Motion of paticles near black
holes and high energy collisions

Oleg B. Zaslavskii

Kharkov V.N. Karazin National
University,

Kharkov, Ukraine



Killing vectors

Metric is invariant under transformations

~

X = X = X%+ EYSA J.s(X")=0,,(X")
Sap T Spa =0 u“
d| Ly £ . .
— =0 = Uaf four-velocity tangent to geodesics
dr
dl

_ p_ Vi Vi _
E_(uaf"‘);ﬂu _f‘xua;ﬂu +u“u f(a;ﬂ)_O



ds? = —N2dt? + g, (dd — odt)2 + 9= 4 g,d6?,
/ A

Metric does not depend on t,o
Two integrals of motion E = — pﬂg(t)ﬂ
— (@) u
Angular momentum L=1p,¢

Killing vectors responsible for time translations and rotation

&M =(1,0,0,0) £Wr - (0,1,0,0)



Event horizon

Hypersurface f(t,x",x*,x*)=0

df = o, fdx* = 0 dx

taken within this hypersurface

Normal vector n,~o, f
Lightlike hypersurface nn®=0
n, ~ dx” In this direction, ds* = dx“dx, =0

tangent to leg of light cone



One-way membrane

Trivial case: t==xX

Nontrivial: closed, r=const




Metric

2

g00=—N2+g¢a) go¢:_0)9¢

Contravariant components
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Equations of motion

u'=9g°%u, + g”lu
X , L oX
- mu’ = + —
N g, N
LX N2 X =E-wlL
9,

Observer on circular orbit

6 :const:ﬂ—
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—d¢=a)+LX N °
dt g,

Zero angular observer (ZAMO)

L=0 d¢ _
dt

w Locally nonrotating frame (LNRF)

ds? = ~N2dt? + gy (dg - oclt)? + dLAZ + 09062,

Dragging effect

L=0 but dg

— F @

4 dt
—¢:O L =0



More on kinematics in curved space-time

Let a particle ( ) move with the four-velocity U

Locally, it defines the hypersurface orthogonal to it

Induced metric hw = _|_Uuu/ ho\W =0 h,he =h,

g = —Cb(”Uu. If dr,,=0 two events are simultaneous

proper distance d2 = h,, axdx’

O = g o =d2—di2

2
Local velocity V= (dft) : de* =drg, (1-V°).



Examples of frames.

Comoving observer

Observer who is sitting at rest with respect to a given coordinate frame:

X=00"d i=012%
W =(,000). a(UP)* =1,
w=—2L 0. _ _ Qo
@(:LO,O,) L)O_ /_gn,u_@_
Nk zgk—% condition of simultaneity
ad =T

O
Landau and Lifshitz eq. 84.7 eq. (84.14)
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ZAMO frame (zero angular momentum observer)

and its properties

By definiion Y =C  Ifiis angular variable, standard ZAMO

Normalization condition gives us

W =-L(AN,00 VZ%ZN:(%')@

U, =—N(1,000).
Az =-XU, = Nek.
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u 9o, GN_ g

From N TN we find

_ N 9o | N

G =GN Up =-N= <7+,
O =N +gNIN

Result;

0 — 2N+ (K —Nh) (@ ~Nat)

ho = go+N, he =g, hi = Q.

& = 2N + gy () — cock)? +grar 2 + g,
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Oy = O, Moo = 7y, Moy = Gogs Py = Gy

N =wo,N =N =0Q

world line of the ZAMO is orthogonal to the hypersurface t=const

Proof nu~t,,, N =C Thus vectors I, and Uﬂ

Within this hypersurface, nudx = I’id?(i =0

13



Energy and momentum in different frames

E=-1c*=-Mb Kiling energy, observer at infinity

Energy, measured by local observer with four-velocity U,

Ee. = 1Tu, U =y = 1ol +uU),

- E | i
whence  E-muV'=—¢ VvV o= U
U, u ®

Energy in terms of relative velocity

7]

