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SU(N) - CHUMMETPUYHBIN JNUHAMUYECKUN 3®NP: OBIIINN ®OPMAJIN3M
1 'NIIOTE3A O CIIOHTAHHO IIBETOBO ITOJIAPU3 AN

Iocrpoeno SU(N)-cummerpuanoe 0606IEHNE MOJIESTN IEKTPO-MATHATO-aKTUBHOTO JIMHAMUIECKOTo ddupa. lan-
HOe 0000IIeHe OCHOBAHO HA BBEICHUHN KaJIuOpOBOYHOrO nosst Sura-Musica Bmecto mos Makcsesia, a Takxke
SU(N)-MyabTHIIIeTa BEKTOPHBIX II0JIefi BMECTO BEKTOPHOTO CHHIVIETA. B paMKax BepcHH BTOPOIO MOPsIKa -
deKTUBHON TeopuM IO0JIs JaHHOe 0DOOIIEHNe BKJIIOYAET TPU KOHCTUTYIMOHHBIX TEH30Da, KOTODbIE SIBJISIOTCS
SU(N)-pacummpeHrem TeH30pOB, BOSHUKAOMUX B 3dUpPHOI Teopun DiiHmTeliHa-MakcBesia; Mbl IOCTPOUIIHA TI0JI-
HODOPMATHBIN HAGOP JJTsT STUX TEH30PHBIX 00bEKTOB. C MOMOIIBIO BAPUAIMOHHON TPOTIEYPhI MOy I€HA TOJTHAS
CaMOCOIJIACOBAHHAS CUCTEMa OCHOBOIIOJIATAIONINX YPABHEHU I KAJIMOPOBOYHOIO, BEKTOPHBIX M I'DABUTAIA-
ounoro noseit. O6mas momens SU(N)-CHMMETPUIHOr0 AUHAMUYECKOTO dpUpa PEAyIUPOBAHA K PACIIAPEHHOM
adupHoit Mogenm DitHnrreiina- Sura-Muiuica ¢ TOMOIIBIO aH3alla O CIIOHTAHHOMN 1IBETOBO MOJISIPU3AIUN BEKTOD-
HbIX noseil. PakTudueckn, JaHHBIT aH3an Tpebyer, 4To0bl BeKTOPHBIE HoJist, obpasytomme SU(N)-mynsrumuer,
BBICTPOUJINCH [APAJIJIETIBHO B IPYNIIOBOM (I[BETOBOM) IIPOCTPAHCTBE BCJIEJCTBAE HEKOTOPOro (ha30BOrO Hepexo-
Jla, U 9TOOBI MOSIBUJIOCH HOBOE BBLIJEJIEHHOE HAIPABJIEHUE B 3TOM TPYIIIOBOM IIPOCTPAHCTBE, IPEBPAIas ero B
AHM30TPOITHOE I[BETOBOE IIPOCTPAHCTBO.

Kurouessbie cioBa: /lunavmudeckuit 3¢dup, KaanOPOBOYHBIE TIOJIs, MOIUMPUIIMPOBAHHAS TEOPUS TPABUTAINN.

PACS: 04.20.-q; 04.20.Cv

Paboma svinoanena 6 pamxax IIpozpammos nosviuerus kKonkypermocnocobrocmu Kasanckozo gedepans-
HO20 YHUBEPCUMEMA.

1. Introduction

The term dynamic aether is associated with the modification of the theory of gravity, which is
based on the introduction of a time-like unit dynamic vector field U’ interpreted as the velocity four-
vector of some global substratum, the aether. In this sense, the Einstein-aether theory [1-10] belongs
to the class of vector-tensor theories of gravity, which forms the corresponding branch in the modern
science entitled as Modified Theories of Gravity (see, e.g., [11,12]). The vector field U? is unit and
time-like, g;xU'U* = 1 > 0, since the Einstein-acther theory is considered as a realization of the
idea of a preferred frame of reference [13-15|, associated with a world-line congruence, for which the
corresponding time-like velocity four-vector is the tangent vector. The vector field U? is indicated as
the dynamic one, since the Lagrangian of the theory contains quadratic combinations of the covariant
derivative V. U;, and, correspondingly, the master equations for the vector field are of the second order
in derivatives [1]. There are three extensions of the Einstein-aether theory. The first extension deals
with supplementary pseudoscalar field and is indicated as Einstein-aether-axion model [16]. The second
extension includes the electromagnetic field and is entitled as Einstein-Maxwell-aether theory [17]. The
third extension is the Einstein-Maxwell-aether-axion theory [18]. In these extended theories the dynamic
aether is considered as a quasi-medium, and the unit vector field U? plays the role of the global velocity
of this quasi-medium. Since, generally, the velocity field is non-uniform, various effects induced in the
dynamic aether are predicted based on the analogy with electrodynamic phenomena in classical moving
media (see, e.g., the review [19], and [20-23]). The Einstein-Maxwell-aether theory uses two vector fields:
the first one is the unit dynamic vector field U?; the second is presented by the electromagnetic potential
four-(co)vector, 4;. Only the skew-symmetric part of the derivative of the potential, Fj, = V;Ax—V 1 A;,
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the Maxwell tensor, enters the Lagrangian of the Einstein-Maxwell-aether theory [17]; the four-vector
A; itself does not appear in the Lagrangian thus providing the U(1)-gauge invariance of the theory.

The next step, which we do, is the SU(N) - symmetric generalization of the dynamic aether theory.
This step is motivated by the fact that the relativistic cosmology and astrophysics offer a lot of interesting
problems appropriated just for the theory of non-Abelian gauge fields (see, e.g., the review [24]). Clearly,
the non-Abelian version of the dynamic aether theory also could attract the attention of physicists. We
consider now the full-format SU(N)-symmetric dynamic aether, i.e., we introduce the Yang-Mills gauge
field instead of the U(1)-symmetric Maxwell field, and the multiplet of vector fields {U*(®)} instead of
the single vector field U?. Then, in order to return to the paradigm of global velocity field of the aether,
we use the idea of spontaneous color polarization mechanism, which reduces the color multiplet {U i(a)}
to the product U¥®) = ¢(®U", which contains the velocity four-vector U? and the multiplet of scalars
¢ forming the vector in the group space (for the sake of simplicity, below we use the term color vector
for this vector in the group space). Clearly, this is the idea of formation of the set of vector fields parallel
in the group space. Such idea is similar to the one used for the gauge potentials (see, e.g., [25-27]).
Parallel vector fields U“®) = ¢(®) U could appear as a result of some phase transition. Let us emphasize,
that mentioned spontaneous color polarization involves the multiplet of vector fields; the gauge field
can remain the non-Abelian one, or can be also exposed by parallelization. In the last situation the
gauge potentials Afybb) convert into the quasi-Abelian set of parallel potentials A,SZ) = QW®A,,. The color
vectors ¢(*) and Q(®) can coincide or can be different; however, in any cases the group space becomes
anisotropic. Based on the analogy with electrodynamics of continuous media [28,29], one can indicate the
model with only one color vector (q(a), or Q@ or ¢(® = Q(a)) as the model with uni-axial color space;
respectively, the model with ¢(* # Q(®) can be indicated as the bi-axial one. In the framework of the
non-minimal Einstein-Yang-Mills-Higgs theory the anisotropic color spaces were considered in [30-33];
in that models the anisotropy of the group space was assumed to be induced by the multiplet of Higgs
scalar fields ®(*), and now such anisotropy is connected with the multiplet of vector fields U*(®).

