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ANALYTICAL STUDY OF THE LIMITING PROPERTIES OF A SUSPENDED CABLE
SYSTEM WITH A RIGID BEAM
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Analytical model of a cable-stayed fan designed bridge is examined. The statically indeter-
minate cantilever beam suspended on k elastic cables is revealed. The law of distribution of
forces in the cables is identified. The obtained dependence of solutions on the number of ca-
bles can identify the asymptotic properties of the deflection of the structure and determine
the optimal ratio of the size of the system under which the deflection becomes minimum. The
algorithm for solving recurrence equations, method of induction and the gamma function are
used in the analytic transformations. The exact solutions are obtained by means of computer
algebra system Maple.
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Introduction. Statement of the problem

Static analysis of cable-stayed resilient systems with real properties, structure and size
generally is not particularly difficult and famous [1, 2]. However, the practical engineer
and designer is often faced with the problem of assessing their computing. The test cal-
culations of such complex systems, such as cable systems, are needed for practical and
theoretical studies [3]. Exact analytical evaluations of solutions are particularly difficult
to obtain. In many cases it is either difficult or impossible. This paper proposes a method
for obtaining analytical solutions, based on the method of induction [4], combined with
the capabilities of modern systems of analytical calculations.

Consider a cable-stayed system (cable-stayed bridge, fan design) consisting of a rigid
cantilever beam hinged on a fixed support which hangs on k cables (Fig. 1, k = 3). Def-
initely the rigid beam does not enough accurate simulate the real system. However, to
achieve the objective we had to go to such simplification. Some justification for this model
is the real-life design with a large beam rigidity.

| Fig. 1. The cable-stayed system,
$3 = L ‘ i k:3

The system is k — 1 times statically indeterminate. The vertical force P is attached to



the beam. We number the cables from 1 to k. In the solution the length of the cables will

included
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Coordinates x; equally spaced at intervals of a = L/k attachment points cables to the
beam have the form

Xj=ja, j=1,..,k,

with L = x; — length of the console.
Determination of forces in cables

Static indeterminacy is disclose by the force method. As a primary determinate structure
we will take a beam hanging on the k-th (far right) cable. Let’s take cables stresses with
the numbers 1, ..., k—1 as redundant. Cable stiffness EF are same for all cables. The cables
(except the k-th) are disconnected and the support of the cables 1,...,k — 1 are replaced
by the forces X;, j =1,...,k—1 (Fig. 2).

. : ) Fig. 2. the primary system 1
ow g Yy sy

Let S; ; — be a force of a cable i = 1,..., k from the action of a unit force in the j-th
cable, j =1,..,k—1. Forces S; ¢, i = 1,...,k are calculated in the i-th cable per load P.
Obviously, Sy x = P/sinay = Pli/h. The forces in other cables, which are disconnected
from the support in the core system are equal to zero S; =0, i = 1,..., k— 1. We have the
following expressions

Sii=1li=1,.,k-1,
Si,j =0,i#j,i=1,...k-1, j=1,..,k,
Sk,j = —jlk/(klj), j=1,.,k-1.
Forces §; ; is the matrix which has a size k x k. The lines corresponds to the numbers
of cables, columns, 1,...,k —1 — numbers of unit stresses, the last column — stresses of

cable of the load P. Obviously, the whole load is taken by the last right cable. For k =3
the matrix takes the form

1 0 0
0 1 0
113 213 Pl3 |- (1)
3L 3L h

The coefficients of the compatibility equations are computed as well.
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k-1
Zai,ij+6i,p:0’ i=1,..,k-1. (2)
=1

According to Maxwell’s-Mohr formula we obtain

EF6 ; Sm.iSm. il ijlz
l,]—mzzl m,iom,j m—m,
iZj,0i,j=1,.. k-1,
283 )
EFél-,i = W + li,
1
EFé P—i li
Pk LR
In matrix form, for k = 3 the system has the form
I3 2133 3
S o4 22 X _ P
9[12 9, 1, 3L h
2133 4153 T a3p
—+lg X2 — 3
9L I, 9122 3l h

By induction [4] we find the solution of the system k—1 of the compatibility equations
(2)
XjZijljﬁj,k/D,j=1,...,k—1, 4)

k
where B = [I [}/13 and D — determinant of the system
i=1

k
D=hY j* Pk )
im

The force in the k-th (right) cable

k-1
X = Z Sk,i Xi+ Sk k= PKk? I Bi k! D.
i=1
The formal substitution j = k in the expression (4), obtained strictly for j =1,...,k—1
gives the same value. This allows to continue using the solution (4) for all the cables
j=1,..,k.