. dr dr
1 m
— By =
Aot iew
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Flat spacetime

_ 1

U= 1\ Y
m -

Eo :ﬁ Z(E— f)V)%

Static observer

&

6

mr

B
I

eq. (88.9) of Landau and Lifshiitz
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ZAMO observer

E-nuV = EgN= N
1w

In the axially symmetric case, the angular momentum of a particle

is conserved n'l,l(p =L

E-al = BoN=—

J1-w
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Ergoregion Joo > 0

ds? = ~N2dt? + gy (df - wodlt)? + dLAZ + 09062,

Is it possible for particle to have ¢=(IIH ?

& —q -+ 4o de?
=0y "‘A"‘ged ,

In ergoregion, 5| terms positive Interval spacelike, impossible
Outside ergoregion one can choose static frame.
Joo < 0

E=E, |-G ='ﬂ% >C

But inside, Joo > O this formula does not work

Energy can be positive or negative 7



Boundary of ergoregion Joo =

Limit of staticity, infinite redshift

- For a static observer

in the limit Op —>0 andanyfinite  V

ve > 0

But for moving observer this is not so
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N Ergosphere 7

~ ”~

\s———/

Penrose process. A particle O enters the ergosphere and decays there into two particles, 1 and 2.

One of them with a negative energy (2) falls into the black hole. The other one (1) escapes
the ergosphere with an energy exceeding an energy of the original particle.

Penrose process E,=E +E, E,<O,E, > E,

19



Circular orbits

77/1
u“ = d ¢ u¢
J-n.n" u'u’ =0 =—=Q
770577 dt ut
T =o' Q0"

Surface at which U”Uﬂ =0

U U 2¢ _
St S T E " Sy TG S =0

i _ Held
St Sou = 9wy S © = oo &' Es =Dl E sy = 95

M _ H el —
S0 Sou = s S 9 = Jos
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u‘u, ~(Q-Q)(Q-Q)
Time-like WU, <0 if

Q <Q<Q,

21



Outside ergoregion,

N
Q =0t—
e

Q_ <0,Q, >

Q can have any sign
Inside ergoregion
Q_>0,Q, >0

Q >0 Only corotates with black hole

O =—N’+a°g, <0

0

Corotate or counterrotate
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Nonequatorial motion, motion inrand @ directions

U ~11" +ahy,)" + Ay,

O+ + 7 +20g,,+Q°g,, =0

_ go¢ 4 \/gz¢ o 600g¢
9, 9,

Q, =

60029004-0(24-,82 Q >0

corotates
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Kerr metric

rra’

rr
ds’ =—adt*(1--%) +(r* +a’+-—sn°#)sn’dé’ +

pZdr 2

2

2r 1
+ p°d6* ——-asin® Gdgot

Yo,

r =2M A?=r®—rr,+a’

At large distances  —Qg,, ® 1— ——

r.a
I

r

sin’ @ ~ 2—Jsin2¢9
r

p?=r?+a’cos’¥

J=Ma
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F =M + \/I\/I 2 _ g2 a < M Nonextremal black holes

r =M — \/M 2 _3a° =M Extremal black holes

- No black hole, naked singularity

a=0 Schwarzschild metric I, =Ty = 2M
24 Vg dr 2 2 2 212
ds’ =—dt*(1--2)+ —+r°sin odg” +r-do
I
1.9

r 25




G =1-— Ergosphere: O =0

ry=p

Mpessn cTaTHUHOCTIA (O pWHInHT CoOBETHRA
%

\
'I.Lf,a-*
SPTOCDEPA
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Effective potential

mu' = NX2 mu?’
X =E-wlL
Equatorial motion
g, uu’ =-1
dr \°
— | + = -1
g”(drj

L o X
g, N~
6 const = —

27



2 M
¢ 3

E=mg,d =mL

(ag — L)2 + _ 2.5

O =1 for time-like geodesics

5=0 for light-like geodesics
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If particle falls from infinity with E=m | can reach horizon provided