The purpose of this paper is to formulate the mathematical foundations of the new theory, which
describes the SU(N)-symmetric dynamic aether. The paper is organized as follows. In Section 2 we
recall the basic formalism of the Einstein-aether and of the Einstein-Maxwell-aether theories. Section
3 contains the basic elements of the formalism of the SU(N)-symmetric model. In Section 4 we discuss
the simplest version of the SU(N)-symmetric dynamic aether theory, namely, the Einstein-Yang-Mills-
aether model, in which the vector field U’ is single, and the group space is isotropic. In Section 5 we
establish the full-format theory of the SU(N)-symmetric dynamic aether, and reconstruct three basic
color constitutive tensors, which appear in the framework of the second order version of the effective
field theory [34,35]. In Section 6 we discuss the formalism of spontaneous color polarization and its
consequence for the structure of the reduced master equations. Conclusions are presented in Section 7.

2. Preamble
2.1. Formalism of the Einstein-aether theory

The Einstein-aether theory is based on the action functional
1 g
SEa) = /d4x\/—g {21% [R +2A + A (g UTU™ — 1) + K”m"V,UmVjUn]} , (1)

(see, e.g., [1]). Here three standard elements of the Einstein-Hilbert action are introduced, namely, the
determinant of the metric g=det(g;x), the Ricci scalar R, the cosmological constant A. There are also
two new terms involving the vector field U?. The first term A (g,,,U™U"—1) guarantees that the U’ is
normalized to one. The second term K*™" V,U,, V;U, is quadratic in the covariant derivative V,;Up,
of the vector field; the constitutive tensor K*™" is constructed using the metric tensor ¢“ and the



38 A.B. Banakun, A. B. Aunpesnos

velocity four-vector U* as follows:
szmn:cvlgzjgmn+czgzmg]n+cggzngjm+C4UzUjgmn . (2)

Four parameters C1, Cy, C3 and C4 are the Jacobson constants [1-3].

The action functional (1) contains three quantities attributed for variation procedure: the Lagrange
multiplier A, the vector field U? and the space-time metric g¥/. The variation with respect to A yields
the normalization condition for the time-like vector field U*.

ganmUn =1. (3)

The result of variation of the functional (1) with respect to U? can be written in the form

VinJ&y — Iy =AU, (4)
where
Ty = KU, (5)
1 SKlsmi
Iy = §V1USVmUj U, C,Urv,U, VU™ (6)
Convolution of (4) with the velocity four-vector gives the Lagrange multiplier
A= U [V = Iy - (7)
Excluding A from (4) we obtain
A [ij(%’ - I(”A)} —0, 8)

where AJ, is the projector AJ = 67 U, U’.
The variation of the action (1) with respect to the metric gives the gravitational field equations in
the form 1
Ry, — §R gir. — Ngix = Tz‘(kU) : 9)

The term Ti(kU ) presents the stress-energy tensor of the of the vector field U*:
Ti(kU) =C1 (VU VU=V, U, Vi, U™) +CUPN U UY (Ug+
1
59T &V aUn V" [UaTin | =7 | T80 | = [TGNU™ | 00U VT35 =105 5 (10)

where p(iqk)zé (piqr+prq;) denotes symmetrization. The tensor TZ(kU ) disappears when the motion of the
aether is uniform, i.e., V;Ur=0.

Remark

As usual, here we omit the terms of the type W*U"V,U,, which could be introduced, formally
speaking, into the action functional (1) (U™ is arbitrary function of U7 and V,;U*). In the framework
of Einstein-aether and Einstein-Maxwell-aether theories, such terms after integration by parts can be
reduced to —%(ganmU " — 1)V, Uk, Clearly, this leads to the redefinition of the Lagrange multiplier
A= )\*:A—%Vkllfk, only, i.e., the master equations keep the form. Below we will show that in the
theories with SU(N) symmetry the terms of the mentioned type can not be neglected.

2.2.  Formalism of the FEinstein-Maxwell-aether theory

2.2.1 The Lagrangian

The U(1)-symmetric extension of the Einstein-aether theory is associated with introduction of
the gauge invariant Maxwell tensor Fj; into the action functional. The Maxwell tensor is the skew-
symmetrized derivative of the potential four-vector

Fi=V;Ay—ViA; . (11)
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We consider now the terms of the second order in the derivatives according to the principles of effective
field theories (see, e.g., [34,35]); this means that we can use the second-order terms of three types:
quadratic in the covariant derivative of the vector field, quadratic in the Maxwell tensor, and cross-
terms containing the product of mentioned tensors. The corresponding new contributions into the action

functional (additional to (1)) are
4 / 1 mnik 1 ikmn
S(EM) = d*x -9 §A FigViUn + ZC FirFonn ¢ - (12)

Here the coefficients A*P7 describe effects of spontaneous polarization-magnetization induced by the
dynamic aether. The representation of the tensor A" is discussed in [17]; it can be reconstructed using
the metric g;x, the covariant constant Kronecker tensors (&7, 62’; and higher order Kronecker tensors),
the Levi-Civita tensor €*¢?, the unit vector field U*, and a pair of coupling constants. The coupling
constants m; and p; were interpreted in [17] as coefficients describing the polarization and magnetization
of the aether, which are induced by the aether non-uniform motion. Keeping in mind further SU(N)
generalization of the Einstein-Maxwell-aether theory, we consider here the following motives for the
Lagrangian decomposition.

First, there are three irreducible invariants linear in the Maxwell tensor F;; and linear in the tensor
V.U, which are constructed using metric ¢’ and U’

9" Fk VU, ¢"URU™F Vo Uy, g™ URUF VU, (13)

The last invariant (see Remark) can be reduced to —3(gm,U™U™ — 1)V;(F**U}) using the integration
by parts. In other words, we deal again with the redefinition of the Lagrange multiplier.

