑) = 𝑚(3𝑚− 1) exp

(︃
−𝜑
√︂

2

𝑚

)︃
, (104)

𝜑(𝑡) =
√
2𝑚 ln 𝑡. (105)

We find the form of the chiral metric component for power law inflation using the equation (97):

ℎ22(𝜑) = 2
𝜖

𝑐2
exp

(︁
−
√
2𝑚𝜑

)︁
. (106)

The solutions for the potentials 𝑊2(𝜑) (100), 𝑊3(𝜒) (103) are different from those obtained for the
system of equations ANSATZ 1, and below they are listed in the table.

Potential Solution

𝑉*(𝜓) = −𝐷 ln𝜓 𝜓 = 𝑡
√︁

𝐷
3𝑚 ,

𝑊2(𝜑) = −4𝐷𝜅
∫︀
ln
(︁√︁

𝐷
3𝑚 exp

(︁
𝜑√
2𝑚

)︁)︁
𝑑𝜔1
𝑑𝜑 𝑑𝜑+ 𝜖

𝑐2
exp

(︁
− 2𝜑√

2𝑚

)︁

𝑊3(𝜒) = −4𝐷𝜅
∫︀
ln
(︁√︁

𝐷
3𝑚

√
2𝜒
)︁
𝑑𝜔2
𝑑𝜒 𝑑𝜒+ 𝜖

𝑐22𝑚𝜒2𝑚

𝑉*(𝜓) = 𝑉0 exp(𝜇𝜓) 𝜓 = 𝜇−1 ln
(︁

6𝑚
𝑡2𝑉0𝜇2

)︁

𝑊2(𝜑) = 4𝜅
∫︀

6𝑚
𝜇2 exp

(︁
− 2𝜑√

2𝑚

)︁
𝜕𝜔1
𝜕𝜑 𝑑𝜑+ 𝜖

𝑐2
exp

(︁
− 2𝜑√

2𝑚

)︁

𝑊3(𝜒) = 4𝜅
∫︀

6𝑚
𝜇2

2
𝜒2

𝜕𝜔2
𝜕𝜒 𝑑𝜒+ 𝜖

𝑐22𝑚𝜒2𝑚

𝑉*(𝜓) = 𝐵𝜓𝑘, 𝑘 ̸= 2 𝜓 =
(︁
− 𝑡2(2−𝑘)𝐵𝑘

6𝑚

)︁ 1
2−𝑘

𝑊2(𝜑) = 4𝜅𝐵𝑄
𝑘

2−𝑘
∫︀
exp

[︁
2𝑘𝜑√

2𝑚(2−𝑘)

]︁
𝜕𝜔1
𝜕𝜑 𝑑𝜑+ 𝜖

𝑐2
exp

(︁
− 2𝜑√

2𝑚

)︁

𝑊3(𝜒) = 4𝜅𝐵𝑄
𝑘

2−𝑘
∫︀ (︁

𝜒√
2

)︁ 2𝑘
2−𝑘 𝜕𝜔2

𝜕𝜒 𝑑𝜒+ 𝜖
𝑐22𝑚𝜒2𝑚 , 𝑄 =

(︁
𝐵𝑘(2−𝑘)

6𝑚

)︁
.

𝑉*(𝜓) = 𝐵𝜓𝑘, 𝑘 = 2 𝜓 = 𝜓0𝑒
−𝐵𝑡2

3𝑚

𝑊2(𝜑) = 4𝜅𝐵𝜓0

∫︀
exp

[︁
− 2𝐵

3𝑚 exp
(︁

2𝜑√
2𝑚

)︁]︁
𝜕𝜔1
𝜕𝜑 𝑑𝜑+ 𝜖

𝑐2
exp

(︁
− 2𝜑√

2𝑚

)︁

𝑊3(𝜒) = 4𝜅𝐵𝜓0

∫︀
exp

(︁
−𝐵𝜒2

3𝑚

)︁
𝜕𝜔2
𝜕𝜒 𝑑𝜒+ 𝜖

𝑐22𝑚𝜒2𝑚

5.2 De Sitter’s inflation for given potentials

In this case, the class of solutions is substantially narrowed, since the analysis of the equations of
the system ANSATZ 2 leads to the only possibility with respect to the parameter 𝜖, namely 𝜖 = 0.
Thus, for any given potential of non-gravitational scalar field 𝑉*(𝜓(𝑡)), we have:

𝑎*(𝑡) = 𝑎0 exp(𝐻0𝑡), 𝐻* = 𝐻0 = 𝑐𝑜𝑛𝑠𝑡., (107)

𝜑 = 𝜑0 = 𝑐𝑜𝑛𝑠𝑡., ℎ22(𝜑0) = 0, (108)



80 S. V. Chervon, A. S. Kubasov, K.A. Bolshakova

𝑊1 = 3𝐻0, 𝑊2 = 0, 𝑊3 = −𝜅𝑉*(𝜓), 𝑉* = 𝑉0 exp(−4𝜔2(𝜒)). (109)

Non-gravitational scalar field 𝜓 is defined from equation

3𝐻0�̇�
2 + 𝑉* = 0. (110)

Conclusion

The tensor-multi-scalar theory of gravitation, as a generalization of the scalar-tensor theory, can
lead to a more accurate description of cosmological inflation, based on the nonminimal interaction of
the Higgs field with gravity. Moreover, it is not excluded possibility that gravitational scalar fields of
different origin can naturally explain the effect of accelerated expansion of the universe at present. Thus,
the study of TMS TG can lead to a cosmological model, where naturally there are two stages of the
accelerated expansion of the universe: early and late inflation. In this paper we studied exactly the
early inflation.

The first conclusion, which we noted, is the fact that the solutions obtained earlier in the works
of [20–22], confirm the existence of inflation solutions in TMS TG in the absence of a source of gravity,
that is for the vacuum situation. Next, we consider the standard inflation, when the source of the
gravitational field is the inflaton and the equations of cosmological dynamics are considered in the slow
roll approximation. For this case, we found solutions for exponential inflation and de Sitter expansion. In
doing so, we used the freedom of conformal transformation under the absence of non-minimal interaction
in the Jordan frame.

The results obtained require further study in the light of the development of early inflation, namely,
the change in the number e-folds in the transition to TMS TG and changes in the calculation of spectral
parameters. This issue is planned to be investigated further and it will be represented in a separate
publication.
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