<1<, =5 A-2 <

M M

L =21+ 1+ A) . =21+ V1-A)

The ellective potential for A = 0.95 and [r ~ 2.45, | =
2.5, g = 2.76. Allowed zones for [ = 2.5 are shown by
the gray color. 29



High energy processes near BHs

Key quantity: energy in centre of mass frame

. 2 Y7,
1 particle m- = ‘Pﬂ P ‘

2 particles colliding in some point

E*,, =[PP

— n® (2)
Total momentum Pu =P 7 + P U

P. = (E

a

0,0,0) u”uﬂ = -1

c.m.?

Individual E finite, energy in CM frame unbound

30



Two different kinds of energy

Killing energy E=- pﬂf“ E X Killing vector

E conserved, integral of motion since metric is static or stationary

Energy in the CM frame E

cC .. m

not conserved. Moreover, it is defined in one point only.
point of collision

31



Collision of two particles: general formulas

B, =-PP, P =p+p,
B = +nm5+2mEq (21) = nf+n3+2mEq (1,2,

Fe(1)=my Be@D=my  y=-tw,

Local three-velocity

o 1

In special relativit W=——=AV)y,y="r—.
N Special relatvity ds \/ﬁ

V=u/1-\» V= d%, dr? = di2 (1-\A).

32



Curved space-time

tetrad basis héla) Let

U“=h, and hl(f)

Special relativity Natural definition

- dx
v =X @
’ N ok
uh
VO =
_uuh(O)u

be orthogonal to it

33



No comoving frame, v=c=1, m=0 E=#4v

Photon with wave four-vector |’<H

Vo = _kpé'u IS conserved along the trajectory

vo—kV = ﬁ, V= —kﬂU“ velocity of observer | Ju

e vC v= |
for static observer =

For ZAMO observer V=&  k;=L

ooy |

N~ has the meaning of frequency.

34



Types of collisions

Head-on collisions Motion towards black hole (BSW) Intc;_rmediate case: circular
orbits

Head-on collision

1975 - 1977 T. Piran, J. Katz and J. Shanam
Two particles move in opposite directions near BH
Almost infinite relative blue shift

E in CM frame almost diverges

Special scenario. Particle near black (not white) hole moving away from
horizon and colliding with another particle

35



BSW effect, its physical explanation and properties

Universal character of BSW effect near BH

Kinematic nature of the BSW effect. Role of critical trajectories
BSW effect and acceleration horizons
Geometric explanation

Kinematic explanation for collisions inside BH

Extremal versus nonextremal BHs

I_;finematic censorship

BSW effect versus Penrose process: what can be seen at infinity?

Role of self-force due to gravitational radiation

36



M. Banados, J. Silk, and S. M. West PRL 2009
lo

—2(1++v1+4+a)<li<2(1++v1—a)

Both particles experience blue shift, centre of mass frame is in free fall.
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ey )
(ESH)?

.
B 2;'}10

B r(rr — 2r + a®)

[2a*(1 + r) —2a(l, + 1) — LL(=2 4+ 1) +2(—1 + r)r?

—\2>a = L) = Br+2242(a — 1,)* = Br+21]

M=1, [=L/mM
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Acceleration of particles as universal property of rotating black

holes

O. Z., PRD 2010

Role of horizon
Universality of black hole physics

Unified approach to nonextremal versus extremal black holes

39



Energy in CM frame

E .2 — _(mlu#l + m2uy2)(m1u1,u + m2u2y)

c.m

2 2 2
E..o=m",+m, +2mm,y

Y = _(uluz)
ds? = ~N2dt? + gy (dg - o) + = + gyap2

. T
equatorial plane @ = > (z=0) Isasymmetryone

_ _ conserved quantities
u, =-E u, =L .