Second, we can introduce two coupling parameters w; and wy and can write

1 ) 1 ; i
§Amnszzkvan — ink (wlgzmgkm + (AJlenUkUm) van . (].4)

Similarly, there are only two irreducible terms containing the Maxwell tensor in square in composition
with metric and the velocity four-vector:

GG Frn s ¢MURU Fi Fo (15)
The corresponding term in the Lagrangian is of the form

1, 1 ' '

According to the standard interpretation, € is the the dielectric permittivity of the aether, and p is the

magnetic permeability. The linear response tensor C**™" can be written in the form
Czkmn — 27 [glmgkn_glngkm + (E,U/—].) (gzmUkUn_gankUm+gknUzUm_gkmUzUn)} , (17)
I3
or equivalently,
. , 1 4
2Clkmn _ Egzkmn + ( o 5) Azkmn’ (].8)
I

where the auxiliary tensors are defined as follows:

mnpq mq

g = g"Pgtd—gMmignP AP = AP AT A\THATP (19)

In these terms the tensor A™"** has the form

’ 1 ) 1 )
Amnzk _ 5(”2 _ wl)gzknlUmUl + 5wlAilwnn , (20)
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i.e., the constants 7; and p introduced in [17] are connected with wy and wy as follows: 71 = %(wz —w1),

1
M1 = — §OJ1 .
The total action functional of the Einstein-Maxwell-aether theory in the second order of the effective

field theory is the sum Sgnma) = SEa) + SEMm):

1 3
Sea) = /d4x\/fg {% [R+ 20 + A (grnU™U™ — 1) + K9™V,U,, VU, +

+§AmnlkFikvan + 4CzkmnFikan} ) (21)

and now we are ready to start the variation procedure.

2.2.2 Electrodynamic equations

The electrodynamic equations is the result variation of the total action functional with respect to
the electromagnetic potential four-vector A;. This result can be written as follows:

kaik — O, H’Lk — H’Lk 4 CikmnF"Ln , (22)
where H' is the excitation tensor linear in the Maxwell tensor, and the tensor
HE = AR, U, (23)

describes the spontaneous polarization-magnetization of the non-uniformly moving aether. Also, we have
to add the relationships
Vi =0, (24)

where the asterisk indicates the standard dualization procedure

. 1.
F*zk _ §€zkmnan . (25)
Here ¢"mn=E""" i< the Levi-Civita tensor, E?*™" is the completely skew-symmetric symbol with
E0123:1.

2.2.3 Dynamic equations of the electromagnetically active aether

The variation of the total action functional with respect to the vector field yields
Vo [T +RTE) = Ty +alny+2 U™ (26)

Here ._7(”1\}[’; and [, (”M) are given, respectively, by

1
IR = 5 [ P + we P U U™ (27)
W _ 1 [oAPaik 1 [6Cra
(M) = 5 |:5U_n:| Fikvaq + Z |: 6Un :| Fik:qu =
1 1
= Jws (FPUV"U, + FrrUtvU,) + <su) FF B, U™ (28)

The Lagrange multiplier is equal to the sum
= U [V = Iy | + 50 [V T35 = Tig | (29)

and we finally obtain
A? {vm [J&?—m]&ﬂ - {IELA)JmI{‘M)] } =0. (30)
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2.2.4 Master equations for the gravitational field

The variation of the total action functional with respect to the metric g** yields
1
Ru—5 R gu—Agu = T+ [TE0+TEM] (31)
The term Tl(,g ) is already presented above by the formula (10). The term indicated as Ti(,:] M) s given by

1 1
Tz(kEM):; { |:gikanan_Fikam:| +

4
1
+(ep—1)UPU? |:<2gikquUk) Fmmequkaq} } . (32)
In the vacuum, when e=p=1, the tensor T;EM) gives the usual Maxwell term. The tensor (32) is

symmetric and traceless, i.e.,

T T Ty . )
The quantity TZ(,:: MA) s linear in the Maxwell tensor:
TEMA = %Aik (W1 F™ 4 woU™F™U,) V. Up o+
w1 Fo (i Viy U™ — %ngiUkUanquVlU’W-
+ %vm {wiUGFyym + w2U™ [UiUFpnp — Un U Fiyn] b+ %wlUiUkV’” (FnU™) . (34)

Thus, equations (22), (24) (with (23), (18), (20)), equations (26) (with (27), (28), (29)), and equations
(31) (with (10), (32), (34)) form the self-consistent set of master equations of the Einstein-Maxwell-
aether model, corresponding to the second order of the effective field theory.

3. SU(N) - generalization of the Einstein-Maxwell-aether theory: The formalism

We construct the theory of the SU(N) - symmetric dynamic aether in analogy with the Einstein-
Yang-Mills-Higgs theory. We stress, that in this paper we follow the definitions of the book [36] (see
Section 4.3.), and consider all the fields taking values in the Lie algebra of the gauge group SU(N)
(adjoint representation). Let us describe main mathematical elements of this extended theory.

8.1.  Necessary elements of the SU(N) group theory

For the reconstruction of the action functional, we take, first, the quantities t(,), the Hermitian
traceless generators of the SU(N) group; the group index (a) runs from 1 to N? — 1. The scalar product
of the generators t(,) and t(; is indicated as

(t(a): tw)) = 2Tr tyte) = Glayw) - (35)

The commutator of the generators
_ ¢
[t tey] = if @mte (36)

introduces the structure constants of the gauge group SU(N), f (("2) ) These structure constants satisfy
the Jacobi identity

(@) () @ @) @ o) _
Foyol omw T Fewel me T e ve =0 (37)

Also, one can introduce the completely symmetric coefficients d(c)(q) () using the anti-commutator

_ 1 (©)
{t@ tor} = tate + tote = o@mI+d (e be (38)
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(see, e.g., [37]), where I is the matrix-unity.

The symmetric tensor G (q)(») plays the fundamental role in this theory, it is the metric in the group
space. The generators can be chosen so that the metric is equal to the Kronecker delta; in this sense,
the metric introduces the universal tensor, since the structure of G(4)(;) depends on the dimension of
the group space, but, in fact, it does not reveal features of SU(2), SU(3), SU(4),.. etc. With this metric
tensor one can introduce the auxiliary quantities

_ @ .
fey@ =Gl gym = =20 Tt [tw), te)] te) (39)

and stress that f,)e)() are antisymmetric with respect to permutations of any two indices [36, 37].
When the basis t(,) is chosen to provide the relation G4) ) = () (), We obtain

L@ 40
N @l @e =%@e =G - (40)

There are also possibilities to introduce the tensors Fpyc)(e)(f) and Dia))(e)(r) in the group space,
which are of the following form:

I ) _ o)(d
Feyer@) = Foyof omG@@s Paoe ) = dayoyedae @@ (41)

These tensors are not universal, they depend essentially on the specific features of the corresponding
SU(N) group. Nevertheless, we mention them since, in principle, they can be used for reconstruction of

constitutive tensors in some specific cases.
3.2. Gauge field and field strength tensor

We form the Yang-Mills field potential A,, and the Yang-Mills field strength F;; as anti-Hermitian

quantities:
A, = —iGty AW Fop = —iGt) FLY. (42)

The quantities Aga) and F i(,g ) describe two multiplets of real fields, which are the SU(N) generalizations
of the U(1) symmetric potential four-vector A; and of the Maxwell tensor Fji, respectively. They are
connected by the well-known formulas (see, e.g., [36,37])

an = van - vnAm + [Am7 An] ’ (43)
a) __ a a (a) b g
Fl) = Vi AL =V, AL + G 1) AR AL (44)