Another primary determinate structure

The best way to check for a solution of statically indeterminate system is to choose a
different primary determinate structure.

We introduce a rigid beam with joints of the points of the attached cables, divided by
k hinged parts.
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! Fig. 3. the primary system 2

This system becomes statically determinate. Take it for the primary system of the
method of forces. The moments M;, i = 1,...,k— 1, introduced in the joints will be un-
known of this method (Fig. 3).

To determine the forces S; ¢, i = 1,..., k in the rigging of the actions unit moments, cor-
responding unknowns Mg, ¢ = 1,..., k—1, we obtain the system of k equations. Each equa-
tion is the sum of the moments around the hinge with the coordinate xi_;, j = 1,..., k, (the
moment point with the number j) of all forces that are attached to the severed right on
the hinge side of the system. Therefore, moving from right to left on the beam, consider-
ing every time the balance of the right part from the hinge of the beam. The point has the
number k — fixed support beams. The system of equations for the forces of the cables of
a single moment of action which is in accordance with an unknown number ¢, is given by

®;=0,j=1,..k j#k-¢

Dp_e=1. ©

To refer to the sum of the moments we have introduced an auxiliary function
J
Q=) iaSiik—j¢sindisp_j.
i=1

To calculate the forces from the actions of all the individual moments it is need to
consistently make k — 1 equations (6), respectively, foré =1, ..., k—1.

Forces in the cables of the unit moments and loads of P are listed in the matrix similar
to (1). Its non-zero elements are given by

Sii=-2/(asina;),
Siv1,i=1/(asina;+1), i=1,..., k-1,
Sii+1=1/(asina;), i=1,...,k—-2.
Forces due to the load action P in all cables, except the far right cable, appended at the
end of the beam are zero. In the k-th cable the force Sy . = P/sina.

For k = 3, we have a matrix of forces (the last column corresponds to the forces due to
the load P)

[ 2L L
- — 0
ah ah
I, 20
= ==
ah ah
I3 Pls
0 = =
ah h
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The non-zero coefficients of the compatibility equations for the unknown moments
Mj, j=1,.., k-1,
k=1
Y 6;iMj+6;,=0, i=1,..,k—1, (7)
Jj=1
that calculated similar to (3) are calculated according to the formula Maxwell’s-Mohr, and

have the form
_pi1H4pit@in

0;;= ,i=1,...,k-1,
’ EF
QitPiy1 .
Ojiz1=—2———,0i=1,...,. k-2,
i,i+1 EF
Piv1 .
Siivo=—r,i=1,.,k-3, 8)
1,i+2 EF
5,',]':5]',,', iLj=1,..,k-1,
Payy
5k_1,p=F,

For brevity we introduce the shortcut ¢; = I3/(a*h?), i =1,..., k, ¢o = 0. A five-diagonal
matrix system is obtained. The determinant of the system (7) coincides with (5). The
system of equations gives the values of the moments in the beam at the attachment points
of cables and has the form
k-1
M; = —ahPlz Z jﬁj,k—l ¢i,j/ D, i=1,.., k-1,
j=1
where the auxiliary matrix of coefficients c; ; is symmetric respect to both diagonals
cijj=(k=i, i=1,..,[(k=1)12, j=i,., k-1,
Ck—j,k—i = Ci,j = Cj,i» i=1,.,k-1,j=1i,...k—-1,
The brackets [(k —1)/2] denote round up. If kK =5 the matrix ¢ have the form

4 3 2 1
3 6 4 2
2 46 3
1 2 3 4
We note two interesting properties of the matrix. First, the determinant of ¢ of order
nisequal to (n+1)""! [17]. Obviously, n = k—1 is the indeterminate degree of structure.
Second, the inverse matrix of ¢ of order n, is a three-diagonal Jacobi’s matrix with ele-
ments 2/(n+ 1) on the main diagonal and —1/(n + 1) on the other two. These properties
can be used to monitor the accuracy of analytical transformations.
The forces in cables can be determined by formula
k-1
Xj = Z Sj,iMi +Sj,k-
i=1
The result in this case is exactly the solution (4). Note that selected for testing pri-
mary determinate structure with unknown moments in the joints, usually has used in the
problem of multispan beam [6] (three-moments equation), in this case complicates but
does not simplify solution.