Integrals of geodesic equations

g,uu =-1 40



o_E-oL _ X

t=u Z S NE

Forward in time condition X>0 or X=0 If N=0 (horizon)

L  oX . (E-ol)® | L?

+ : = -1-—. for timelike trajectories

¢ =

L

Eém _ X1X2 _51‘922122 +1-Y.

. . N2 _N2h. h = i
o v Zi= J(Ei - ol)? - N2y, by = 1+

Ugg ’
L.L>
Jo¢

Y =

- for particle moving towards horizon

c=+l away from horizon “



6’16‘2 =-1 head-on collision, Piran et al

En XX+ZZ .
o N +1-Y,

c.m. always unbound near horizon

For any relationship between energies and angular momenta

42



‘91 — 6‘2 — —1 BSW

B _XX=22, 4 Xi = Ei - ol

nf N

L LsL
- . Y 2h. h = | _ L1L2
Zi = J(E - ol) -N2by by = 1+ 51 Y= G
In general case, Ecz_m_ remains bound in horizon limit N — O
. iy 2
Special conditions for unbound  E[

Two kinds of particles (trajectories)
Usual Xy,=E-0,L#0

Critical Xy=E-w,L=0
43



Different limiting transitions

Let, for generic L one approaches the horizon, so N-0
1)

B2\ ] D1y (Lowy - L2) ~ Dowy(Lw—L1) L, |, E
) =1+ + - - ,|_|(|.|) = CO_H
2m 2(Ly - L1) 20Laey -L2)  (9gs)y
L1:|-1(H)(1_5)
(i> o Duw(baw ~L2) im limEy = .
2m2 H 2|_1(|.|)8 . |_1->|_1(|.|) N-0

44



2)

Letustake L1 — Ly first and, then, consider the limit

Eém _ (E2-ouly)
om? N

im lim Eg = .
N—>O |_1—>|_1(|.|)

1 usual particle and 1 (near) critical

Proper time to approach horizon:

T~J.d|TN~|—>oo

45



Extremal versus nonextremal

Problems with attaining extremality, a=0,998 (Thorne)

Jacobson et al, Berti at al: difficulties in realization

Grib and Pavlov: nonextremal Kerr

Extremal case: collision near horizon

_om 2(L, - L,) _ B
Ec.m."’\/g\/l_\/l_ia2 |-1 L(H) 5

46



Vg x 107

6 I

4

2 L

[
,\'5

0 | | I

5[ rlry
lp

The efiective potential for A = 0.95 and g ~ 2.45, | =
2.5, g = 2.76. Allowed zones for [ = 2.5 are shown by
the gray color.

Multiple scattering (Grib and Pavlov)

21+1+a) =L, <L <l =21+/1-a). a=1l-¢

L, - L, = 2—“1:1(\/1+ a++l-a-a)=~2(2-N)Je

g —>0 47



Some estimates Collision of two protons

black hole

(Grib and Pavlov, Piattela)

Extremal BH of solar mass, To obtain in CM energy of Grand Unification

10°*sec > time of Universe 108 sec

To obtain 10° largerthanat LHC 10° sec

Nonextremal black hole

a=0.998 BH 10® solar mass

L 6
To obtain in CM energy of Grand Unification 10

13 days

sec
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Head on collisions (Piran et |) no
fine tuning

BSW effect — requires fine tuning

Two issues: getting unbound energy in CM frame,
measurements at infinity

Two key ingredients of BSW effect (O..Z., 2011-2012)

1) Horizon

2) Special class of trajectories (critical particles)

Collisions between 1 critical and 1 usual particle produce BSW effect

49



ds? = -Ndt® + gy (dg — wdt)® + dI* + gdz°.