Here V,, is a covariant space-time derivative. Clearly, (44) is the SU(N) generalization of (11). The
scalar invariant, which one uses in the Lagrangian of SU(N) symmetric theory is proportional to

I = (Fpn, F™") = —G*FDFI (45)
Each element of the multiplet F(Z(’f) has its own dual element defined as
*F(zf) _ %EiklsFls(a) 7 (46)
with universal Levi-Civita tensor, introduced above.
3.3. Vector field multiplet
Extending the model of the U(1)- symmetric aether, we introduce the multiplet of vector fields
U, = t()U? (47)
in analogy with the Higgs multiplet of scalar fields in [30]

P =t,) @, (48)
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Thus, U,,, and ® are considered to be Hermitian, while F,,, and A; are anti-Hermitian. We assume
that the trace of the vector fields is unit, or to be more precise, we assume that

G(a)(b)U;(#)U,(Lb)gmn =1. (49)

Clearly, this condition is a generalization of the normalization condition ¢""U,,U, =1 in the standard
Einstein-aether theory.

3.4. Gauge covariant derivatives

In the extended theory of dynamic aether we use the operator D,,, the extended (gauge covariant)
derivative. For the Higgs fields it is defined as ( [36], Eqgs.(4.46, 4.47))

Dp® =V, ®+ [A,,, ®] ,
Dy @ =V, 0@ 4+ g1 AP (50)

For the derivative of arbitrary tensor Q(agd) , defined in the group space, we use the following rule [37]:

( ) — ( ) (a) b) (o) b) ~(a)
DmQ s = VmQU + G ADQ — 01 0 AVQULS + . (51)
When we deal with the gauge covariant derivative of the vector fields, we use, respectively, the formula
DU =V, U + £ ADUE. (52)

The tensor F (f) satisfies the relation

it is the generalization of (24). The metric G4y and the structure constants f ((da)) () Are supposed to
be constant tensors in the standard and covariant manner [37]. This means that

OmGayy =0, DmGaym =0,  Onf)y =0, Duff, (54)

Finally, due to the relationship (49), we obtain immediately

g" U D, U G () = U D, UP

1~
o = 3DmlUz 0] = 0, (55)

which is the generalization of the rule U*V,,U; = 0 in the standard theory.

4. A simple version of the Einstein-Yang-Mills-aether model

We consider, first, the version of the theory, in which the unit dynamic vector field U? is unique and is
not associated with the adjoint representation of the SU(N) group; we indicate this version of the theory
as the Einstein-Yang-Mills-aether model. The corresponding action functional can be reconstructed as
a simple generalization of (21):

S = / d*z/—g { [RA20M4A (¢ Uy Up—1) +K9,U,, VU, ]+~ cg{;;?g' FYE® } (56)

In this model there are only two objects with single group index, namely, the multiplet of gauge
potential four-vectors Aga), and the gauge field strength tensor FT(,% The group space itself possesses
the symmetric two-indices metric tensor G'(4)(;), the antisymmetric set of three-indices group constants
f(a)(v)(c), however, one can not construct the vector using these quantities. This means that the group
space is assumed to be isotropic, and we have to postulate that the term linear in F,S?,% can not appear

in the action functional in contrast to the U(1) - symmetric theory. The linear response tensor is now
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proportional to the metric in the group space G 4)), and to the modified U(1)-symmetric constitutive
tensor C*+™" (see (17)):

ikmn

ikmn
(@) = GanC

(Modifications contain replacements p with fi, and € with £€). The modifications of the model master
equations are predictable; let us consider them briefly.

4.1. The modified Yang-Mills equations
The variation with respect to gauge potential Aé“a) gives the equations
DyH¥ =0, HE =CFinFL) = C* " Flaymn - (58)
As usual, this set of equations should be supplemented by
DyF(ly =0. (59)

Keeping in mind the analogy with medium electrodynamics [38,39], we can decompose the tensor FT(,‘LIT)L
using the four-vectors £ and B (the SU(N)-symmetric analogs of the four-vectors of the electric
field and magnetic excitation) as follows:

F(a7)l _ 57(:)Un B gr(La)Um _ Emnquz()a)Uq7 (60)
gl = plyn - gl = pragn (61)

Similarly, we obtain the decomposition of the excitation tensor:

H((L) — (a)U D?G)Um - Emnqufa)Uq 9 (62)
m=HU,, HE = HEU (63)

The quantities Ep, (@) B(a) DEZ) and H?;) are linked by the following constitutive equations:
Dy =€, B =iy, (64)

thus providing the interpretation of the parameters € and ji as color analogs of the electromagnetic
permittivities.

4.2.  Dynamic equations for the colored aether

The variation of the total action functional with respect to the vector field yields
Vi I(AY = 1+l A U, (65)

where the terms J/i}' and I7y, are already defined in (5) and (6), respectively, and the new four-vector

is

5C'tkra
U,

km

Iiym) = Glaym Pl B = < u) FlnEelu™. (66)

The Lagrange multiplier is also modified

A= U [VinT(% = Ty | = kU Iy (67)
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4.38. Gravity field equations

The result of variation of the total action functional with respect to the metric ¢** is

Rzk_ R Gik— Agzk - ( )+ T(YM) . (68)
The term TZ(,E ) is already presented above by the formula (10). The term Ti(kY M) g given by
1 1
10 = L o rry - PR |+
- 1 a
(& — 1)UPUT {(ng — UZ-Uk> F™ o Fl) — Finkq(a)} } . (69)
This stress-energy tensor is symmetric, T i(,:(M) = T,S.{M), and traceless, ¢'*T i(,:( M= 0. It can be

decomposed using three irreducible elements: the energy density scalar W™ energy flux four-vector

Q™ and the pressure tensor Pf, *":

T = wOru, + U004+ 0,00 + P (70)

WM — UiTi(]sfM)Uk _ _% [557(#)5(73) + 237(;:)57(3)} , (71)

QM) = AP OMI = —%ekmpqggg)zsp(@m — —mpEHO U, (72)
PO = AmTMIAR fAzk [sg(a)é‘(” + Bm B ﬂ — EEi)E” %Bi(a)B}j) : (73)

The four-vector Q,(ﬁYM) is an analog of the Poynting vector in electrodynamics of continua [38]. The
equations (68), (58), (59) and (65) form the self-consistent system of equations for the Einstein-Yang-
Mills-aether model.