Analysis of forces in cables

Dimensionless force values X;/P in the last three cables j = k-2, k-1, k, depending on
the height h, for k =12, L =30 m are given by Figure 4.

0.28+
0.27-
0.26-
0.25-
& ]
< 0.244
0.23+
1 k
0.22+
J &
0.21-
1 k-2
0.20- ] ) )
: : : : . Fig.4. Dimensionless force values
10 20 30 40 50 60 in the last three cables

Height £ in the Figure is given in meters. By increasing the height of the construction
the stresses decrease in all rigging, though not always monotonic. On some curves one
can see a small extremum. In this case — it’s the last cable. Starting from a certain value
h, it’s force begins to rise. With an increasing number of cables k, calculations show that
the cable number in which there is such a fluctuation is reduced. However, because of the
small deviations from the change of stresses decreases monotonically with increasing h,
to investigate this effect does not make sense.

It is much more important to explore the obvious asymptote. Moreover, this can be
done analytically. If &1 — oo expression (4), as it turns out, has a limit

im X; = 6;P
h—oo 4 (k+1)Q2k+1)

L ji=1,..k. 9)

This value is independent of the beam length L and decreases with the number of ca-
bles k. The linear dependence of the stress limit of cables on the number of j one could
guess, if we solve the problem not by force method, but by the deformations method. In
this case, at high altitudes h cables are almost vertical, and their extension is propor-
tional to the distance from the support, ie, proportional to the number j. Hence, in view
of Hooke’s law it should be proportional to the force. Way to get the same exact depen-
dence (9) is not obvious and deserves a more detailed explanation. The inductive method
was used for the conclusions. If the number of cables k is given, then the dependence of
(4) for large values of k is, though complicated, but it is a certain kind. Going to the limit
by h — oo is absolutely not difficult, and the result is simple. For example, if k = 3, we
have }}ijgoXj =3jP/14=6jP/28, for k =4 we get }111_1}30X] =2jP/15=6jP/45, etc. Thus,

noting the numerator is 6, write down the sequence denominators 6, 15, 28, 45, 66, 91
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... if k=1,2,3,4,5,6,.... With the help of the operator rgf findrecur from genfunc package of
computer mathematics Maple [7, 8] we obtain the recurrence equation for the sequence of
coefficients of the denominators

tr =3tg_1—3tp_o+ ti_3, k=4.

The operator rgf findrecur is needed to work with even number of members of the ana-
lyzed series.

In this case, the detection of this equation has proved sufficient members of the three
pairs of sequences (sometimes required more). The integer coefficients as a result is a sign
that the equation are matched correctly. Indeed, all ;. must be integer. The solution of
the recurrence equation (here came the third-order equation) can be easily found by using
the rsolve or manually, by known methods of discrete mathematics. Obtain the necessary
dependence for the denominator: #; = (k+1)(2k+1).

Distribution of relative stresses X;/P the cables j =1,..., 12, depending on the height
h (in meters) for k =12, L =30 m is given in Fig. 5.

0.40+
0.357
0.30+

0.25+

X/P

- Fig. 5. Distribution of relative
1 2 3 4 5 6 7 8 9 10 11 12  stresses the cables

There is the number of the cable with the maximum force among all the cables de-
pends on h. This dependence can be found out analytically by differentiating (4) on j,
considering this relationship to be a continuous function. We have

jmax = kh/L.

Consequently, the extreme right-hand cable (jmax = k) is strained more than others, if
h =L, ie, it is inclined at an angle of 45°.