. _ E-olL L a)(E—a)L)
t=u’= Ng)' PG T N
Eim _ L,L
e M T
X1 Xo =272 _
h==4 Nz = E1=0.L1(1+0)
EZ. | b+ f = 1 .
—oy & (X2), 510, 2008%

N ~sing On horizon f=1/2
Turning point f=1

50



Veir(po) = 0, dVesr

Nonexistence of near-horizon circular orbits for generic nonextremal

Circular orbits and BSW effect

dp (po) =0

rotating black holes

N-0

AW o de ANy N db
gy - TEebl g,

Horizon limit

dN

o K- Surface gravity, constant

51



Innermost stable circular orbit (ISCO)

d*Vet(po)
T x~H?, H=oret.
X=p—p, X ~N~ k3.

O-variant of BSW effect: collisions on circular orbits

. . . _ XaXp
Particle 1 on circular orbit " = NER E,, ~~x "2

C.m.

H-variant of BSW effect: collisions of particles plunging from circular orbits

B~

52



Another mechanisms

Patil, Joshi, Kimura, Nakao RN metric, naked singularity

.0t
50 Q ~ M
EF=1.1
ol B=1 Q > M
Black hole
COr
Q < M
.0

14 | .
Naked singularity

Small N

Small f in point of collision
53



No horizons, no singularities (Patil, Joshi)

Extension to rotating case O. Z.

_ XiXp+0Z1Z,  Lil, .
mimyy = N2 ~g; — 9PiPz
0 = =1 motion in same direction
0=+1 motion in opposite directions, head-on

Small N, large energy in CM frame

ds? = ~N2dt? + gy(df - wdlt)? + dLAZ + ggd62,

Both particles usual, proper time bounded

54



Role of gravitational radiation

Naively: it bounds the growth of E in CM, restricts BSW effect

More careful inspection: under rather general assumptions
(radial acceleration is finite in OZAMO frame, asimuthal force
tends to zero not too slowly) the critical trajectories do exist.
As a consequence, the BSW effect persists.

Details: I. V. Tanatarov and O. Z., PRD 2013

BSW effect survives!
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BSW effect versus Penrose process

Particles 1 and 2 move towards BH, collide and produce particles 3 and 4

What energy can be observed at infinity?

Large E but strong redshift N static case A~ =

c.m.

M. Bejger et al, Harada et al (Kerr spacetime), O. Z. (dirty BH)

Rotaing extremal black holes

Conservation laws (energy and radial momentum)

56



Upper limits for specific reactions

Elastic collisions m=..m=m
A, =max E; =1.343m A, =1.343m

1= 5 <0.67
E+E

If 1=3, 2=4, we have a new free parameter

Maximal extraction = 1.176

57



Es

Extraction n = E,+E,"

Nm

Is it possible to achieve this inequality?

In the Kerr case

Scenario IN+

In two other scenarios no
energy extraction

_22+43) 4 46
=) st

Universal upper bound

58



Collisions near inner horizon

Two particles collide inside black hole

2

dszz—dt2f+d++r2da)2. RN - f=1-2d Q2 =(1

r<r<r, f=-9g<0 r=-T

L)
;

S
:

59



Initial moment r-<r<ri<r, r = _T

Later, r decreases

Collisions near r — r

Formally, one can achieve

imE_ (r)=o when r—r

However, by itself this does NOT mean that the effect occurs

There is also kinematic condition that
collision does occur

60



Collision

T1=T2 Yi=Y,

Carter-Penrose diagram, for fixed r different points
(U1’V1) (Uzivz)

Kruskal-like coordinates, analytic extension

61



Collisions near inner horizon

Again, one of two particle should be critical. Then, the following cases are
possible.

Kinematic censorship preserved

Fig. 1. Impossibility of strong Fig. 2. The weak version of BSW
version of BSW effect. Critical effect. Near-horizon collision between
particle 1 passes through bifurcation Critical particle 1 and usual one 2.
point whereas usual one 2 hits left

horizon
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Fig. 4. Impossibility of strong version of
PS effect. Two usual particles hit different
branches of horizon.