5. The full-format theory of the SU(N)-symmetric aether
5.1. Action functional

The action functional of the SU(N) extension of the Einstein-Maxwell-aether theory can be
constructed using the following scheme: we take the functional (21) and replace U, with Um)7 Vi Un
with D,, UT(L ), F,,, with F,(W)L, KW™n with ICEZSEZ AP with A(Z:)]g)q Cikmn with CEE’?;S We obtain

now

S = /d‘{mﬁ { (R4 204 A (g™ UL UD G ooy — 1) + K DU DU

+5 A(Zf](”;)"F(“)D U + C”“””F(“)F(”)}. (74)

The constitutive tensors ICZXEZ), -AET)(I;S and ngfggs have now two color indices, (a) and (b), and the
structure of these constitutive tensors has to be discussed especially. Master equations appear as a
result of variation of the action functional (74) with respect to four quantities: the Lagrange multiplier
A, the vector fields U (’fl), the gauge potential four-vector Agb), and space-time metric g%/. The variation
with respect to A gives the normalization condition (49). Other variation details are described in the
next three subsections.
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5.2.  Master equations for the gauge fields

The variation procedure with respect to Al(-a) gives the equations, which we can standardly represent

in the following form:
'Lkmn b)
DkH( ) (a) 3 a) — H(a C F . (75)
Here
i ik] mn
Hia A[a)(b mUy) (76)

is the tensor of spontaneous induction, which does not depend on Fﬁ,% but is predetermined by the
gauge covariant derivative of the vector fields Ur(Lb); H (1(’;) is the total color excitation tensor linear in the

Yang-Mills field strength Fy(,% The so-called color current F%a) is of the form:

mn]sz(b) . (77)

(d) (c) k
G5 @)U ’C%(f DU + A(b)

These equations have to be supplemented by the equation (53).
5.3. Master equations for the vector fields U(ka)

The variation procedure with respect to U (j ) yields the set of equations in the standard form

Diiy =AUy + Ty (78)
where we introduced the following definitions:
J 7] J J
T = I+ I5w: Ha = Tw + Lo + Loy (79)
ij  _ jotmgn ij [mn]ij 1 (b)
‘7(1)( ]C (a)( b)D U ‘7(2)(11) A(a)(b Foin (80)
) 1 5ICEIC€)”(1£
J I (c) (b) — tkmnj (¢) (b)
@) =3 6U(a) DU DU IC(C b)(a)D U, DU, (81)
‘ 5A[zl~c mn
J _ E ((')(b) ((') (b) [iklmnj (c) A (b)
Loy = B 6U. . DUy ‘A(c)(b)(a)sz DU, (82)
I _E 5C<c )| o) p) = Kikmns 0 p) (83)
3)(a) 6U(a) ik Tmn = 4 (c)(b)(a)" ik T mn -
J
In these terms the Lagrange multiplier has the standard form also:
_ 7@
x= U DTl -1, (84)

When the constitutive tensors IC(C yby A[zk]mn and C C) (b) are reconstructed, the corresponding variational
derivatives in (81), (82), (83), can be calculated explicitly.

5.4. Master equations for the gravitational field
The gravitational field is described by the set of equations
1 a
qu_iRgpq = Agpq — >‘U1§ )Uéb)G(a)(b) + TIS;) TR [T,E?+TZ§Z’)] ' (85)

1)

The stress-energy tensor of the colored vector fields ngq is now of the form

K {a) (b)mn

9 amn U DU —
7! gpq/c DU DU e

DU™® U 4
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+ Gy D™ [UO g @ _ gO@y® j((l)(“)U(b)} (86)

q) Pq)

The tensor Ti(,f ) describing the interaction between the gauge and vector fields contains the terms:

ik (o) SA (o | oo
2 klmn ~ b a n a) bn
TP = gpq.A(a)(b) DU — v FY D, U®n
Am [77(6) 7(2)(a) (2)(a) 77(b) (2)(a) 77(b)
TGO D" Uy Igm —Tmip Ysy — Iy Um } (87)
The stress-energy tensor of the Yang-Mills field T i(,f can be presented as follows:
T(S) CzkmnF(a)F(b) 6655)”(2’3 F( a) (b) 88
pqg T gpq (a)(b) 2 5gpq ik mn : ( )

Variational derivatives in (86), (87) and (88) can be calculated, when the constitutive tensors ICZ?L T)’ZZ),

A&k){g " and C( a)(lg are presented explicitly; we reconstruct these quantities in the next section.

5.5. Reconstruction of the constitutive tensors

5.5.1 The structure of the constitutive tensor ’CZI T)YEZ)

We assume that the tensor K m") can be reconstructed using the space-time metric ¢**, the metric

in the group space G )(v)» the vector fields UT(,? ), and an appropriate number of coupling constants C,,.
Since the tensor IC Z) appears in the Lagrangian in front of the quadratic combination of the gauge
covariant derlvatlve of the vector field, we have to keep in mind that this object possesses the following

symmetry of indices:
]Cumn ’Cjznm (89)

We extend the decomposition, proposed by Jacobson and colleagues, as follows: first, we list all the
terms, in which the space-time indices are provided by the product of the metric coefficients (g% g™
ete...); second, we list all the possible terms, which contain the product of the metric coefficients and
two vector fields (g% UiyUly ete.. .); third, we 1ist all the terms, in which the space-time indices are
provided by the product of four vector fields ( U(Jb)U(TZ) Uy etc...). Clearly, in the U(1)-symmetric
theory the product U*UJU™U™ could not appear however, the presence of the group indices changes
the situation essentially.

In order to visualize the ways, along with the pairs of group indices (a)(b) appear in the constitutive
tensors, we introduce (in addition to the metric tensor G(4()) the auxiliary tensor in the group space,
H(a)(®).

H@(®) = qu U (90)

The tensor H(@®) is associated with the multiplet of the vector fields, and it can be indicated as an
analog of the polarization tensor in the optics (see, e.g., [40]). In fact, it is the tensor of color polarization,

it is real and symmetric. The matrix H, ((g)) associated with this symmetric tensor has N?—1 eigenvalues,

0{a}, and the corresponding N?—1 eigenvectors qu)}:

(a) (b) (a)
Hipydiay = 0{adiay - (91)

The sum of eigenvalues is equal to one, since the trace is equal to one due to the relationship

(a) G( )(b)g nU,(,(Ll)UT(Lb) =1. (92)

One can decompose the tensor H(®®) in the series of products of eigenvectors:

HOO =3 otaaihale) - (93)
()
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In the first limiting case, when all the eigenvalues are equal to one another, and thus oy, = 0 =
1/(N? —1), we deal with the color analog of the so-called natural light [40]. In the second limiting case,
when all the eigenvalues, except one, are equal to zero, we deal with the color analog of the linearly
polarized light. In the last case only one eigenvalue is non-vanishing, and it is equal to one; we obtain
now H(@®) = ¢(@)4(®) where ¢(*) is the corresponding eigenvector. Keeping in mind the theory of Stokes
parameters in the optics, based on the analysis of the two-dimensional polarization tensor [40], one can
develop the theory of "color Stokes parameters"based on the analysis of the color polarization tensor
Ha)@) (it is a good idea for the future work).