Analysis of deflection

The deflection of the console calculated by Maxwell’s-Mohr formula

k
A=) S, kXili/ (EF),
i=1



where §; = S; /P — forces in cables in the basic statically determinate system from the
action of a unit force at the end of the beam. Given that in this case the forces of all cables,
except the last one with the number k are zero and Sy . = 1/sinay = [/ h, we get

A= Sk,ka Iy _ Plz kzﬁk,k
~  EF  hDEF

(10)

Let us analyze the deflection as a function of the number of cables. We denote A =
EFA/(PL) — dimensionless deflection. Increasing the number of cables, the rigidity of
the whole structure will obviously rise and deflection at k — oo will tend to zero. Another
thing, if fighting for material savings, with the number of cables we will reduce their sec-
tion. Thus it is possible to determine the dependence of the stiffness of the number of
cables. Suppose, for example,

EF = EFyl;/ L,

where Lg = f [; — the total length of the cables, EFy — stiffness cables in the statically
determinatel sifstem with one cable. With an increasing number of cables the total length
increased as well. The length of the far right cable [; = V' L2 + h? is constant, therefore, the
cables stiffness decreases. The volume of cable material with a fixed modulus of elasticity
remains constant Fylj.

The Figure 6 shows the dependence of the dimensionless deflection of the number of
cables at different altitudes #=10m, h=20m, h =40 m, L =30 m.

7.0

6,5

6.0
5.5
ISy

5.0

4.5 h=20

4.0+

Fig. 6. Dependence of the dimen-
7 sionless deflection of the number of

T T T T T T T T T
2 4 6 8 1012 14 16 18 20 22 24 26 28 30 cables
k

Obviously the presence of the asymptote of this relationship when k — oo.
For the analytical determination of the asymptote it is better to express the finite prod-
uct in §; ; as a part of the solution (4) in terms of the gamma function [9, 10]

s L'(k+1—ih/a)l'(k+1+ih/a)
I'Ql-ih/a)T(1+ih/a)

)

k
[[#*+j*a*=a
j=1
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here i — the imaginary unit.
Passing to the limit k — oo in the expression (10), we obtain

_ _ A AV1+ A2+ arcsinh A
T2 T+ A2arcsinhd— A

(11)

where the notation A = L/ h.
Similarly, in the simple way if the stiffness EF is divided to the number of cables ie,
EF = EFy/ k, we can obtain

A,Z
arcsinhA —A/VI+ A2

In this case, of course, the volume of the system as the function of number of cables is
not saved, the solution turns out to be a little bit easier. When the ratio of the beam length
and height of the structure A = 1.354 limit (11) reaches a minimum value of A,y = 4.448,
and the asymptote is calculated using the formula (12) has a minimum value of Ay =
5.736 at A = 1.027. These numbers do not depend on the size of the system, nor on its
elastic properties and are peculiar character of “universal constants” of problem, which
can be guided in the process of designing such structures.

(12)

Amax =

The conclusions

In the problem of statically indeterminate cabling system with an arbitrary number of
cables, the exact solutions for the deflection and stress in cables has been found. The
analytic dependence of the solution on the number of cables helped to identify some
asymptotic properties of deformability of the structure. In process of solutions specific
mathematical patterns allowing to move the proposed methodology inductive to other
computing tasks has also been found.

Some other examples of application of the method of induction in conjunction with
the system of computer mathematics Maple can be found in the works [11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21].

Appendix. Bissymmetric matrix. Examples

Let us consider some bisymmetric matrix A of order n, i.e. symmetric about the main
diagonal
aij=aj,i i,j=1,..,n
and on the side one
Ap—j+1,n—i+1 = Qji-
Dajj=i+j,i=1,.,[n/2], j=i,.,n+1~-1i,For n=>5 the matrix has the form

2 3 456
34565
A=14 56 5 4 (A1)
5 6 5 4 3
6 5 4 3 2
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Using the method of induction we have
det A =2""23+ n)(cos(mn/2) +sin(zn/2)).

The matrix (A1) in the system Maple can be set as the Hankel matrix [8] with symmetric
list:

HankelMatrix(<2,3,4,5,6,5,4,3,2>,5).

2)a;j=j-i,i=1,..,[n/2], j=i,..n+1-iFor n=>5 the matrix has the form

01 2 3 4
10123
A=]12 1 01 2 (A2)
32101
4 3210

Using the method of induction we have
detA=-2"2(n-2)(n-1).
Note that the matrix (A2) in the system Maple can be set as a BandMatrix [§].
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