Fig. 3. Impossibility of strong version. Critical particle 1 passes
through bifurcation point, whereas
a usual one 2 hits left horizon.

Kinematic censorship

63



Fig. 5. Weak version of effect. Fig. 6. Weak version of effect. Collision
Near-horizon collision between between two usual particles near left horizon.
critical particle 1 and usual

one 2
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Fig. 7. Weak version of effect. Collision between two usual
particles near bifurcation point.
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ds? = —dt? + dx?.

t< 0| < [t]

right horizon

left one

bifurcation point

Analog in flat space-time

Minkowski and Milne metrics

X = tsinhy, t = fcoshg,
ds? = —dt? + t2d%2. 2 =12 -
X = —t f:O,)?:—oo,
X =+t f=0, %= +o.
X=0=t

tanhX =

T.
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X:mu‘ué'u X—Vt:XO- f: = X ~ . ~ = . ~X0 ~ 1
coshXo(V coshX — sinhX) sinhX — V coshX

_ _ 1 " PR . .
X = —xoE, E = ﬁ critical if X=0 near-critical if X small

usual X=0(1)

67



Types of collisions leading to the BSW effect.

Scenario | V) V5 X X5 1 7, Location
Aa ~ +1 ~ —1 <0 =0|2X ~ 15 < Bifurcation point
Ab 1 ~ 41 =0 <0 |~ 2 | Xs| Bifurcation point
Ba imtermediate | = —1 () =0~ ~ 1< Bifurcation point
Bb intermediate | = 1 () < )| ~ |t 21 Xy Bifurcation point
Ca 1 intermediate | () < 0| ~ |t 2 | Xs| Horizon
Ch -1 intermediate | () =0~ t2 < Horizon

Similar effects for cosmological horizons

68




Collision between the critical particle 1 and a usual particle 2
near the horizon
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Collision between the near-critical particle 1 and a usual particle
2 on the horizon
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Alternative mechanisms of getting unbound energies in CM frame

Collisions inside ergosphere, not near

Finite Killing energy E, large negative angular momentum L

Grib and Pavlov 2013 (Kerr metric)

O. Z. 2013 (generalization)

71



2
ds? = N2 + gy (df - 0)? + Ldr? + gl

o >0 Equatorial plane:

XX, ~&62Z,  LL,

mmy = N? 9

2

Z2 = X2- N2(m?+ 2,
g

For BSW — small denominator. Now — large numerator

X=E-al>0

Large ||—| possible for L<0 since

We want E to be fixed

12



From geodesic equations

2
72 5% e p2o N°nt (1+g,,67) >0,
g

We want to have finite E and large negative L

Outside ergosphere this is impossible since

So we must look what happens inside
ergosphere (or on boundary)

Joo <O

there

73



2
ds? = N2 + gy (df - 0)? + Ldr? + gl

w >0
- E
m¢ — 2 — - L gOO2 ,
N gN
Inside ergosphere, Qoo ~ 0
If L = —‘ L‘ <0 and ‘L‘ increases

d ¢

also increases!

d
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Collisions inside ergosphere

2|L
Etm ~ |N22|300 [e1(Ly), - L1 —£2/(La)_- L1 ]2
Jgo > 0

Arbitrarily large

If ‘L‘ SO is
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Kinematic explanation

E-ol = —MN_
J1- V2

Horizon limit N — O Vi > 1

Inside ergosphere, large L<0 for particle 1 (critical)

Vus <1 vV, =>1

Vg <1
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CONCLUSION

High energy collisions due to horizon

Outside black hole

Inside black hole

Role of critical trajectories

ISCO

Force does NOT spoil BSW effect, critical trajectories survive

RN metric: example of significant effect at infinity
Relevant physical factors: BH rotation, electric charge, magnetic field
Universality typical of BH physics

Alternative mechanisms

No horizon but system in some sense “close” to its appearance
Ergoregion

A need for further studies of Penrose process in combination with
BSW effect
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