All the contributions to the tensor ICE?L Q’EZ), which are constructed based on the product of space-time
metric tensors, can be presented using six coupling constants

WKL =Cayw) [C197 9™ +Cog™ ¢ "+C3g"™" g™ | +Ha)v) [C597 9" +Cog™™ ¢""+Crg ™ g"™] . (94)

The parameters C1, Cy and Cj are, in fact, extracted from the Jacobson’s decomposition in the standard
Einstein-aether theory; C5, Cg and C7 appear in the SU(N) - extended theory only.

Contributions of the second type, based on the products of the space-time metric and two vector
fields, can be listed as follows:

@K = CallayUlyg™ + CsUjty Ui g + Cs (Ul Ulhys™ + Ui Uig™ | +
+G(a)(b)G(C)(d) {ClOU(iC)U(jd)gmn + CuU(Té)U(Tg)gij-‘r
+C1 [UmU(d)g +UoU@9e™ } +Cis [UmU(d)g + Ul Ulyd’ H+
+G o)y HO@ {cMUg‘C) Ulyg™ + CrsUy Ul g7+
+Ci6 Uy Ulyg™ + Ul Uitg™ | + Oz [U UL g™ + Ul Uiyg™ | } +
Hiay iy GO { CrsU0 ULy g™ + CroUy Uiy g+
i m _jn m r7J n 7 n im
+C20 [Uu)U(d)g +UoU@9’ } +Cn [U<c)U<d>9 +UoUa9’ H+
"FH(Q)(b)H(C)(d) {CQQUZC) U(jd)gmn + CQ3U(Z) U(’g)gij—k
+C24 { (o Ulyg"™ + Ul Ulyg™ } + Cos { (HULya™ + Ul Ulyg’ H (95)
Thus, in addition to the Jacobson’s constant Cy, eighteen new parameters appear in the SU(N) -
extended theory. By the way, in the U(1) - symmetric theory, the terms with the coefficients UnU™ g%
disappear automatically because of the normalization condition (see Remark), nevertheless, in the SU(N)
- extended theory the corresponding terms with U& )Ugf) g% give non-vanishing expressions in general
case.
Contributions of the third type, in which the product of four vector fields provides the presence of

free indices ijmn, is absolutely new: these terms can not appear in the U(1) - symmetric theory because
of the normalization condition. Sixteen coupling constants are included into the decomposition:

Gt = GO { ool Ul Uy Uy + Cor Uiy Ul Utey Uy + U

(a)(b) UlayUla >U<7?>}

) T U
+Cas [Ufc>U@>U{a>U(T> + Ul Ul >U<b>U<a)} + U U [029U<a)U<b) +030U<a)U<ib>} } +
+HOW {CmU(ic)U(Jé)U@)U@L) +Cs2 {Ufc>U(3>U&>Ufb) + U{aU@)U(ia)U(’?)} +
+Css [Uf@U(d)U(a)U(b) + U<c>U(d>U<b>U<a)} + U U [034U<a)U<b) + O35U<a)U<ib>} } +

+ { [Cs6G ) ) + CarHiayn)] [G(e)(f)g(C)(d) L GEOEOGN@ 4 G(E)(d)G(C)(f)} n
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+ [C38G o)) + CaoH oy )] [H(e)(f)G(C)(d) + H@OOgWD 4 ge)d (el
LHEO@DGEOW) ¢ NG 4 H(f)(d)G(e)(C)} n
+ [Ca0G o) + Cir Hiay )] [H(e)(f) HOW@ 4 @ g 4 ) H(c)(f)} } %
7 m 717J n
x P {U(e)U(f)U(c)U(d)} - (96)

The term P [U (ie) U, (”fL) U (jc) U, (ﬁl)} in the last line of this decomposition denotes the whole set of combinatoric
permutations of the elements U (ie) (7}‘) U (jc) U (7;) with respect to space-time indices; it contains the sum
of 24 items UZE)UZ}I)UgC)U&) + U(ie)U(’}l)U(’L)U(jd) + .... Let us emphasize that in front of the term
P {U(ie)U(”}) U(jc) U&)} we use the tensor in the group space, which is absolutely symmetric with respect

to group indices (e)(f)(c)(d); if the Reader prefers to break this symmetry, one can enlarge this
decomposition thus increasing the number of coupling constants.

[ik]pq

5.5.2 The structure of the constitutive tensor A(a)(b)

The constitutive tensor AEZC)](T);L can be reconstructed using the procedure similar to the one applied
for the tensor ICZ?I ?zg). Again, we consider, first, the terms in which the product of two metric tensors
provide the presence of four space-time indices; second, we list all the terms based on the products of
one metric tensor and two vector fields; third, we introduce the terms proportional to the product of
four vector fields (such terms are absolutely new in comparison with U(1) symmetric theory). Following
this procedure we obtain

ARSI = [w1G o)) + w2 H(a )] 9™ g+

[i k?] mn nli k] m nlt k?] m mli k] n
03U Uy g™ + wag" U UGS + wsg™ U Uty + wog ™ U Uy +

+G(a)(b)G(c)(d) [W7gn[iU(]Z])U(TZ) + WBgm[iU(IZ])U(TZl)] +

+H(a)(b)G(c)(d) [W9gn[iU(kc])U(73) + w1ogm[iU(]§)U@)] +

G HO@ [ong" UG UG + g™ UGUR| +

H(ay o HO [nag™ U Uy + wrag™ U UGy | +
(@) i gkl grm g ik gmpn 4 gl g _— —
+GOD Luns Ul UG U UL + iUl U Ui Uty + U U errU Uy + Ui Uty | } +

c)(d [l k]
+HOD funoUf UG

mrrn [2 k] myrn [¢ k] m rmn m rrn
UiV Tw20Uq U U gt U [w21U(a>U<d)+”22U<d)U(a)}} - (07)
Let us mention that the terms of the type P [U([Q)U(Ic })U (72) U&)} with skew-symmetric set of indices ik
disappear, since we assume that the dumb indices (e)(f)(c)(d) form absolutely symmetric set, similarly

to the case considered above for the tensor (3)ICZ grég).

5.5.3 The structure of the constitutive tensor CEZ?(T)

In order to reconstruct the quantity Cfg’&g, the SU(N) analog of the linear response tensor, we take
the U(1)-symmetric constitutive tensor (17) and list all the irreducible terms quadratic in the space-time

metric, quadratic and quartic in the vector field, respectively. We take into account the symmetry of
this tensor

ikmn __ kimn __ itknm __ pmnik
Clays) = ~Clayy = ~Clayty = Clby(a) (98)
The result of decomposition is the following:

Clasty = [ G ayw) + H@wyw] [979"" — g™ ¢""] +
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2 [gimU(k@ Uty = 9" Uy Uty + 9" Ul Ugsy — 6" Uiy U @)} +
+{ [uG(@w) + W Hiayw)] GO + [26G 0y + U Hiay] HOD+

@y (@) gp @ (&) L 7 @)y (&) L 17 (0) e ()
+ls [H(w Gy +Hey Gy +Heyy Gy +Hpy G, ” X

imyrk n inyrk m knrri m kmyri n
X{g UoUgy =97 Uil + 9" UiUia) — 9 U<c>U<d>}+

+ [Q,6O@ L0y, H(c)(d)] gl g ylmyn) (99)

e)(d o] 77l 77k 7rlmy )
U Un Uiy + |G D 4+ Q1O >}U uH utmo

()7 (e) 7 (a)"(d) "

In (17) there are only two coupling parameters, € and p, while in (99) we see twelve coupling constants,
Ql, ...912.

6. Models with spontaneous color polarization
6.1. The ansatz

In order to reduce the number of coupling constants (the number 75 = 41 + 22 4+ 12 for guiding
parameters of the model seems to be too large) we have to formulate some simplifying assumptions. One
of the ideas is to consider the multiplet of the vector fields to be "parallel"in the group space

Ulyy = 4@U" (100)
where the fundamental vector field U? is unit and time-like
g UUR =1, (101)
and the vector in the group space ¢(* is also unit
Gy g™ =1. (102)

This normalization condition means that the gauge-covariant derivative D@ is orthogonal to the
color vector g, i.e.,

Ua)Dmd @ =0 = qo) [0ma'™ + gf(a()b)(c)AZ@q(c)} = 0= ¢a)0mg" ™ = 0. (103)

Also, one can see that

DU = ¢\ 9V, U, + Uy, Dypg'@ . (104)
The auxiliary tensor H(,) ) converts now into
Ha)o) = 4(a)40) - (105)

and the color vector q(,) is an eigen-vector of H,)) with unit eigen-value

Hiayya' = ) - (106)

This ansatz introduces a special direction in the group space, which is pointed by the color vector q(q),
and return us to the global unit vector field U?. When the so-called "color poling"is implemented, and
all the vector fields U(ia) are oriented along the vector q(q) in the group space (it could be indicated as

a phase transition), the tensors ICE?I T%L), AEZC)]&% and CE{:)’% are simplified essentially.
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6.2. Reduced tensor Kl(fl T)'EZ)

With the ansatz (100) the elements of the first constitutive tensor ICZ STZZ) take the form:
K@) = G [Crg?g™+Cag™ g +Cag™ g™ ] +

+qa)qp) [C597 97" +Cog" ™ g +Crg"" g"™ ]

)’Cum;f) =U'U7g"™" [(Cy + Cis + C22) 4(aydv) + Gayv) (Cro + C1a)] ,
iymn
K(a)(b) 0. (107)
Let us introduce the color projector, the auxiliary tensor in the group space, as follows:

o)) = Glay®) — 4a)4e) - (108)
This color projector possesses the properties:
b a)(b 2
Hayea™” =0, e =py@, GYOMeew =N -2. (109)

Then the tensor ICEZ ;’EZ) splits into the longitudinal and transversal parts:

K0 = 4@ 90K oy + ) 0)K (rame) - (110)
where
Ko = (C14C5)g" g™ +(Ca+C) g™ g +(Cs+Cr) g™ '™ +
+(Cy+C10+Cra+C15+Co2) U U7 g™ | (111)
Ky = C1g” g™ +Cag"™ g7 +Csg™ g +(Cro+Cra) U U7 g™ (112)

Clearly, both longitudinal and transversal constitutive tensors have the same structure as the Jacobson
ones (2), the difference is in the coupling constants only. In other words, we can rewrite longitudinal
and transversal constitutive tensors as

Kzfomng) — C(||)gmgmn+c(\\)gzmgjn+0(||) zng]m+c(H)UzU] mn , (113)
K:Ei;z;lb _ Clg”gm”—l—ngimgj"—i—ngi"gjm—i—Ci” Uingmn 7 (114)

where
CiH) =(C14C5, Céll) = (C9+Cs, C:)()H) = (C3+C7,

C’i”) = C4+C19+C14+C18+Co2 CAEL) = Cio+Cu (115)

present five effective coupling constants, additional to the standard set C7, Cy and Cj.

[ik]mn
6.3. Reduced tensor A(a)(b)

Similarly to the first case, one can obtain the reduced version of the second constitutive tensor

A%ak)g " it has the form

AL = [61Glay) + w2a(ayam] 9™ "+
+ [Glayy (wr + wi1) + qrayap) (wa + ws + wo +wiz)] g"FUNU™ (116)

and can be rewritten as follows:

[iklmn [ik]m [ik]mn
A(a)(b) = q(a)q(b)A(long) A(tram) ) (117)
A[ﬁlgn’g)n = (w1two) gm[igk]n+ (Watws+wr+we-+wi1+wis) gn[iUk]Um7 (118)

A = gl gh 4 (wr + win)g" R U™ (119)
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itkmn
6.4. Reduced tensor C(a)(b)

Using the ansatz about color polarization, one can reduce the linear response tensor as follows:
Cb = [Ty + (0 + Lawan] [9 9" — 99" "] +
+ [(Q4 + Qﬁ)H(a)(b) + (Qg + Q4+ Q5 + Qg + Q7 + 498)(](@)(]([))] X
% [gszkUn o ginUkUm +ganzUm o gkmUzUn] ) (120)

Again, this tensor splits into the longitudinal and transversal parts

ikmn ikmn ikmn
Cla)(v) = @) 9®)C1ong) T @) ®)Cerans) » (121)
C(ﬁmg) = 72/1,(”) g k + [€(||)/J,(H)—1] [g Uku —g Uku —l—gk U'u —gk U'Uu ]} , (122)
Efrrgrﬁ) _ QM(L) {gikmn + I:E(J_)/J/(J_)_l} [gszkUn_gankUnL+ganzUm_gkmUzUn]} ) (123)

In fact, there are now only four effective coupling constants (), 11y, €|y, €(L), defined as

1 1
T:91+Q27 55(”)EQl+Q2+Q3+Q4+QB+QG+Q7+4QB7
(n

1 1
=01, )=+ Q2+, 124
iy 2T T TR (124)

which play the roles of color permittivities, longitudinal and transversal, respectively.

6.5. How does the model of unit dynamic vector field
appear from the model of color aether?

When the multiplet of vector fields U(ia) converts into the set of parallel fields U(ia) = qa)U i s0
that U® becomes the unit dynamic vector field associated with the velocity four-vector of the aether,
one can say, that the model of the SU(N)-symmetric aether transforms into the extended version of
the Einstein-Yang-Mills-aether model (not into the simple version described above). In this case we
deal with reduced master equations, and our first purpose is to write the master equation for the unit
dynamic vector field U?. In order to obtain this equation we calculate the convolution of (78) with ¢(%),
and use the decompositions (110)-(112), (117)-(119) and (121)- (123). The corresponding equation can
be written in the form

imijn 1 1. mnlij imjn ~ ~ a
Vi I:K:(loig)van] =AU’ — §DZ {Aglon]g)]Ff(rlL?lq(b)} + ’C(trins)U"(qu(a))(Diq( )>+

1 I . .
L @gcikmn [ ey, @] [® ®
5 d K [0V + UnDig®] [¢D V40, + UnDrg®] +

+ Z @) gliklmns p(e) [q“’)van + UT,,qu(b)} + gq@c“””"j Fp® (125)

2 (e)(b)(a)™ ik (c)(b)(a)" ik T mn *
Left-hand side of this equation contains the second order covariant derivative of the aether velocity
four-vector U,y; in the right-hand side there are color vector q(,) and its gauge covariant derivative of
- ik j iklmnj ik j .
the first order, D,,q"); the tensors ICEC)TZE{@), AEC)](b)(g) and CEC)TEZ)L?G) are defined in (81), (82) and (83),
respectively.
The master equations for the color vectors ¢(*) can be obtained by convolution of (78) with the
projector II(®)("); they have the form
~ imj A~ 1. mnl|ij
D, | cimin Uanq(h):| _ _§Dz |:A[ ] ]H(h)F(b% _

g (trans) (trans) ™ (b) = m
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(trans) trans (long) (long

[q(c)ViUm—kUmf?iq(C)] [q<b>kan+Unﬁkq<b>} +

@0 {2 jcikmng
+TI { K

(e)(0)(a)™ ik

The left-hand side of thls equation contains the second order gauge covariant derivative of the color

[ik]mn c ~ ikmn, c
-5 A 7F“[<b>van+Uanq<b>}+ Clint i ED L (126)

vector q(q). Thus, (125) and (126) give the set of coupled equations of the second order in derivatives
for the evolution of the unit vector U? and color vector ¢(®).
The equations for the gauge field have the form (75), but now we obtain the reduced quantities:

ik [ik]mn [iklmn
H(a) = Q(Q)A(long VoUn + A U, qu(a)+

(trans)
+ C(Zécr’rgrz) F(a,)mn + Q(a) 'r(n,n q(b [C(ﬁ)’r{r]],g) CEEJZS’S)} s (127)
i Lo mn]i
Pl = oo 0 L 0o + LA 9

Similarly, one can obtain reduced equations for the gravity field.
6.6. The model with gauge covariant constant color vectors q(®

The equations (125) can be simplified significantly, when D,,q(*) = 0, i.e., when the color vector
¢' is gauge-covariant constant normalized by unity, q(a)q(“) = 1. Clearly, it is possible, when the
corresponding reduced equation (126) is satisfied:

|:A[mn ij H(h)F(b)

trans)”(b)

_ 1y(a)(h) ikmnj  (c),( [zk]mnj (c) ikmngj () (b
—1I {/c( 0940V U VU, + kA (O FO,, U, + cc)(b(a)F an}. (129)

In particular, this equation can be satisfied for arbitrary U? and Fy(,?y)“ when the following equalities take

place:
[mn]ij _ a)(h) gikmn, o
A(transf) =0, I )K:(c)(b)za)q( )™ =0,
(a)(h) gliklmnj _(b) _ (a)(h) pikmng
T A @ =0, I Ce 4 =0- (130)
In fact, these requirements restrict the phenomenological parameters only; for instance, A[Ttr;:nls]) =0,

when w; = 0 and wg + wi4 = 0 (see (119)). Then the equation for the aether velocity four-vector takes
the form

. 1~ 1
imjn o T h. [mn]ij (b) ( ) ( zkmn] )
Vi [Kinin Vil | = A7 = 2 D; [AG S F a0 | + 500 @a VK ViUn ViUt

a) (b) gliklmnj pa(c) K (a) pikmnj  pa(c) 1:(b)
+ 2q A(C)(b) a)F’k VinUn + 4(] C(C)(b)(a)sz an

However, the most serious information can be obtained from the integrability conditions for the equation

(131)

D¢ = 0. Indeed, if we start with the equation
Oma ™ = ~Gf')) AW, (132)

use the identity
O Omq ™ =0, (133)

and the Jacobi identity (37), we obtain directly the first integrability condition

(a) c b) _
f (b)(c)q( JE®) — 0. (134)
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As a consequence, we have to require that only the longitudinal component of Fgﬂ% is non-vanishing:

b
M FR) =0 = FY) =q®qq)Fl). (135)
There is a trivial example of this symmetry: this condition is satisfied, when FTS% = ¢ F,,,; then using
(132) we see that

AD — O A 9,.4@ =0, (136)

In other words, in that case we are faced with the quasi-Abelian model with parallel potentials of the
gauge field, and with the gauge-covariant constant vector ¢(*. For sure, this example is not unique,
and in the nearest future we hope to consider in detail some cosmological applications of non-Abelian
models of the spontaneously polarized color aether.

7. Conclusions

1. We established the theory of SU(N)-symmetric dynamic aether, i.e., based on the variation formalism
we obtained the coupled system of master equations for the gauge, gravitational fields, and for the
multiplet of vector fields, as well as, we presented the full-format catalog of constitutive tensors, appeared
in the theory in the framework of the second order version of effective field theory.

2. We have shown that the standard dynamic aether, which is characterized by the single unit vector field,
can appear from the established theory in the assumption that there exist a mechanism of spontaneous
color polarization. This mechanism provides the color vector fields from the SU(N)-symmetric multiplet
to become parallel in the group space, thus organizing a specific global direction in the four-dimensional
space-time, described by the unit time-like four-vector, the aether velocity. We expect that the group
(color) space, attributed to the SU(N)-symmetric aether model, is anisotropic (uni-axial or bi-axial),
and the hypothetical phase transition in the color dynamic aether is accompanied by spontaneous color
poling analogous to phenomena in electric and magnetic materials.

3. In this paper we formulated the formalism, master equations of the new theoretical model and the
ansatz about spontaneous color polarization; in the nearest future we hope to consider cosmological
applications of this model, and to clarify the physical sense of the mechanism of a spontaneous color
polarization in the SU(N)-symmetric dynamic aether.
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The SU(N)-symmetric generalization of the model of the electromagnetically active dynamic aether is formulated.
This generalization is based on the introduction of a Yang-Mills gauge field instead of the Maxwell field, and of a
SU(N)-multiplet of vector fields instead of the standard single vector field. In the framework of the second order
version of the effective field theory this generalization includes three constitutive tensors, which are the SU(N)
extensions of the tensors appeared in the Einstein-Maxwell-aether theory; we reconstructed the full-format set
of these constitutive tensors. The total self-consistent system of master equations for the gauge, vector and
gravitational fields is obtained by the variation procedure. The general model of the SU(N)-symmetric dynamic
aether is reduced to the extended Einstein-Yang-Mills-aether model by the ansatz about spontaneous color
polarization of the vector fields. In fact, this ansatz requires the vector fields, which form the SU(N) multiplet,
to become parallel in the group (color) space due to a phase transition, and a new selected direction in the group
space to appear, thus converting it into the anisotropic color space.
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